Glycosaminoglycan-dependent restriction of FGF diffusion is necessary for lacrimal gland development

Xiuxia Qu¹, Yi Pan², Christian Carbe¹*, Andrea Powers¹, Kay Grobe³ and Xin Zhang¹,‡

SUMMARY
Glycosaminoglycans (GAGs) play a central role in embryonic development by regulating the movement and signaling of morphogens. We have previously demonstrated that GAGs are the co-receptors for Fgf10 signaling in the lacrimal gland epithelium, but their function in the Fgf10-producing pericocular mesenchyme is still poorly understood. In this study, we have generated a mesenchymal ablation of UDP-glucose dehydrogenase (Ugdh), an essential biosynthetic enzyme for GAGs. Although Fgf10 RNA is expressed normally in the pericocular mesenchyme, Ugdh mutation leads to excessive dispersion of Fgf10 protein, which fails to elicit an FGF signaling response or budding morphogenesis in the presumptive lacrimal gland epithelium. This is supported by genetic rescue experiments in which the Ugdh lacrimal gland defect is ameliorated by constitutive Ras activation in the epithelium but not in the mesenchyme. We further show that lacrimal gland development requires the mesenchymal expression of the heparan sulfate N-sulfation genes Ndst1 and Ndst2 but not the 6-O and 2-O-sulfation genes Hs6st1, Hs6st2 and Hs2st. Taken together, these results demonstrate that mesenchymal GAG controls lacrimal gland induction by restricting the diffusion of Fgf10.

KEY WORDS: FGF, Heparan sulfate, Glycosaminoglycan, Lacrimal gland, Branching morphogenesis, Morphogen gradient, Mouse

INTRODUCTION
Glycosaminoglycans (GAGs) are the major constituents of the extracellular matrix that control the transport and signaling of numerous growth factors (Hacker et al., 2005). Consisting of 50-400 repeats of disaccharide units, GAGs can be divided by their composition, sulfation and epimerization into chondroitin sulfate (CS), dermatan sulfate (DS), heparan sulfate (HS)/heparin, and keratan sulfate (KS). A common precursor of all GAGs is UDP-glucuronic acid, which is synthesized from UDP-glucose by a single mammalian enzyme, UDP-glucose dehydrogenase (Ugdh). Together with an amino sugar such as N-acetylgalactosamine for CS, these monosaccharides are incorporated by polymerization enzymes into the backbone of the polysaccharide and are further modified by a series of sulfotransferase enzymes (Ndst) and 2-O-sulfotransferases (Hs2st). Glucuronic acid (GlcA) residues are next converted by glucuronol C5-epimerase (Hsepi) into iduronate (IdoA), which can be further sulfated at the C-2 carbon position by the 2-O-sulfotransferases (Hs2st). Finally, 3-O-sulfotransferases (Hs3st) and 6-O-sulfotransferases (Hs6st) complete the secondary modification of HS by sulfating the C-3 and C-6 carbon of the amino sugar residues. As only a subset of the disaccharide residues are processed by these sulfation enzymes, there are enormous heterogeneities among GAG chains that decorate the cell surface. Remarkably, the composition and sulfation pattern of GAGs are highly consistent within each cell type, suggesting that the biosynthesis of GAGs is tightly regulated in a tissue-specific fashion (Maccarana et al., 1996; van Kuppevelt et al., 1998; Ledin et al., 2004).

Fibroblast growth factor (FGF) signaling is among the most studied intercellular pathways that are regulated by GAGs. In particular, HS is known to serve as a co-receptor on the surface of FGF-responding cells, forming a trimeric complex with FGF/FGFR to activate downstream signaling. It remains controversial, however, whether this co-receptor function of HS is dictated by its specific sequence motif or its overall charge content (Kreuger et al., 2006). Nevertheless, biochemical studies have shown that many FGF proteins exhibit preferential binding to specifically sulfated HS, and the selective removal of N-, 6-O- or 2-O-sulfate groups of HS disrupts its interactions with some, but not all FGF-FGFR pairs (Allen and Rapraeger, 2003; Ashikari-Hada et al., 2004). In support of this, we have recently provided genetic evidence that FGF signaling in both lens and lacrimal gland development requires HS biosynthetic enzymes Ndst, Hs6st and Hs2st in vivo (Qu et al., 2011b; Qu et al., 2011a). These results show that the sulfation modification of HS is crucial for its function as a requisite partner of FGFR on the cell surface to detect FGF signals.

Previous studies have also suggested that GAGs might regulate the diffusion of FGFS in the extracellular matrix. It has been observed that FGF family proteins often can bind to highly sulfated GAG sequences, including HS, CS and DS (Jemth et al., 2002; Bao et al., 2004; Kreuger et al., 2005; Taylor et al., 2005). On the one hand, through rapid and reversible binding, cell surface GAGs might protect FGF from proteolytic degradation and control the movement of FGF within the extracellular matrix, thus maintaining the position-dependent gradient of FGF (Beer et al., 1997; Dowd et al., 1999). On the other hand, enzymatic cleavage of GAGs or their attached core protein has been suggested to turn FGF into a long-range signaling molecule by releasing the FGF-bound GAGs. Indeed, it was shown in Xenopus embryos that secreted serine protease xHtrA1 stimulated FGF signaling by cleaving GAGs.

1Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA. 2Institute of Nutritional Science, Chinese Academy of Sciences, Shanghai, China. 3Physiological Chemistry and Pathobiocemistry, University of Muenster, 48149 Münster, Germany.

*Present address: Thomas Jefferson University, Philadelphia, PA, USA

Date: Accepted 14 May 2012
containing proteoglycans, thus promoting the movement of FGF. Consistent with this, injection of HS and DS in Xenopus embryos induced a similar posteriorization effect as that by xHtrA1 and FGF signals (Hou et al., 2007).

The role of GAGs in FGF diffusion during branching morphogenesis is poorly understood. In the vertebrate lung, signals (Hou et al., 2007) induced a similar posteriorization effect as that by xHtrA1 and FGF suggesting that the level of Fgf10 in mesenchyme needs to be regulated by FGF signaling. At mouse embryonic development (Yan and Lin, 2007). These results thus raised questions about the role of HS in the FGF-producing mesenchyme.

The lacrimal gland also develops through branching morphogenesis regulated by FGF signaling. At mouse embryonic day (E) 12.5, the conjunctival epithelium at the temporal side of the eye invades the Fgf10-expressing mesenchyme to form the initial lacrimal gland bud. The bud elongates posteriorly until E15.5 when secondary branching begins to establish the complex tubuloalveolar structure. This gives rise to the mature lacrimal gland composed of numerous ducts, acini and connective tissue. It has been shown that even heterozygous mutations in Fgf10 can lead to lacrimal gland aplasia in humans and mice, suggesting that the level of Fgf10 in mesenchyme needs to be precisely modulated in lacrimal gland development (Makarenkova et al., 2000; Entersarian et al., 2005). In this study, we have generated a conditional knockout of Ugdh in the pericellular mesenchyme to investigate the role of GAG in FGF diffusion. Although the differentiation of the pericellular mesenchyme and the expression of the Fgf10 ligand were unaffected, Ugdh deletion led to an unrestricted diffusion of Fgf10 in the extracellular matrix. As a result, the presumptive lacrimal gland epithelium failed to activate FGF downstream signaling for a budding response. This is further supported by genetic rescue experiments in which Ugdh lacrimal gland defects could be ameliorated by the epithelial but not mesenchymal activation of Ras signaling. Finally, we showed that lacrimal gland development was abrogated by a combined deletion of Ndst1 and Ndst2, but not by a loss of Hs6st1, Hs6st2 and Hs2st genes. Therefore, sulfated HS is the crucial component of GAGs in controlling Fgf10 diffusion in lacrimal gland development.

MATERIALS AND METHODS

Mice

The Ugdhlox targeting vector was constructed using the recombinase method from a 12.7 kb genomic fragment (Liu et al., 2003; Carbe et al., 2012), which was retrieved from a C57BL/6 bacterial artificial chromosome (BAC) clone (RP23-477N9, BACPAC Resources Center at Children’s Hospital Oakland Research Institute, CA, USA). It contains a neomycin (Neo) selection cassette surrounded by two flrt sites and exon 6 of the Ugdh gene flanked by two loxP sites (Fig. 1A). The linearized targeting construct was electroporated into 129P2/SvEvTac embryonic stem (ES) cells and recombinant clones were screened by Southern blot analysis with 5’ (Saci) and 3’ (BawH1) external probes before being injected into C57BL/6 blastocysts. Chimeras were further bred with C57BL/6 mice for germline transmission, which was confirmed by PCR genotyping using the following primers: UgdhloxF: 5’-TCTGTGAGG-CTGTATTCACCTCC-3’; UgdhloxR: 5’-AGGCCACAGGACACGGT-AGGA-3’. The amplification bands of 214 bp and 314 bp corresponded to the wild-type and flox alleles, respectively. After crossing with an Fgf10 transgenic line (stock number 009086, Jackson Laboratory, Bar Harbor, ME, USA), the flrt-flanked Neo cassette was removed in the Ugdhlox mice.

