Gde2 regulates cortical neuronal identity by controlling the timing of cortical progenitor differentiation

Marianeli Rodriguez, Jeonghoon Choi, Sungjin Park and Shanthini Sockanathan*

SUMMARY
The mammalian cortex is a multilaminar structure consisting of specialized layer-specific neurons that form complex circuits throughout the brain and spinal cord. These neurons are generated in a defined sequence dictated by their birthdate such that early-born neurons settle in deep cortical layers whereas late-born neurons populate more superficial layers. Cortical neuronal birthdate is partly controlled by an intrinsic clock-type mechanism; however, the role of extrinsic factors in the temporal control of cell-cycle exit is less clear. Here, we show that Gde2, a six-transmembrane protein that induces spinal neuronal differentiation, is expressed in the developing cortex throughout cortical neurogenesis. In the absence of Gde2, cortical progenitors fail to exit the cell cycle on time, remain in cycles and exit the cell cycle en masse towards the end of the neurogenic period. These dynamic changes in cell-cycle progression cause deficits and delays in deep-layer neuronal differentiation and robust increases in superficial neuronal numbers. Gde2−/− cortices show elevated levels of Notch signaling coincident with when progenitors fail to differentiate, suggesting that abnormal Notch activation retains cells in a proliferative phase that biases them to superficial fates. However, no change in Notch signaling is observed at the time of increased cell-cycle exit. These observations define a key role for Gde2 in controlling cortical neuronal fates by regulating the timing of neurogenesis, and show that loss of Gde2 uncovers additional mechanisms that trigger remaining neuronal progenitors to differentiate at the end of the neurogenic period.

KEY WORDS: Gde2, Cortex, Differentiation, Mouse

INTRODUCTION
The cytoarchitecture of the mammalian cortex is formed during embryonic and postnatal development through the synchronization of progenitor proliferation and specification, neuronal differentiation and neuronal migration (reviewed by Shoemaker and Arlotta, 2010; Molyneaux et al., 2007; Marin and Rubenstein, 2003). These tightly regulated events lead to a multilaminar structure containing layer-specific classes of pyramidal neurons that form local networks and long-range connections throughout the brain and spinal cord (Rakic, 2007). Lineage tracing and transplantation experiments suggest that the time when progenitors exit the cell cycle defines their eventual fate such that neurons that contribute to deep cortical layers are generated first, whereas later-born cortical neurons occupy more superficial positions (Luskin et al., 1988; Bayer and Altman, 1991; McConnell and Kaznowski, 1991; Reid et al., 1995). This ordered sequence of neuronal differentiation is consolidated further by a progressive restriction in progenitor competence whereby progenitors later in development preferentially give rise to superficial cortical neurons (Desai and McConnell, 2000; Frantz and McConell, 1996). Thus, the timing of cortical neurogenesis is a key regulatory nexus to ensure cortical neuronal diversity; however, the molecular mechanisms that control this process are not well understood.

Studies in the Drosophila embryonic nervous system have provided major insight into the mechanisms that link birthdate and neuronal fate. In Drosophila, neural progenitors (neuroblasts) express a set of transcription factors in a characteristic sequence that correlates precisely with the ordered generation of particular sets of neurons (reviewed by Pearson and Doe, 2004; Brody and Odewald, 2002; Jacob et al., 2008). This sequence of events is recapitulated in vitro using isolated neuroblasts and is linked to the number of cell cycles that have progressed, suggesting that the derivation of different neuronal cell types from multipotent progenitors depends primarily upon an intrinsic cell-cycle clock mechanism. One interpretation of these observations is that neuronal diversity is controlled by the extent of cell-cycle progression rather than the simple passage of time (Isshiki et al., 2001; Pearson and Doe, 2004). In the mammalian cortex, layer-specific neuronal fates are ultimately shaped by a combination of intrinsic mechanisms and environmental signals; however, recent experiments suggest that a similar intrinsic timing mechanism operates to ensure the sequence of layer-specific pyramidal neuron generation (Qian et al., 2000; Shen et al., 2006; Gaspari, 2008). Clonal analyses of isolated cortical progenitors show that neurogenesis in vitro proceeds as observed in vivo. Specifically, Cajal-Retzius cells are generated first, followed by deep-layer and superficial cortical neurons. Moreover, this sequence of differentiation is accompanied by a corresponding restriction in competence (Shen et al., 2006). Studies aiming to understand the molecular mechanisms involved in this regulation suggest that the cell-intrinsic mechanisms that control the timing of neurogenesis are phylogenetically conserved; for example, the transcription factors hunchback (hb) and seven up regulate the ratio of early- to late-born neurons in the fly nervous system, and their vertebrate counterparts Ikaros (Ikzf1 – Mouse Genome Informatics) and CoupTfl/II (Nr2F1 and Nr2F2 – Mouse Genome Informatics) play similar roles in the mammalian cortex and retina (Elliott et al., 2008; Maurange et al., 2008; Faedo et al., 2008; reviewed by Okano and Temple, 2009).

