
















Whether these effects are directly caused by loss of Fgf20, or are
partially due to alterations in the expression of mesenchymal Fgfs,
is currently not known. We propose that the combined effect of
high Eda and low Spry expression levels resulted in stabilization
of the EM in K14-Eda;Fgf20Gal/Gal lower jaws. As Fgf20 activity
appeared to inhibit the formation of the extra molar, other Eda
targets must stimulate it. The reported Eda-induced genes include
modulators of Bmp, Wnt and Hh pathways (Mikkola, 2009;
Lefebvre et al., 2012), all of which have been linked to EM

stabilization (Tummers and Thesleff, 2009). We suggest that the
balance between the different Eda targets, i.e. those that promote
and those that inhibit extra molar formation, determines the
frequency of EM appearance.

Fgf20 and Eda play important roles in the
activator-inhibitor balance regulating tooth
number, size and shape
A characteristic feature of K14-Eda;Fgf20Gal/Gal molars was the
increased reduction in size towards posterior molars and the
relatively frequent lack of m3. We suggest that these two
phenotypes are linked and can be explained by the inhibitory
cascade model (Kavanagh et al., 2007). The increased reduction in
size towards posterior molars indicates, according to this model,
increased inhibition in K14-Eda;Fgf20Gal/Gal tooth development
compared with K14-Eda. Moreover, 31% of K14-
Eda;Fgf20Gal/Gal tooth rows lacked m3, although K14-Eda and
Fgf20Gal/Gal mice do not lack m3 (Mustonen et al., 2003) (this
study). The result follows the predictions of the inhibitory cascade
model as a consequence of increased inhibition. Eda–/– mice lack
m3 at a frequency of 17-55%, depending on the genetic
background (Grüneberg, 1966; Pispa et al., 1999; Kristenová-
Cermáková et al., 2002). The removal of Fgf20 in Eda gain-of-
function mice caused the m3 phenotype to resemble the Eda loss-
of-function phenotype. This highlights the importance of Fgf20 in
the activator-inhibitor balance that modulates the initiation and size
of posterior molars. The total effect of removal of Fgf20 in K14-
Eda was ‘anteriorization’ of dentition: stabilization of the extra
molar, and reduction or absence of m3. Thus, Fgf20 is likely to act
as an activator during tooth development. The proportional
reduction in tooth size towards posterior molars and reduced
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Fig. 8. Fgf20 regulates the expression of Spry2 and Spry4.
(A-D)E14.5 molar (m1) epithelium (A,B) or mesenchyme (C,D) cultured
with heparin beads soaked in Fgf20 recombinant protein or BSA. Fgf20
induces Spry2 (blue; B) in the epithelium and Spry4 in the mesenchyme
(D), whereas BSA does not (A,C). (E-L)Sections of E14.5 molar (m1)
from the anterior end (AE) and the largest area of the cap (as illustrated
in the schematic). Spry2 is expressed in the epithelium in the AE and
cap of K14-Eda molar (E,G) and is reduced in K14-Eda;Fgf20Gal/Gal

especially in AE (F,H). Spry4 expression is confined to mesenchyme (I,K),
and is reduced in AE in K14-Eda;Fgf20Gal/Gal (J,L) compared with K14-
Eda. (M,N)Etv5 expression is high in the AE of K14-Eda;Fgf20Gal/Gal in
the epithelium but reduced in the mesenchyme (N) compared with the
AE of K14-Eda (M). Dashed line indicates the margin of the epithelium.

Fig. 9. Integration of Eda/Edar/NF-B signaling in the enamel
knot with an Fgf signal loop regulates tooth crown
development. Schematic based on our findings and reported data.
Activation of Edar receptor by Eda in the enamel knot (EK) leads to
activation of NF-B and Fgf20 transcription. Fgf20, together with Fgf4
and Fgf9, moves to mesenchyme, induces the transcription of Runx2
and Fgf3 and stimulates cell proliferation. Fgf3 and Fgf10 signal back to
the epithelium and stimulate proliferation. Fgf20 induces Spry4
expression in the mesenchyme and Spry2 expression in the epithelium.
Spry4 and Spry2 inhibit Fgf signaling in the mesenchyme and
epithelium, respectively.
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complexity are characteristic features of faunivorous rodent taxa
(Kavanagh et al., 2007). Interestingly, both of these features were
observed in K14-Eda;Fgf20Gal/Gal mice, which suggests that tooth
characteristics regulated by Eda and Fgf20 might be, ultimately,
under the control of ecology and that Eda- and Fgf20-induced
variation might facilitate the microevolution of dentition.

Our work demonstrates how combinatorial genetic alteration
within one pathway during tooth development can lead to a wide
variety of phenotypes, causing subtle, but evolutionary important,
dental variation. The reduction of Fgf20 expression in Fgf20+/Gal

mice had no detectable effects on tooth development and the
complete loss of Fgf20 signaling (Fgf20Gal/Gal) lead to phenotypic
alteration of one characteristic (size), together with mild alteration
in another (anteroconid cusps). When Fgf20 loss of function was
combined with high Eda signaling, several tooth characteristics
(size, number and cusp pattern) were changed, some more
drastically than others, owing to imbalanced activation and
inhibition. In nature, mutations in the regulatory regions of Eda and
Fgf20 pathway genes could produce dental variation, the material
for natural selection. Interestingly, Eda signaling activity is under
natural selection in three-spined stickleback fish populations
producing variation in armor plates (Colosimo et al., 2005), and, in
humans, a specific allele of Edar is a major contributor to scalp hair
thickness in Asian populations (Fujimoto et al., 2008). We
demonstrated some mechanisms behind the Eda and Fgf20-induced
variation. Maintenance of the embryonic Shh expression foci in the
AE was supported by the loss of Fgf20 but completion of the
formation of the EM required Eda upregulation. Epithelium-
derived Fgf20 modulates mesenchymal cell proliferation and
induces the expression of Fgf3, which reciprocally signals to the
epithelium. By this mechanism at least, Fgf20 could regulate size
of the molars and cusp development. Moreover, we connected Eda
to this Fgf loop by demonstrating that Eda induces Fgf20
expression in the epithelium. Our results indicate that other
epithelial Fgf ligands, Fgf4 and Fgf9 in particular, may compensate
for the loss of Fgf20 explaining the relatively mild phenotype of
Fgf20Gal/Gal dentition. The other targets of Eda probably include
important inhibitors, as, according to the inhibitory cascade model,
the characteristic molar proportions of K14-Eda;Fgf20Gal/Gal

mice resulted from increased inhibition.
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