Ndst1fllox and Hs6st2lox mice were described previously (Grobe et al., 2005; Qu et al., 2011b). Hs6st1lox is a kind gift from Dr Wellington V. Cardoso (Boston University School of Medicine, Boston, MA, USA) (Izvolsky et al., 2008). Hs2stfllox is a kind gift from Dr Jeffrey D. Esko (University of California San Diego, La Jolla, CA, USA) (Stanford et al., 2010). Tg-HrasG12V is a kind gift from Dr Paul A. Overbeck (Baylor College of Medicine, Houston, TX, USA) (Burgess et al., 2010). Ndst2fllox is a kind gift from Dr Lena Kjellén (University of Uppsala, Uppsala, Sweden) (Forberg et al., 1999). The P6.5 lacZ reporter transgenic mice were kindly provided by Drs Paul A. Overbeck and Richard Lang (Children’s Hospital Research Foundation, Cincinnati, OH, USA) (Makarenkova et al., 2000). LSL-KrasG12D mice were obtained from the Mouse Models of Human Cancers Consortium (MMHCC) Repository at National Cancer Institute (Tuveson et al., 2004). Wnt1-Cre mice were used from Jackson Laboratory (stock number 009107) (Danielian et al., 1998). The Wnt1-Cre; Ugdhloxfllox embryos were generated by crossing Wnt1-Cre; Ugdhloxfllox animals with Ugdhloxfllox mice, and the Wnt1-Cre; Ugdhloxfllox embryos in the same litter were used as wild-type controls. The animals were maintained in mixed genetic backgrounds. All experiments were performed in accordance with institutional guidelines.

Histology and immunohistochemistry

Hematoxylin and Eosin (H&E) histology, carmine staining and Histology and immunohistochemistry were performed as previously described (Pan et al., 2008). For HS detections, sections were treated with 50 U/ml heparinase I (Seikagaku, Tokyo, Japan) for 2 hours at 37°C to expose the terminal desaturated hexuronate residues at the non-reducing ends of HS, which are recognizable by 3G10 antibody (David et al., 1992). By contrast, 10E4 antibody binds HS epitopes that are O-sulfated and N-acetylated rather than O-sulfated (David et al., 1992; van den Born et al., 2005). For phospho-ERK staining, the Tyramide Signal Amplification kit (TSA Plus System, PerkinElmer, Waltham, MA, USA) was used to amplify the signal. The following antibodies were used: anti-phospho-ERK1/2 (#4370, Cell Signaling Technology, Beverly, MA, USA), anti-chondroitin sulfate (#C8035, Sigma, St Louis, MO, USA), anti-E-cadherin (U3254, Sigma), anti-Fgf10 (#sc-7917, Santa Cruz Biotechnology, Santa Cruz, CA, USA), anti-Pax6 (PRB-278P, Covance, Berkeley, CA, USA). At least three embryos of each genotype were analyzed.

RNA in situ hybridization

RNA in situ hybridization on cryosections was performed according to a standard protocol (Pan et al., 2008). Briefly, the digoxigenin-labeled probe was hybridized on cryosections overnight at 65°C, followed by stringent washing. After equilibration with maleic acid buffer, the sections were incubated with an AP-conjugated anti-digoxigenin antibody (Roche, Indianapolis, IN, USA) at 4°C overnight. Hybridization signals were visualized with BM Purple (Roche) and photographed under a Leica DM2500 microscope. The following probes were used: Erm (En5 – Mouse Genome Informatics) and Er81 (Envl – Mouse Genome Informatics) (both from Dr Bridget Hogan, Duke University Medical Center, Durham, NC, USA), Pits2 (from Dr Valerie Dupé, CNRS, Strasbourg, France), Crabp1 and FoxC1 (from Dr Anthony Furlirl, Indiana University School of Medicine, Indianapolis, IN, USA). Fgf10 and Dusp6 probes were generated from full-length cDNA clones (IMAGE: 6313081 and 3491528, Open Biosystems, Huntsville, AL, USA). At least three embryos of each genotype were analyzed for each probe.
FGF ligand and carbohydrate engagement assay (LACE)
The LACE assay was performed as previously described (Pan et al., 2008). Briefly, cryosections or deparaffinized paraffin sections were treated with 0.5 mg/ml NaBH₄ for 10 minutes and 0.1 M glycine for 30 minutes, followed by 1 hour blocking with 2% bovine serum albumin (BSA) at room temperature. After blocking, the sections were incubated with a mixture of 20 μM Fgf10 and 20 μM human FGFR-Fc chimera (R&D Systems, Minneapolis, MN, USA) in RPMI-1640 with 10% fetal bovine serum (FBS) at 4°C overnight. Signal was detected by immunofluorescence with Cy3-labeled anti-human Fc IgG antibody. The assay was repeated on at least three embryos of each genotype.

Western blot
The periorcular tissue was dissected from E13.5 embryos and homogenized in RIPA buffer with protease inhibitors. After quantification by BCA protein assay kit (Pierce, Rockford, IL, USA), equal amounts of protein were loaded and separated on 15% SDS-PAGE gels before being transferred to Millipore Immobilon FL PVDF membranes (Millipore, Billerica, MA, USA). The membranes were blocked for 1 hour in Odyssey blocking reagent and incubated overnight with 1:200 diluted anti-Fgf10 antibody (#sc-7917, Santa Cruz Biotechnology) and 1:2000 diluted anti-ERK1/2 antibody (#4695, Cell Signaling Technology) at 4°C. After further incubation with IRDye linked anti-rabbit secondary antibody, the membrane was scanned and quantified using the Odyssey SA system (LICOR Biosciences, Lincoln, NE, USA).