We considered the possibility that, in addition to cell intrinsic mechanisms, regulatory pathways that directly stimulate progenitor cell-cycle exit would constitute important control modules that could affect progenitor competence and the generation of neuronal...
Gde2 controls cortical neuronal fate

MATERIALS AND METHODS

Animals and genotyping

Generation of Gde2^{−/−} and Gde2^{lox/lox} mice and genotyping was performed as described previously (Sabharwal et al., 2011). All animal procedures were carried out according to Johns Hopkins University IACUC guidelines. Wild-type (WT) and mutant Gde2^{−/−} alleles were identified using the following primers: 5'-CAGTCTCTGGCCCAAAGGCTAGCTG-3', 5'-TCCACATACTGCCATGGATC-3'. The 1.4-kb WT and 700-bp Gde2^{−/−} mutant products were resolved on high resolution agarose gels. The Gde2^{lox/lox} and WT alleles were quantified using the BCA Kit (Pierce) and separated by 10% SDS-PAGE. The 1.4-kb WT and 700-bp Gde2^{−/−} mutant products were resolved on high resolution agarose gels. The Gde2^{lox/lox} and WT alleles were quantified using the BCA Kit (Pierce) and separated by 10% SDS-PAGE.

Neuronal counts

Quantitative analyses of cortical excitatory neurons were performed on 25-30 μm-thick sections. Cell counts were performed on 200 × 200 μm fields of six to nine sections from four to six embryos in each instance using ImageJ software (NIH). The areas of quantification were stratified as medial or lateral, rostral or caudal, and the respective numbers of neurons quantified in each panel were averaged.

In situ hybridization

In situ hybridization experiments were carried out as described (Rao and Sockanathan, 2005). Bright-field images were captured on a Zeiss Axioskop2 microscope.

Immunofluorescence

Immunofluorescence experiments were carried out as described (Rao and Sockanathan, 2005). Confocal images were acquired using a Zeiss LSM 5 PASCAL microscope. The ApopTag fluorescein in situ apoptosis detection kit (Chemicon S7110) was used for terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis. Rabbit C-terminal Gde2 polyclonal antibodies were generated against an 82 amino acid C-terminal His-fusion protein (Covance, 1:1000). Primary antibodies used were as follows: rabbit anti-Brn2 (1:500, Santa Cruz sc28594), rabbit anti-Cux1 (1:500, Santa Cruz sc13024), rat anti-Ctip2 (1:500, AbCam ab18465), rabbit anti-Tbr1 (1:500, AbCam ab31940), rabbit anti-Tbr2 (1:500, AbCam ab23345), rat anti-BrdU (1:100, AbCam ab6326), mouse anti-BrdU/IΔU (1:50, BD Bioscience, 347580), rabbit anti-Ki67 (1:1000, AbCam, ab15580), rabbit anti-Pdgfr-α (BD-Bioscience 585774), guinea pig anti-Olig2 (1:40,000, T. M. Jessell, Columbia University, NY, USA), rabbit anti-Erb1 (1:32,000, T. M. Jessell).

