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Fig. 6. DII1 does not inhibit Notch activity cell-autonomously. (A) The pT2K-Hes5::nd2EGFP and pT2K-Delta1-FP635 tet-on plasmid for
Dox-inducible expression of DII1. (B) Basilar papilla examined 6 hours after Dox administration at E9 and immunostained for DII2. Levels of
nd2EGFP fluorescence are elevated in regions with high DII1 expression (arrowhead) when compared with regions in which DII1 is not induced
(arrows). (C,C ) DlI1-expressing cells have supporting cell morphology and intercalate between hair cells at the surface of the epithelium (C);
their cell bodies extend to basal planes (C ) and some cells exhibit high nd2EGFP fluorescence (arrowheads). (D) Lateral view of a basilar
papilla 24 hours after Dox treatment at E9. The majority of DIl1-overexpressing cells have supporting cell morphology and some exhibit high
levels of Hes5::nd2EGFP fluorescence (e.g. yellow arrowhead) when compared with cells that do not overexpress DII1 (arrows).

(E) Representative view of an E6 sensory crista analysed 21 hours after Dox treatment in ovo. In cells that are FP635 negative, levels of
nd2EGFP fluorescence vary greatly, from very high (thicker arrows) to very low (thin arrows). Cells that are FP365 positive exhibit variable levels
of Hes5::nd2EGFP fluorescence in their nuclei (yellow arrowheads). (F) Z-scores for mean values of Hes5::nd2eGFP fluorescence in FP635-
positive cells transfected with either pTRE-FP635 (FP635, n 959) or pTRE-Delta1-FP635 (Delta1-FP635, n 461), analysed 21 hours after Dox
treatment in ovo. (G) Example of an E6 sensory crista immunostained for DII1 expression 14 hours after Dox treatment in ovo. Induced cells
have elevated levels of DII1 protein at their membrane (arrowheads) when compared with non-induced cells (arrows). In both categories of
cells, the nuclear levels of nd2EGFP fluorescence are very variable. (H) Z-scores for the mean values of Hes5::nd2eGFP fluorescence in cells
transfected with pTRE-Delta1-FP635 and analysed 14 hours after Dox treatment in ovo at E6. Cells were immunostained for DII1 expression
and categorised into either non-induced (g, n 305) or induced (DII1, n 327) cells. (F,H) Outliers, minimum, first quartile, median, third quartile
and maximum are displayed.
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Altogether, these data indicate that DII1 acts primarily in trans
to activate Notch receptors, and strongly suggest that expression of
DII1 does not inhibit Notch activity cell-autonomously in the
developing inner ear.

DISCUSSION

Much of our understanding of tissue patterning by lateral inhibition
derives from mathematical modelling and in vitro studies, but
comparatively little is known about the actual dynamics of this
process in vivo, in particular in vertebrates. In this study, we tested
some of the fundamental assumptions of the lateral inhibition
model in the sensory epithelia of the chicken inner ear. In
agreement with the standard model, we show that elevation of DII1
expression in progenitor cells is crucial for adoption of the hair cell
fate, and that DI11 functions primarily in trans to activate Notch
activity and to repress hair cell formation. However, we also found
that some cells can differentiate into hair cells while contacting
other Dlll-expressing cells. Although this indicates that some
progenitor cells are not sensitive to lateral inhibition, we argue that
this is unlikely to result from the cis-inhibition of Notch activity by
DIl itself.

DII1 is a key determinant of hair cell fate
decisions

Although hair cells express several DSL ligands, D11 is thought to
play the most significant role in the lateral inhibition of hair cell
formation in the inner ear. In fact, the absence of D111 produces a
much more severe overproduction of hair cells (Kiernan et al.,
2005; Brooker et al., 2006) than that of Jag2 (Lanford et al., 1999),
whereas DI/3 mutant mice have no discernible ear phenotype
(Hartman et al., 2007). However, some questions remain about the
mode of action of DIl in hair cell fate decisions. Are hair cell fate
decisions dictated by progenitor cell-to-cell competition for DI11
expression? Alternatively, does DIl1 operate only after hair cells
are committed in order to protract hair cell formation? Is DIl1 able
to inhibit the reception of Notch activity in cis within progenitor
cells of the inner ear?