Fgf10 diffusion assay
Heads of E10.5 embryos were cut and divided sagittally at the midline. One hundred to two hundred mesh Affi-Gel blue Gel beads (#153-7302, Bio-Rad, Hercules, CA, USA) soaked with 5 mg/ml BSA or 500 μg/ml recombinant Fgf10 (R&D Systems) were inserted into the mesenchyme around the eye region. Limb buds were also dissected from E10.5 embryos and implanted with beads. Tissue was laid flat on Millipore filters (Nitrocellulose Membrane Black Gridded, filter type 0.45 μm, Millipore) and implanted with beads. Tissue was laid flat on Millipore filters (Nitrocellulose Membrane Black Gridded, 0.45 μm pore, Millipore) and incubated with 2% bovine serum albumin (BSA) at 4°C overnight. Signal was detected by immunofluorescence with Cy3-labeled anti-human Fc IgG antibody. The assay was repeated on at least three embryos of each genotype.

RESULTS
Mesenchymal Ugdh is required for lacrimal gland development
Ugdh is a biosynthetic enzyme for UDP-glucose, a substrate required for all GAG synthesis. To investigate the general function of GAG in embryonic development, we constructed a conditional allele of Ugdh by inserting two loxP sites flanking the Ugdh exon 6, which encodes its catalytic domain (Fig. 1A) (Campbell et al., 2000; Sommer et al., 2004). Homologous recombination in ES cells was identified by Southern blots using both the 5’ and 3’ probes and germline transmission was confirmed by PCR using primers that surround the 5’ loxP site (Fig. 1B,C). Ugdh<sup>lox/lox</sup> mice were born healthy at the normal Mendelian ratio and were fertile as adults, indicating that the conditional allele had no overt hypomorphic effects.

We have previously shown that Wnt1-Cre mediated ablation of Ndst1, an HS biosynthetic enzyme, disrupted the sulfation pattern of HS in the periorcular mesenchyme (Pan et al., 2008). Interestingly, no lacrimal gland phenotype was observed in this animal model, suggesting that lacrimal gland development did not require mesenchymal modification of HS by Ndst1. To investigate further
the role of GAGs in lacrimal gland development, we crossed *Wnt1-Cre* mice with the *Ugdh* \( ^{lox} \) allele to deplete all GAGs in the periocular mesenchyme. The *Wnt1-Cre; Ugdh* \( ^{lox/flax} \) (hereafter referred to as *Ugdh*\(^{CKO}\)) mice were born with a normal body size but died at birth with craniofacial defects including cleft palate (data not shown). In contrast to the *Wnt1-Cre; Ndst1*\(^{flax/lox}\) mutants, carmine staining further revealed a complete absence of the lacrimal gland in the *Ugdh*\(^{CKO}\) pups (Fig. 1D,G, arrows). The lacrimal gland develops at mid-gestation through budding morphogenesis from the conjunctival epithelium, which can be identified by Pax6 expression (Fig. 1E,F, arrows). In the E14.5 *Ugdh*\(^{CKO}\) embryos, however, no such buds were ever observed (Fig. 1H,I, arrows; see Fig. 6F for statistics). Therefore, lacrimal gland development requires *Ugdh* function in the periocular mesenchyme.

**Ugdh ablation disrupted the biosynthesis of GAGs**

To determine the mechanism of *Ugdh* function, we next examined the biosynthesis of GAGs in the *Ugdh*\(^{CKO}\) mutants. Using an antibody specific to CS, we observed that at E10.5 this major family of GAGs was expressed in the control periocular mesenchyme but lost in the *Ugdh*\(^{CKO}\) mutants (Fig. 2A,E, arrows). Another major GAG, HS, can be detected by the antibody 3G10, which recognizes a common stub motif present in all HS after heparitinase I digestion (Pan et al., 2006). We showed that 3G10 staining was also lost in the *Ugdh* mutant mesenchyme but preserved in the epithelium (Fig. 2B,F, arrows and arrowheads). Consistent with this, both control and mutant embryos at E10.5 expressed N-sulfated HS recognized by the 10E4 antibody in the basement membrane of the epithelium but not in the mesenchyme (Fig. 2C,G, arrowheads) (Pan et al., 2006). Finally, we have previously shown that the assembly of the high affinity Fgf10/Fgfr2b complex on the cell surface required HS with selective secondary modifications, which could be detected by the FGF ligand and carbohydrate engagement assay (LACE) (Qu et al., 2011b). In E10.5 *Ugdh*\(^{CKO}\) mutants, the Fgf10/Fgfr2b LACE signal was again lost specifically in the periocular mesenchyme (Fig. 1D,H, arrows), consistent with the HS defects seen in early *Ugdh*\(^{CKO}\) embryos.