Cell-cycle analyses

Bromodeoxyuridine (BrdU; 100 mg/kg body weight) was injected intrauterineally (i.p.) into pregnant female mice 1 hour prior to embryo harvest for estimation of S phase. To access S phase, we calculated proliferation index as (BrdU⁺/Ki67[−])/(BrdU⁺/Ki67⁺) where Ki67 marks all cycling cells. To assess cell cycle exit, we injected BrdU i.p. to pregnant dams 12 hours prior to embryo harvest, and the cell-cycle exit index was calculated as (BrdU⁺/Ki67[−])/(BrdU⁺/Ki67⁺) (Siegenthaler et al., 2009).

EDU birthdating

Birthdating experiments were performed using 5-ethyl-2'-deoxyuridine (EdU), a novel thymidine analog (Chehrrehasa et al., 2009). A single pulse of EdU (50 mg/kg body weight) was injected i.p. into pregnant female mice at two relevant time points of the cortical neurogenic period [embryonic day (E) 12.5 or E15.5] and embryos were harvested at postnatal day (P) 5 for analyses. Detection of EdU was performed as described (Zeng et al., 2010) in conjunction with immunostaining using antibodies against specific laminar markers to estimate the birthdates of these neuronal populations.

4-OHT injections

4-Hydroxytamoxifen (4-OHT; Sigma) was dissolved in ethanol at a concentration of 20 mg/ml and was stored in aliquots at −80°C. Aliquots were emulsified in five volumes of sunflower seed oil, centrifuged under vacuum to remove the ethanol and delivered as a single i.p. injection (Badea et al., 2003).

Western blots

Cortices of E12.5-13.5 Gde2^{−/−} mice and their WT littermates were dissected and lysed in lysis buffer (2% SDS in PBS). Proteins were quantified using the BCA Kit (Pierce) and separated by 10% SDS-PAGE in Tris-glycine buffer. The ratio of Notch1 intracellular domain (NICD1) to total Notch1 of Gde2^{−/−} cortices was normalized to WT controls (detection of NICD1, 1:750, Cell Signaling Technology; Notch, 1:1000, Cell Signaling Technology). Blots were quantified using ImageJ (NIH) and statistical analysis of multiple litters was performed using paired one-tailed Student’s t-test.

In utero electroporation

Procedures were performed as described by Mizutani and Saito (Mizutani and Saito, 2005). Briefly, timed pregnant dams (E13.5) were anesthetized by i.p. injection of avertin prior to injection of 0.5 μl of pCAGGS-eGFP or pCAGGS-dmMAML-eGFP (2.5 μg/μl) into the lateral ventricle of embryos. Electric pulses of 35 V for 50 microseconds were...
developed five times with 950-millisecond intervals. Mice were sacrificed at E18.5 and embryonic brains were analyzed.

RESULTS

Gde2 is expressed in the developing cortex

To define the temporal and spatial expression of Gde2 in the developing cortex, we examined the distribution of Gde2 transcripts and protein from E11.5 to E17.5 when layer-specific pyramidal neurons are generated (Molyneaux et al., 2007). Throughout this period, low levels of Gde2 mRNA were detected throughout the cortical plate; however, Gde2 transcripts were highly enriched in the preplate and in postmitotic cortical neurons (Fig. 1A-C; data not shown). Gde2 protein expression was analyzed in WT mice using polyclonal antibodies directed against the C-terminal portion of the protein and specificity was confirmed by loss of antibody reactivity in Gde2–/– littermates (Fig. 1A′-C′,A″-C″) (Sabharwal et al., 2011). Gde2 protein showed a similar temporal and spatial distribution pattern to Gde2 transcripts with enrichment of Gde2 in postmitotic neurons (Fig. 1A′-C′,D). Expression in the ventricular zone (VZ) is non-specific at E11.5 as antibody staining detected reactivity in this region in Gde2+/− cortices (Fig. 1A″); nevertheless, Gde2 protein is present in the VZ from E12.5 (Fig. 1B″-C″). At this later stage, the presence of Gde2 in the VZ area is likely to be a consequence of the distribution of Gde2 within axons of pyramidal neurons. Thus, the pattern of Gde2 expression in the developing cortex appears to be similar to that in the spinal cord in that Gde2 is excluded from VZ progenitors but is enriched within postmitotic neuronal cell bodies and axons.