Here, our gain-of-function studies showed that the formation of
hair cells was reduced within clusters of DIl1-expressing cells, but
that a large proportion of isolated DIll-expressing cells
differentiated into hair cells. This confirms that D111 represses hair
cell fate in trans, and that cells that express DIl1 have a greater
chance of adopting the primary fate than those that do not. In
standard lateral inhibition, ‘signal-sending’ and ‘signal-receiving’
cells compete for D111 expression, which is repressed by Notch
activity in signal-receiving cells. We found that reversing this
negative-feedback loop into a positive one using a Hes5 promoter-
regulated DII1 construct can convert the majority of signal-
receiving into signal-sending cells. This shows that cells in which
Notch is active can differentiate into hair cells if they succeed in
elevating their endogenous levels of DIl1, and that the intercellular
competition for D111 expression is one of the key determinants of
hair cell fate decisions.

However, some data did not seem to fit with the standard model
of lateral inhibition. First, not all isolated DIl1-expressing cells
differentiated into hair cells. One possible explanation is that some
progenitor cells are not competent to adopt the hair cell fate;
ultimately, it is the expression of proneural genes, such as Atohl in
the case of hair cells (Bermingham et al., 1999), that determines
the adoption of the primary fate during lateral inhibition. Second,
some cells (transfected with DII1 or not) could differentiate into
hair cells despite contacting other DIl1-expressing cells. The

complete inhibition of hair cell formation was only observed within
relatively large clusters of DIl1-expressing cells, which suggests
that efficient repression of the hair cell fate is only achieved when
several signal-sending cells cooperate to activate Notch in any
given signal-receiving cell. It is also possible that some of the
progenitor cells are refractory to Notch activity induced by DIII.
The underlying mechanisms could be extremely diverse, ranging,
for example, from the reduction of cell surface levels of Notch
receptors to interference with downstream components of the
Notch signalling cascade. In addition, recent studies have
highlighted the capacity of DSL ligands to cell-autonomously
inhibit Notch activity; however, as we discuss below, several
results suggests that DII1 does not act in this way in the inner ear.

DII1 is unlikely to function by cis-inhibition of
Notch activity in the inner ear

Gain-of-function studies have revealed that, in some developmental
contexts, DSL ligands can inhibit Notch activity cell-autonomously
(reviewed by del Alamo et al., 2011). Recent in vitro experiments
using cell lines transfected with a Notch reporter have also shown
that varying the levels of DIl in cis can indeed affect their
response to DII1 in trans (Sprinzak et al., 2010). Although the
underlying mechanisms remain unclear, the commonly accepted
model is that, when high levels of DSL ligands are present at the
surface of a cell, they can bind in cis to Notch receptors, thereby
preventing their activation in trans by other cells — a titration effect.
Modelling studies have suggested that cis-inhibition could improve
the robustness of cell fate decisions and might be essential for
efficient patterning of epithelial sheets by lateral inhibition (Barad
et al., 2010; Sprinzak et al., 2010), but is this the case in the inner
ear?