These results were further confirmed at E14.5 when the lacrimal gland bud had already extended from the fornix of the conjunctival epithelium in control embryos. In contrast to strong expression of GAGs in the control mesenchyme that surrounded the lacrimal gland bud, the *Ugdh*\(^{CKO}\) mutants lost CS and HS staining in the periocular mesenchyme underneath the conjunctival epithelium (Fig. 2I-P, arrows). Taken together, these results showed that the *Wnt1-Cre* mediated ablation of *Ugdh* indeed disrupted the expression of CS and HS in the periocular mesenchyme, confirming the essential role of Ugdh in GAG synthesis.

**Ugdh mutants preserved Fgf10 expression but lost FGF signaling in lacrimal gland development**

The profound loss of GAGs in the *Ugdh*\(^{CKO}\) mutants prompted us to ask whether development of the periocular mesenchyme was also affected. At E10.5 when GAGs were already depleted in the mutant periocular mesenchyme, we still detected in the *Ugdh*\(^{CKO}\) mutants the specific expression of *Crabp1*, *FoxC1* and *Pitx2*, all markers of ocular anterior segment development (Fig. 3A-F, arrows). At E12.5, *Ugdh*\(^{CKO}\) mutants not only preserved a similar expression of *Crabp1*, *FoxC1* and *Pitx2* as the control, but also displayed correct expression of Fgf10 in the periocular mesenchyme underneath the invaginating conjunctival epithelium (Fig. 3G-J, arrows; data not shown). Moreover, we failed to detect any statistically significant difference in cell proliferation as indicated by BrdU incorporation and Ki67 staining between the control and mutants (data not shown). Therefore, the *Ugdh*\(^{CKO}\) mutant mesenchyme appeared to be properly developed at the time of lacrimal gland induction.
Despite the apparently normal expression of Fgf10 in the Ugdh mutant mesenchyme, we observed a complete loss of FGF signaling during lacrimal gland development. In E13.5 control embryos, lacrimal gland progenitors first appeared as a patch of thickening cells at the fornix of the conjunctival epithelium, which exhibited elevated phosphorylation of ERK, a downstream mediator of FGF signaling, and increased expression of Erm, an FGF signaling downstream response gene (Fig. 3K,M, arrows). In the UgdhCKO mutants, however, both ERK phosphorylation and Erm expression were abolished in the presumptive lacrimal gland progenitor cells (Fig. 3L,N, arrows). Similarly, strong activation of FGF signaling was evident in the E14.5 control lacrimal gland bud by robust expression of phospho-ERK and Dusp6, another FGF signaling inducible gene. By contrast, the UgdhCKO mutants preserved Fgf10 expression in mesenchyme but failed to display any phospho-ERK and Dusp6 staining in the conjunctival epithelium (Fig. 3O-T, arrows). These results suggest that the Ugdh lacrimal gland defects might be caused by the loss of FGF signaling.

Excessive Fgf10 diffusion disrupted lacrimal gland budding in Ugdh mutants

GAGs in the extracellular matrix might promote cell signaling by protecting growth factors from degradation or by restricting their dispersion. To test these ideas, we first collected periocular mesenchyme from E13.5 embryos and performed western blots. As shown in Fig. 4A,B, both control and UgdhCKO mutants exhibited comparable amounts of Fgf10 protein expression in the periocular mesenchyme, suggesting that GAGs were not required for the stability of Fgf10 protein in lacrimal gland development. We next performed an FGF diffusion assay to determine whether the extracellular GAG regulated Fgf10 dispersion. As the endogenous expression of Fgf10 protein was below the detection limit of immunohistochemistry (data not shown), we decided to implant E10.5 head explants with beads soaked with either BSA or Fgf10 in the periocular mesenchyme. After culturing for 3 hours, a ring of Fgf10 immunostaining could be detected in the control explants closely encircling the Fgf10 beads but not the BSA beads (Fig. 4C,F). By contrast, the UgdhCKO mutants exhibited a much wider span of Fgf10 immunostaining surrounding the Fgf10 beads in the periocular mesenchyme (Fig. 4D,G). However, both the control and UgdhCKO mutants displayed limited Fgf10 diffusion in the limb mesenchyme (Fig. 4E,H,I), which does not contain Wnt1-Cre derived neural crest (data not shown). These results suggested that Ugdh mutation led to an expanded diffusion of Fgf10 in the periocular mesenchyme.

We reasoned that excessive dispersion of Fgf10 in Ugdh mutant mesenchyme would probably lower its local concentration, effectively reducing the inductive strength of Fgf10 in promoting lacrimal gland budding. We thus performed a lacrimal gland induction assay to assess the potency of Fgf10 signaling in ex vivo explant culture. To visualize the budding of the lacrimal gland, we crossed our animals with P6 5.0 lacZ transgenic mice, which express the lacZ reporter under the control of a Pax6 promoter in the lacrimal gland (Makarenkova et al., 2000). In control explants of E13.5-E14.5 embryos, endogenous lacrimal glands stained by X-gal could be observed to grow spontaneously from the eye rudiments, unperturbed by BSA-soaked beads in the periocular...
mesenchyme (Fig. 5A, arrow). By contrast, lacrimal gland budding was disrupted in the UgdhCKO mutant explants (Fig. 5D). As we and others have shown previously, Fgf10-soaked beads were able to efficiently induce ectopic lacrimal gland buds from the control eye rudiments (Fig. 5B, C, arrows) (Makarenkova et al., 2000; Pan et al., 2008). In the UgdhCKO mutant explants, however, the efficiency of ectopic lacrimal gland budding was significantly reduced (Fig. 5E-G, \( P<0.001 \)). Therefore, the loss of GAGs in periocular mesenchyme disrupted Fgf10-induced lacrimal gland budding in the UgdhCKO mutants.