![Fig. 1. Gde2 expression in the cortex. (A-C) Sectioned mouse embryonic cortices showing the distribution of Gde2 transcripts. (A′-C′,D) Sectioned mouse embryonic cortices from WT (+/+ and Gde2+/−) animals showing distribution of Gde2 protein in cortical neuronal cell bodies and processes using antibodies specific to Gde2. (D) Gde2 colocalizes with layer V and VI cortical neurons expressing high and low levels of Ctip2, respectively. Signal observed in the VZ in A″ is non-specific to Gde2.

Gde2 is required for the generation of deep-layer cortical neurons

Laminar-specific cortical neurons can be distinguished through their expression of distinct transcription factors that control cortical neuronal identities and their properties, such as cell body settling positions and axonal trajectory patterns (Molyneaux et al., 2007; Leone et al., 2008; Shoemaker and Arlotta, 2010). We utilized these molecular markers to gain insight into the requirement for endogenous Gde2 in layer-specific cortical neuronal differentiation by comparing their expression in Gde2−/− mice and control WT littermates. Animals were analyzed at two different developmental stages that approximate initial and late periods of cortical neuronal differentiation. At E13.5, Gde2−/− mutants showed an ~50% decrease of layer VI Tbr1+ neurons during the peak period of layer VI neurogenesis (Fig. 2A,A′,G). By E17.5, however, the numbers of Tbr1+ neurons had recovered to WT levels (Fig. 2G). At this stage, a subset of layer V neurons marked by ER81 (Etv1 – Mouse Genome Informatics) expression was found to be reduced in Gde2−/− null cortices by 20%, although overall numbers of Ctip2+ (Bcl11b–Mouse Genome Informatics) layer V neurons was unchanged, whereas there was a dramatic loss of ROBb+ layer IV neurons (Fig. 2B,B′,C,C′,H). Strikingly, Gde2−/− animals showed a robust expansion of layer II/III superficial neurons in both the marginal and intermediate zones (MZ and IZ; Fig. 2D,D′,E,E′,I). No gross changes in the overall radial thickness of the cortex at E17.5 were detected (Gde2+/+ 523.88±27 µm; Gde2−/− 512.04±21 µm; Student’s t-test P=0.645; n=5); however, the density of cells appeared to be marginally increased (Fig. 2D–F′). These observations suggest that Gde2 is required for the differentiation of deep-layer cortical neurons and raise the possibility that the expansion of layer II/III neurons is a consequence of delayed differentiation of cortical progenitors.

To test this hypothesis, we injected pregnant dams with BrdU prior to the peak periods of layer VI to layer III neurogenesis, and analyzed WT and Gde2−/− littermates 18 hours later to quantify the number of cycling progenitors that had exited the cell cycle in each case (Siegenthaler et al., 2009). Calculation of the proportion of BrdU-labeled cells that were postmitotic (see Materials and methods) showed that the number of cells exiting the cell cycle in Gde2−/− mutants at E12.5 was markedly decreased compared with WT controls, but no changes in cell-cycle exit were apparent at E13.5 or E14.5 (Fig. 3A-C,E). However, at E15.5, there was a striking increase in the number of cells that had exited the cell cycle in Gde2−/− embryos relative to control littermates (Fig. 3D-E); this observation is consistent with the expansion of layer II/III neurons observed at E17.5. Similar results were obtained using Tbr2 (Eomes – Mouse Genome Informatics) expression to demarcate the subventricular zone (SVZ; supplementary material Fig. S1).