In the present experiments, formation of hair cells within highly
Dll1-transfected regions could be interpreted as evidence for cis-
inhibition; however, hair cells within such regions were, in general,
surrounded by untransfected supporting cells. Hence, mosaicism of
transfection as well as cell mixing could explain why hair cell
formation was not reduced in such regions. The reduction of hair
cell density within Hes5::Deltal-transfected clusters provides
additional evidence that, if cis-inhibition occurs, it does not prevent
the reception of trans-inhibition; in fact, if Notch activity were
blocked by DII1 expression cell-autonomously, Hes5-regulated
DII1 expression would not be occurring in such clusters. Finally,
the use of a tet-on inducible system confirmed that the strong
elevation of DII1 expression does not significantly reduce the
activity of the Hes5 reporter in progenitor and supporting cells.
Although this does not exclude the possibility that other intrinsic
factors or DSL ligands expressed in progenitor cells inhibit Notch
activity cell-autonomously, the present results provide strong
evidence that DIl1 does not. Our data suggest instead that the
ability of D111 to promote hair cell differentiation in cis results from
its inhibitory impact on DIl1 expression in trans, according to the
standard model of lateral inhibition with intercellular feedback.

Pattern formation by lateral inhibition: a two-
step process?

Expression of DIl1 protein is absent or very low in Notch-active
cells, peaks in cells with characteristics of very immature hair cells,
but is downregulated in differentiated hair cells expressing HCA
and otoferlin. This is in agreement with other studies showing
temporally restricted waves of expression of D111, Jag2 and DII3 in
the auditory hair cells of mammals (e.g. Hartman et al., 2007) and
suggests that DI11/Notch-mediated lateral inhibition is short lived,
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occurring primarily between progenitor cells and immature hair
cells. As hair cells differentiate, they might not deliver sufficient
inhibition to prevent neighbouring cells from becoming hair cells.
This would explain the transient contacts between mature-looking
and immature hair cells in the immature basilar papilla (Goodyear
and Richardson, 1997). One advantage of short-lived lateral
inhibition is that it could facilitate the addition of new hair cells to
inner ear epithelia over an extended developmental period, or even
throughout life, as is the case in the avian vestibular system
(Jorgensen and Mathiesen, 1988). However, this implies that
additional mechanisms must operate downstream of lateral
inhibition to eliminate patterning errors such as reciprocal hair cell
contacts.

One attractive hypothesis is that differential adhesion properties
of hair cell and supporting cells could lead to a progressive
refinement of their relative position through homo- and heterotypic
interactions (Goodyear and Richardson, 1997; Podgorski et al.,
2007). In support of this idea, a recent study has shown that the cell
adhesion molecules of the nectin family regulate cell patterning in
the organ of Corti (Togashi et al., 2011). Other cell adhesion
molecules, including Eph/ephrins and cadherin family members
(see Warchol, 2007), can mediate cell sorting in other tissues
(Steinberg and Takeichi, 1994; Xu et al., 1999) and may also
contribute to the fine-grained patterning of the inner ear epithelia.
A two-step model such as this would resemble the mechanism
described for patterning of the Xenopus epidermis: lateral inhibition
within the inner layer of the non-neural ectoderm establishes a pre-
pattern of differentiation, which is then refined as ciliated cells
migrate and intercalate into the superior layers of the epidermis
(Deblandre et al., 1999). The mechanistic separation of cell fate
decisions and fine-grained patterning events could also be
advantageous during epithelial regeneration, for example after hair
cell loss in the avian inner ear. In the damaged adult basilar papilla,
DII1 expression is upregulated in the newly formed hair cells, but
not in the surviving ones (Stone and Rubel, 1999; Daudet et al.,
2009). In the case of limited hair cell loss and regeneration, fine-
grained patterning via differential cell affinities could provide a
solution for the accurate positioning of a limited number of new
cells within a pre-established cellular mosaic independently of
Notch signalling.

A simultaneous occurrence of inductive (such as lateral
inhibition) and morphogenetic (such as cell proliferation or cell
adhesion) mechanisms, or ‘morphodynamic’ patterning strategy
(Salazar-Ciudad et al., 2003), operates in the inner ear sensory
epithelia. This raises new questions regarding the influences of one
set of mechanisms over the other(s), in the inner ear as well as in
other tissues in which Notch signalling operates. To answer these
questions, live-imaging approaches as well as computational
models in which the interaction of inductive and morphogenetic
processes can be investigated (Podgorski et al., 2007) will be
instrumental.
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