Fig. 5. Fgf10-induced lacrimal gland budding was abolished in the Ugdh mutants. (A-F) In E13.5 control explant culture, BSA-containing beads did not perturb budding of the endogenous lacrimal gland (A, arrow), whereas Fgf10-containing beads induced ectopic lacrimal gland buds (B, enlarged in C, arrowhead). By contrast, this ectopic induction of lacrimal gland buds was disrupted in UgdhCKO mutant explants (D-F). Beads are marked by asterisks. Endogenous and ectopic buds are marked by arrows and arrowhead, respectively. (G) The efficiency of lacrimal gland budding in explant cultures.

Epithelial Ras signaling rescued the lacrimal gland budding defects in the mesenchymal Ugdh mutants

The above results suggest that GAGs restrict the diffusion of Fgf10 in the periocular mesenchyme, which is necessary for budding of the lacrimal gland from conjunctival epithelium. This non-cell-autonomous model predicts that lacrimal gland defects caused by GAG deficiency in the mesenchyme could be rescued by the restoration of FGF downstream signaling in the epithelium. To test this model, we crossed the UgdhCKO mutant with two transgenic lines that expressed the constitutively active forms of Ras, which is a major downstream mediator of FGF signaling. Driven by the same Pax6 promoter used in the P6 5.0 lacZ transgenic mice, the Tg-HrasG12V line expressed the activated Hras (G12V) specifically in the lens and conjunctival epithelium (Fig. 6A) (Burgess et al., 2010). In the LSL-KrasG12D mouse, however, oncogenic Kras expression was controlled by its endogenous promoter but blocked by a floxed transcription stop cassette (Fig. 6A) (Tuveson et al., 2004). When crossed with the UgdhCKO (Wnt1-Cre; Ugdhflox/flox) mice, this stop cassette was expected to be cleaved by the Wnt1-Cre deleter, which also disrupted the Ugdhflox allele. This would result in a simultaneous ablation of GAG and activation of Kras signaling in the periocular mesenchyme. We have previously demonstrated that this strategy could compensate for the loss of FGF signaling in retinal, lens and lacrimal gland development (Cai et al., 2010; Pan et al., 2010; Qu et al., 2011a). Nevertheless, no
The lacrimal gland budding defects in the **Ugdh** mutants were rescued by the activated Ras signaling in epithelium but not in mesenchyme. **(A)** Schematic of *Tg-Hras*G12V and *LSL-Kras*G12D mouse lines. *Tg-Hras*G12V was driven by a Pax6 promoter specifically in the lacrimal gland epithelium, whereas *LSL-Kras*G12D was inducible in mesenchyme only when crossed with *Wnt1-Cre* mice. **(B-M)** Mesenchymal induction of activated *Kras*G12D by *Wnt1-Cre* in the *Ugdh*KO, *LSL-Kras*G12D mutants failed to rescue lacrimal gland budding (D,H,L, arrows). By contrast, epithelial expression of *Hras*G12V led to lacrimal gland budding in the *Ugdh*KO, *Tg-Hras*G12V embryos (E,J,M, arrows). **(N)** Lacrimal gland budding rates.

The N-sulfation, but not the 2-O- and 6-O-sulfation, of mesenchymal HS was required for lacrimal gland development