To relate the changes in cell-cycle exit with cell fate, we injected the nucleotide analog EdU into pregnant dams at either E12.5 or E15.5 to label cycling cells, and subsequently analyzed the identity of EdU+ neurons at P5 using molecular markers specific for the cortical layers. Consistent with the observed reduction in cell-cycle exit at E12.5, we found a substantial decrease of EdU+ Tbr1+ and EdU+ Ctip2+ deep-layer neurons in Gde2−/− animals injected at E12.5 compared with WT littermates (Fig. 3F-G′,H,L). By contrast, we detected a robust expansion in the number of EdU+ Cux1+ and EdU+ Brn2+ (Pou3f2 – Mouse Genome Informatics) layer II/III neurons in animals injected at E15.5, reflecting the increased levels of cell-cycle exit in Gde2-null animals observed at this time point (Fig. 3I-L).
Gde2 controls cortical neuronal fate

RESEARCH ARTICLE 3873

Fig. 2. Gde2 ablation results in layer-specific changes in cortical neurons. (A-F) Sectioned mouse embryonic cortices showing representative images of layer-specific marker expression using immunohistochemistry, in situ hybridization (C, C’) and the nuclear stain TOPRO3 (TP3; F,F’). (G-I) Graphs of the ratio of deep and superficial neurons in Gde2–/– cortices and that of WT littermates from E13.5-17.5 (G) and at E17.5 (H, I). All graphs mean ± s.e.m. n=4-6. (G) *P=0.04. (H) *P=0.0034. (I) Cux1, *P=0.0003; Cux1-IZ, *P=0.041; Brn2/Cltp2, *P=0.006. Student’s two-tailed t-test. (J) Schematic of the changes in cortical neurons observed in WT and Gde2–/– animals with a different color representing each layer.

Taken together, these observations suggest that loss of Gde2 disrupts the timing of cortical progenitor differentiation such that there is a deficit in deep-layer cortical neurons and abnormal expansion of superficial layer II/III neuronal numbers. The marked increase in cell-cycle exit at E15.5 further implies that a separate Gde2-independent mechanism operates to drive the differentiation of cortical progenitors at later stages of development.

Gde2 ablation increases the cortical progenitor pool

To determine whether the decrease in deep-layer neurons followed by the expansion of superficial-layer neurons arises from changes in cell death, we performed TUNEL analyses in Gde2–/– mice and compared them with WT siblings. No changes in TUNEL were observed in Gde2–/– animals from E12.5 to E17.5, suggesting that the decrease in deep-layer neurons in these mutants arises from a delay or failure of neuronal differentiation and that the later increase in superficial neurons is due to increased cell-cycle exit of cortical progenitors (supplementary material Fig. S2). One prediction of this model is that progenitors that fail to exit the cell cycle on time remain cycling prior to their en masse differentiation initiating at E15.5. To test this possibility, we administered a 1-hour BrdU pulse to pregnant dams to label all cells in S phase, and quantified the total number of BrdU+ cells from E12.5 to E16.5 in Gde2-null and WT cortices (Chenn and Walsh, 2002). We observed a marked increase in the total number of BrdU+ cells in Gde2–/– cortices at E13.5 and E14.5 but no changes at either E12.5 or E16.5 (Fig. 4A-E). Tbr2+ BrdU+ cells were similarly elevated in these animals, suggesting that the total numbers of intermediate progenitor cells were also expanded at E13.5 and E14.5 in the absence of Gde2 (supplementary material Fig. S3) (Sessa et al., 2008). To determine whether progenitor cells showed increased proliferation in the absence of Gde2, we measured the ratio of cycling cells that were in S phase in Gde2–/– animals compared with WT animals (BrdU+Ki67+/Ki67+). No changes in the S-phase index were observed at E13.5, but we detected an increase of the S-phase ratio in Gde2–/– animals at E14.5 indicative of increased proliferation of cortical progenitors (Fig. 4F).

Taken together, these results suggest that the loss of Gde2 leads to an increase in the overall number of cortical progenitors in the VZ and SVZ in the period between E12.5 and E15.5, when we observe decreased and increased cell-cycle exit respectively. Consistent with this observation, Ki67+ progenitors accumulate at E14.5 and are moderately elevated at E16.5 in Gde2–/– animals but appear comparable to WT littermates at E12.5 (supplementary material Fig. S4). As cortical progenitors differentiate into astrocytes after neurogenesis is complete, we examined whether Gde2 ablation affected postnatal astrocyte formation; however, no discernible changes in astrocyte numbers were detected between Gde2–/– and WT littermates at P0 (supplementary material Fig. S5).

Gde2 is required for superficial cortical neuronal differentiation

Our results show that in the absence of Gde2, cortical progenitors accumulate at the time of deep-layer neuronal differentiation prior to initiating their belated differentiation during the time of superficial corticoneurogenesis. However, it is possible that progenitors that would normally give rise to superficial neurons also require Gde2 for their differentiation, but that this requirement is masked by the early phenotype of cortical progenitor accumulation.

To determine potential roles for Gde2 in the formation of layer II/III cortical neurons, we utilized a conditional ablation approach in which we administered 4-hydroxytamoxifen (4-OHT) to induce Cre-dependent removal of the Gde2 GDPD domain and 3’ coding sequences in R26CreER; Gde2floxed mice (Badea et al., 2003; Sabharwal et al., 2011). We injected pregnant dams with 4-OHT at E14.5 such that Cre-dependent removal of Gde2 occurs after the
Fig. 3. Loss of Gde2 changes cell-cycle exit of prospective deep and superficial cortical neuronal progenitors.

(A–D') Representative confocal images of mouse embryonic cortices labeled by BrdU injection at different developmental stages and analyzed 18 hours later.

(E) Graphs quantifying cell-cycle exit indices of Gde2–/– animals compared with WT littermates showing a reduction at E12.5 but an increase at E15.5. E12.5, *P=0.02; E15.5, *P=0.022, Student’s t-test.

(F–G', I–J') Confocal images of P5 cortices showing co-expression of EdU with layer-specific markers after EdU injection at either E12.5 or E15.5, to label deep and superficial cortical neurons, respectively.

(H, K) Total number of EdU-labeled deep-layer and superficial-layer cortical neurons/section showing a decrease in deep-layer neurons born at E12.5 and an expansion of superficial neurons born at E15.5 in Gde2–/– animals.

(H) EdU.Tbr1+, *P=0.0018; EdU.Ctip2+, *P=0.0026; EdU.ER81+, *P=0.0005; Student’s t-test.

(K) EdU.Cux1+, *P=0.012; EdU.Brn2+, *P=0.033; Student’s t-test.

(L) Graph of the ratios of EdU-labeled cells in Gde2–/– P5 cortices compared with WT showing overall decrease of neurons born in Gde2–/– animals at E12.5, but an increase of neurons born in these animals at E15.5. EdU E12.5, *P=0.04; EdU E15.5, *P=0.038, Student’s t-test. All graphs are mean±s.e.m., n=4-6.
differentiation of deep-layer cortical neurons but prior to the peak period of layer II/III cortical neurogenesis. 4-OHT administration effectively ablated Gde2 as very little Gde2 protein could be detected in R26CreER; Gde2lox/– cortices at E17.5 compared with R26CreER; Gde2+/– controls (Fig. 5A,A'). No changes in layer VI and layer V neurons were detected, consistent with the timed ablation of Gde2 after the bulk of deep-layer neuronal differentiation has transpired (Fig. 5D-E). However, we observed a 40-50% decrease of Cux1+ and Brn2 + layer II/III neurons in R26CreER; Gde2lox/– cortices compared with controls (Fig. 5B-C,H11032),E'). These observations suggest that Gde2 is required to regulate the differentiation of neurons that contribute to all cortical layers.