Heparan sulfates are known to physically interact with FGF ligands, making this group of GAGs likely candidates for controlling Fgf10 diffusion in the periocular mesenchyme. However, we have previously shown that lacrimal gland development requires Nds1, a major N-sulfation enzyme for HS, only in the conjunctival epithelium but not in the periocular mesenchyme (Pan et al., 2008). Indeed, we confirmed that *Wnt1-Cre* mediated ablation of *Ndst1* (*Wnt1-Cre; Ndst1flox/flox* or *Ndst1*KO) disrupted both 10E4 staining of HS and the LACE signal of Fgf10/Fgfr2b binding in the mesenchyme, but this conditional knockout of *Ndst1* did not affect lacrimal gland budding (Fig. 7A-H, arrows; n=5). To further investigate the role of HS in lacrimal gland development, we generated a combined deletion of both *Ndst1* and *Ndst2* (*Wnt1-Cre; Ndst1flox/flox; Ndst2*KO or *Ndst1*KO and *Ndst2*KO). Although the staining of the pan-HS marker 3G10 was unaffected, lacrimal gland budding was completely abolished in *Ndst1*KO and *Ndst2*KO mutants (Fig. 7J-L, arrows; n=6), demonstrating that the N-sulfated HS in the mesenchyme were indeed required for lacrimal gland development. We have also previously shown that lacrimal gland Fgf10 signaling requires 6-O and 2-O sulfated HS in the conjunctival epithelium (Qu et al., 2011b). Interestingly, a *Wnt1-Cre*-mediated ablation of two HS 6-O sulfotransferases (*Hs6st*1 and *Hs6st*2) and 2-O sulfotransferase (*Hs2st*) did not affect HS 3G10 and 10E4 staining, but abolished Fgf10/Fgfr2b binding in the periocular mesenchyme (Fig. 7M-O, arrows). Nevertheless, lacrimal gland budding was preserved in this triple mutant (*Wnt1-Cre;Hs6st1flox/flox; Hs6st2*KO/KO; *Hs2st*flox/flox or Hs6st*KO; *Hs2st*KO, *Hs6st2*KO) (Fig. 7P, arrows; n=7). Consistent with this, there was no statistically significant difference in the range of Fgf10 diffusion between the control and *Hs6st*KO, *Hs2st*KO mutants (supplementary material Fig. S1). Taken together, these results support that Fgf10 signaling in lacrimal gland development requires distinctive sets of HS modifications in the epithelium and mesenchyme.

**DISCUSSION**

In this study, we have used lacrimal gland development as a model to study the role of GAGs in epithelium-mesenchyme interaction. We showed that mesenchymal ablation of **Ugdh** eliminated the biosynthesis of HS and CS, two major constituents of GAGs, but it did not affect the differentiation of the periocular mesenchyme. Importantly, the expression of Fgf10 transcripts and protein was preserved in the **Ugdh** mutant mesenchyme, but the Fgf10 signaling response was lost in the lacrimal gland epithelium. Ex vivo explant experiments suggested that the loss of GAGs leads to unrestricted dispersion of Fgf10, which became too diluted in the mesenchyme to induce significant FGF signaling and budding response in the epithelium. Indeed, we showed that **Ugdh** lacrimal budding defects could be rescued by activated Ras signaling in the epithelium but not in the mesenchyme, demonstrating a non-cell-autonomous function of GAGs in the periocular mesenchyme to promote lacrimal gland development. Finally, we showed that the **Ugdh** lacrimal defect was phenocopied by the simultaneous ablation of HS modification enzymes, *Ndst1* and *Ndst2*. This shows that HS is probably the most crucial GAG regulating Fgf10 dispersion in the periocular mesenchyme.

Our study thus shows that a complete elimination of GAGs, including HS, in the ligand-producing mesenchyme abolished FGF signaling in the receptor-expressing epithelium. At first glance, this conclusion might appear contradictory to previous studies that showed gain-of-function phenotypes in Fgf mutants with reduced affinity to HS (Harada et al., 2009; Makarenkova et al., 2009). Here, we would like to argue that both observations were parts of the continuum of the FGF signaling response as a result of the perturbation in FGF-GAG interactions. As shown in Fig. 8, we propose that the strong affinity of wild-type FGF to extracellular...
GAGs significantly restrict the dispersion of FGFs, resulting in a steep concentration gradient away from the signal source. By contrast, Fgf mutants with reduced GAG affinity exhibit a shallower gradient profile, effectively expanding the range of FGF signaling response. Elimination of all GAGs, however, leads to a free diffusion of FGFs, which are dispersed too widely to maintain a concentration high enough for lacrimal gland induction. Notably, in vivo imaging in zebrafish showed that the movement of some, but not all, Fgf8 molecules were restricted by HS in the extracellular matrix, and enzymatic degradation of HS indeed extended the range of Fgf8 signaling (Yu et al., 2009). Our study is also consistent with studies in chick and mouse, which demonstrate an essential role of HS in regulating retention versus dispersion of FGFs in embryonic development (Chen et al., 2009; Shimokawa et al., 2011). We would also like to point out that Shimokawa and colleagues recently reported that proteolytic cleavage of HS core proteins was necessary for the spread of FGFs in the extra-embryonic ectoderm (Shimokawa et al., 2011). However, it is not clear how widely applicable this mechanism of FGF transport is beyond early gastrulation, as we did not observe any visible dispersion of HS in our conditional knockouts. Although further studies are required to resolve these issues, it is clear that manipulations of FGF-HS interactions could produce both gain- and loss-of-function responses in FGF signaling.