Gde2 ablation results in elevated Notch signaling in cortical progenitors

To investigate the potential signaling pathways that Gde2 regulates to control the timing of neuronal differentiation in the cortex, we focused on the Notch pathway for the following reasons. First, Notch signaling plays central roles in maintaining undifferentiated cortical progenitor pools (Corbin et al., 2008; D'Souza et al., 2010) and second, transient expression of constitutively active Notch at early neurogenic stages causes an increase of superficial-layer neurons, similar to the Gde2−/− phenotype (Mizutani and Saito, 2005). To determine whether Gde2 controls the differentiation of cortical progenitors through inhibition of Notch signaling, we analyzed the expression of Hes5 and Blbp, two direct targets of Notch that are induced upon binding of the Notch intracellular domain (NICD) and CSL transcription factors (Iso et al., 2003; Anthony et al., 2005). Examination of Gde2−/− and WT cortices at E11.5 prior to the initiation of cortical neurogenesis showed no differences in Hes5 and Blbp (Fabp7 – Mouse Genome Informatics) expression (Fig. 6A-B, supplementary material Fig. S6). However, we observed a robust upregulation of Hes5 and Blbp at E12.5, and of Blbp in E13.5 Gde2−/− mutants compared with WT controls, corresponding to the peak of layer VI neuronal generation and the onset of differentiation of layer V and IV neurons (Fig. 6C-F). No changes were detected in Hes5 and Blbp expression from E14.5 to E16.5 (Fig. 6G-H; supplementary material Fig. S6). Our results showed that Gde2 is indeed required for the differentiation of superficial-layer neurons, a requirement that is obscured by the accumulation of cycling progenitors in Gde2−/− animals (Fig. 5). Analysis of R26CreER; Gde2lox/cortices at E17.5 after 4-OHT injection at E14.5 revealed elevated levels of Blbp expression in these animals compared with R26CreER; Gde2+/− controls (supplementary material Fig. S6). These collective observations indicate that loss of Gde2 results in elevated Notch signaling in cortical progenitors.
However, the lack of Notch perturbation in the absence of Gde2 after E15.5 is consistent with the model that the increase in cell-cycle exit in conventional Gde2-/- mutants does not occur through Gde2-mediated changes in Notch signaling but instead transpires through separate mechanisms.

Binding of ligand to the Notch receptor triggers a series of cleavage events that releases NICD from the membrane. The NICD is transported to the nucleus where it interacts with co-cleavage events that releases NICD from the membrane. The NICD operates to force the differentiation of remaining cycling neuronal progenitors prior to gliogenesis; however, this mechanism appears to be independent of Gde2-mediated downregulation of Notch signaling (Corbin et al., 2008).

Gde2 and the temporal control of cortical neurogenesis

Signals emanating from cortical neurons are known to influence progenitor differentiation primarily during the neuronal to glial switch; for example, cardiotrophin and Notch ligands are expressed in cortical neurons but regulate the temporal initiation of gliogenesis in progenitor cells relative to the cessation of neurogenesis (Barnabé-Heider et al., 2005; Namahira et al., 2009). More recent studies show that the neuron-specific transcription factor Sip (Sipd1 – Mouse Genome Informatics) regulates cortical neuronal fates by preventing premature initiation of neurogenesis and gliogenesis; however, loss of Sip does not alter cell-cycle parameters (Seuntjens et al., 2009). Our study now shows that cortical neurons can regulate progenitor cell differentiation by controlling the timing of cell-cycle exit, which directly impacts the generation and numbers of layer-specific cortical neurons. Specifically, analyses of Gde2-/- and Gde2lox/lox conditional mice in which Gde2 is ablated after deep-layer neurons have formed, show that Gde2 is required for the differentiation of neurons that occupy both deep and superficial layers of the cortex. Interestingly, the...
earliest born neurons that populate layer VI appear the least affected by the loss of Gde2; we observe that some Tbr1+ neurons are generated normally in the absence of Gde2 although the differentiation of subsets of Tbr1+ neurons is delayed in Gde2−/− animals. This observation parallels that of the spinal cord in which loss of Gde2 is not required to generate early-born MMC neurons but is necessary for the timing and generation per se of LMC motor neurons (Sabharwal et al., 2011). Thus, the logic behind Gde2 function appears to be conserved between the cortex and spinal cord in that early-born neurons differentiate by Gde2-independent mechanisms to establish a neuronal source of Gde2 that in turn acts non-cell-autonomously to regulate subsequent progenitor differentiation. Consistent with this model, we observe reduced numbers of later-born layer V and IV neurons in Gde2−/− animals. These deficits arise from the reduced cell-cycle exit that we observe at E12.5 followed by an accumulation of cycling cortical progenitors in Gde2−/− mutants. This phenotype is strikingly similar to the mutations observed in Gfap or Blbp expression. *P=0.039, one-tailed Student’s t-test; mean±s.e.m., n=3 litters (5-6 embryos total).

Notch downregulation, progenitor competence and neuronal fates

In cortical neurons, Gde2 is localized in cell bodies and along neuronal processes that contact cells in the VZ and SVZ, thereby facilitating non-cell-autonomous downregulation of Notch signaling in cortical progenitors. Gde2 ablation results in increased Notch signaling in progenitors at E12.5 and E13.5, which coincides precisely with when we observe a decrease in cell-cycle exit and an accumulation of cycling cortical progenitors in Gde2 mutant animals. These observations suggest that abnormally high levels of Notch signaling at these time points retain progenitors in a proliferative state, and delay or prevent their differentiation (Corbin et al., 2008; Gaiano and Fishell, 2002). Instead, cortical progenitors continue cycling, biasing their competence towards superficial neuronal fates. This model is strongly supported by in utero electroporation studies in which constitutively active versions of Notch (caNotch) were transiently expressed in cortical progenitors from E13.5 to E15.5 (Mizutani and Saito, 2005). Progenitors that expressed caNotch lost the ability to generate deep-layer neurons but instead differentiated into layer II/III neurons when caNotch was removed. This phenotype is strikingly similar to the phenotypes observed in Gde2−/− mutants. Does elevated Notch signaling arising from Gde2 ablation during early corticoneurogenesis have other consequences on cortical development?

Exposure of early cortical progenitors to Notch is necessary for the expression of NF1A (Nfia – Mouse Genome Informatics), which specifies astroglial fates, raising the possibility that there is increased astrocyte development in Gde2−/− animals (Namahira et al., 2009; Deneen et al., 2006; Gaiano and Fishell, 2002). However, we do not observe any differences in Gfap or...
S100β staining in Gde2 mutant cortices at early postnatal stages, suggesting that Notch-dependent astrogliogenesis operates through mechanisms independent of Gde2.

We observe that cortical progenitors exhibit a burst in cell-cycle exit towards the end of the neurogenic period in Gde2−/− mutants, which leads to a dramatic expansion of layer II/III neurons. Interestingly, this increase in differentiation is not accompanied by changes in Gde2-mediated Notch signaling reflected by Hes5 and Blbp expression. Why is neurogenesis increased at these time points and what are the mechanisms that are involved? We speculate that normally, progenitors that are specified towards a neuronal fate are forced to exit the cell cycle at the end of the neurogenic period by a mechanism that as yet remains undefined. We suggest that such a control mechanism is unmasked in Gde2 mutants owing to the abnormal accumulation of cycling cortical progenitors in these animals, which allows changes in cell-cycle exit to be detected by conventional means. The mechanistic nature of the burst in cell-cycle exit is unclear but could involve modulation of extrinsic signaling pathways or, alternatively, could arise if progenitors normally undergo a finite number of cell cycles once specified down a neuronal lineage.

Conclusions

Our study suggests that cortical neurons can regulate cortical neuronal diversity through feedback mechanisms that regulate the timing of neurogenesis. Our observations identify Gde2 as a crucial regulator of cortical neuronal differentiation by its ability to control the timing of neurogenesis through downregulation of Notch signaling in cortical progenitors. Loss of Gde2 alters progenitor cell-cycle parameters such that they ultimately lead to changes in progenitor competence and, accordingly, to imbalances in layer-specific cortical neurons. Defining the targets of Gde2 function will be essential for deciphering the pathways that directly link extrinsic control of cell-cycle exit with intrinsic programs that regulate neurogenesis.

Acknowledgements

We thank Solange Brown, Nick Gaiano and members of the Sockanathan laboratory for advice and discussion.

Funding

M.R. was funded by the Medical Scientist Training Program and J.C. was funded by the National Research Foundation of Korea Grant [NRF-2009-352-C00115]. This work was funded by grants to S.S. from the Brain Sciences Institute at Johns Hopkins University.

Competing interests statement

The authors declare no competing financial interests.

Supplementary material

Supplementary material available online at http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.081083/-/DC1

References

Gde2 controls cortical neuronal fate