Finally, our studies also revealed the unique sulfation requirement of mesenchymal HS in lacrimal gland development. Although the mesenchymal knockout of Ndst1 completely abolished the 10E4 staining of HS, only the combined deletion of

---

**Fig. 7.** Mesenchymal ablation of Ndst1/2, but not Hs6st/Hs2st, disrupted lacrimal gland budding. (A-H) Mesenchymal deletion of Ndst1 (Wnt1-Cre; Ndst1flox/flox or Ndst1CKO) disrupted both HS 10E4 staining and the Fgf10/Fgfr2b LACE signal, but lacrimal gland budding was unaffected. (I-L) Combined mesenchymal deletion of both Ndst1 and Ndst2 (Wnt1-Cre; Ndst1flox/flox, Ndst2CKO or Ndst1/2CKO) did not affect HS 3G10 staining but abolished lacrimal gland budding. (M-P) Combined deletion of Hs6st1, Hs6st2 and Hs2st genes (Wnt1-Cre; Hs6st1flox/flox, Hs6st2CKO, Hs2stflox/flox or Hs6st1CKO, Hs2stCKO) failed to disrupt HS 3G10 and 10E4 staining, but it did abrogate the Fgf10/Fgfr2b LACE signal. However, lacrimal gland budding was not affected.

---

**Fig. 8.** Model of a biphasic regulation of FGF signaling by mesenchymal GAGs. Wild-type GAGs restrict the diffusion of FGF to a sharp concentration gradient (green line), whereas Fgf mutations that weaken the interaction between Fgf and GAGs produced a relatively shallow gradient (yellow line), which expanded the Fgf signaling range. By contrast, ablation of GAGs leads to a free diffusion of Fgf in the mesenchyme (red line), the concentration of which was reduced too rapidly to sustain the FGF signaling response in the epithelium. WT, wild type.
both Ndst1 and Ndst2 would disrupt lacrimal gland development. The 10E4 antibody is widely used to probe tissue-specific expression of HS, but our results suggest that the HS epitope recognized by this antibody is dispensable in the mesenchyme for lacrimal gland development. This is in contrast to the lacrimal gland epithelium, where we showed earlier that ablation of Ndst1 was sufficient to abrogate lacrimal gland FGF signaling (Pan et al., 2008). The distinct sulfation requirement of HS between the epithelium and mesenchyme is also clear from analysis of HS 2-O and 6-O sulfations. Ashikari-Hada and colleagues have previously reported that Fgft10 requires 6-O but not 2-O sulfate groups for interaction with octasaccharides in vitro (Ashikari-Hada et al., 2004). However, our genetic analysis showed that lacrimal gland epithelium requires both 2-O and 6-O sulfated HS for Fgft10-induced budding (Qu et al., 2011b). In this study, we further showed that deletion of both Hs6st and Hs2st genes in the mesenchyme abolished the Fgft10/Fgr2b LACE staining, but it did not cause any lacrimal gland budding defects. We would therefore like to propose that the function of mesenchymal HS in lacrimal gland development is regulated by its overall sulfation level but not by its specific sulfation pattern. In this view, the loss of HS 2-O and 6-O sulfation in the mesenchyme failed to disrupt lacrimal gland budding, because as we demonstrated earlier in Hs6st; Hs2st knockout MEF cells, the overall sulfation level of HS was maintained by the compensatory increase in N-sulfation (Qu et al., 2011b). By contrast, genetic deletion of both Ndst1 and Ndst2 has been shown to not only abolish HS N-sulfation, but also result in pleiotropic reduction in both HS 2-O and 6-O sulfation (Holmborn et al., 2004). Thus, for mesenchymal HS, it is the overall sulfation that is critical for lacrimal gland development.

The requirement of a sulfation level for HS in the mesenchyme is also consistent with its role in the restriction of Fgft10 diffusion during lacrimal gland development. It is likely that the electrostatic interaction between Fgft10 and the negatively charged HS dictated by its sulfation level is sufficient to confine mesenchymal Fgft10 to the vicinity of the lacrimal gland epithelium. Yet the epithelial HS are expected to participate in a trimeric complex with FGF/FGFR as a co-receptor, which might place more stringent requirements for the sulfation pattern of HS. Therefore, there is a distinctive requirement for HS fine structures in the lacrimal gland epithelium versus the mesenchyme. Differential patterns of HS modifications have also been widely observed in both normal tissues and tumors. We would like to suggest that these dynamic expressions of HS reflect their distinct functional requirement in epithelial-mesenchymal interactions, which might be important for understanding not only embryonic development but also tumorigenesis.

Acknowledgements
The authors thank Drs Wellington V. Cardoso, Jeffrey D. Esko, Valerie Dupé, Anthony Firulli, Bridget Hogan, Lena Kjellén, Richard Lang and Paul A. Overbeek for mice and reagents; Kristina Hertzler-Schafer for critical reading of the manuscript; and members of the Zhang lab for discussions.

Funding
The work was supported by the National Institutes of Health [EY018868] and by the Ralph W. and Grace M. Showalter Research Trust Fund to X.Z. Deposited in PMC for release after 12 months.

Competing interests statement
The authors declare no competing financial interests.

Supplementary material
Supplementary material available online at http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.079236/-/DC1

References


DEVELOPMENT


Relative Fgf10 diffusion range

Control | Hs6st<sup>cko</sup>;Hs2st<sup>cko</sup>

A

B

P = 0.7588

C

Relative Fgf10 diffusion range

0% 25% 50% 75% 100%

Control | Hs6st<sup>cko</sup>;Hs2st<sup>cko</sup>