Cytoplasmic Ca\(^{2+}\) changes dynamically during the interaction of the pollen tube with synergid cells

Megumi Iwano\(^{1,*;
\dagger}\), Quy A. Ngo\(^{2,*}\), Tetsuyuki Entani\(^{1}\), Hiroshi Shiba\(^{1}\), Takeharu Nagai\(^{3}\), Atsushi Miyawaki\(^{4}\), Akira Isozai\(^{1}\), Ueli Grossniklaus\(^{2}\) and Seiji Takayama\(^{1,\dagger}\)

SUMMARY
The directional growth of the pollen tube from the stigma to the embryo sac in the ovules is regulated by pollen-pistil interactions based on intercellular communication. Although pollen tube growth is regulated by the cytoplasmic Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]\(_{cyt}\)), it is not known whether [Ca\(^{2+}\)]\(_{cyt}\) is involved in pollen tube guidance and reception. Using Arabidopsis expressing the GFP-based Ca\(^{2+}\)-sensor yellow cameleon 3.60 (YC3.60) in pollen tubes and synergid cells, we monitored Ca\(^{2+}\) dynamics in these cells during pollen tube guidance and reception under semi-in vivo fertilization conditions. In the pollen tube growing towards the micropyle, pollen tubes initiated turning within 150 μm of the micropylar opening; the [Ca\(^{2+}\)]\(_{cyt}\) in these pollen tube tips was higher than in those not growing towards an ovule in assays with myb98 mutant ovules, in which pollen tube guidance is disrupted. These results suggest that attractants secreted from the ovules affect Ca\(^{2+}\) dynamics in the pollen tube. [Ca\(^{2+}\)]\(_{cyt}\) in synergid cells did not change when the pollen tube grew towards the micropyle or entered the ovule. Upon pollen tube arrival at the synergid cell, however, [Ca\(^{2+}\)]\(_{cyt}\) oscillation began at the micropylar pole of the synergid, spreading towards the chalazal pole. Finally, [Ca\(^{2+}\)]\(_{cyt}\) in the synergid cell reached a maximum at pollen tube rupture. These results suggest that signals from the pollen tube induce Ca\(^{2+}\) oscillations in synergid cells, and that this Ca\(^{2+}\) oscillation is involved in the interaction between the pollen tube and synergid cell.

KEY WORDS: Ca\(^{2+}\) dynamics, Pollen tube guidance, Pollen-synergid interaction, Arabidopsis

INTRODUCTION
Sexual reproduction in flowering plants starts when a pollen grain lands on the surface of the stigma, hydrates and germinates a pollen tube. The pollen tube enters the style and grows through the transmitting tract tissue to the ovary, where it is guided along the funiculus and enters the micropyle of the ovule to deliver two sperm cells to the embryo sac to effect double fertilization. This directional growth of the pollen tube from the stigma to the embryo sac is controlled by cellular interactions, and Ca\(^{2+}\) is thought to be a key player in regulating these processes (Dumas and Gaude, 2006; Chae and Lord, 2011).

Pollen tube guidance by the embryo sac involves at least two steps (Shimizu and Okada, 2000). First, funicular guidance directs the pollen tube from the placenta along the funiculus to the ovule. This is followed by micropylar guidance, which guides the pollen tube into the micropyle to reach the embryo sac (reviewed by Márton and Ibaraki, Osaka 567-0047, Japan. 4Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan.

*These authors contributed equally to this work
\^Author for correspondence (takayama@bs.naist.jp; m-iwano@bs.naist.jp)

Accepted 20 August 2012

© 2012. Published by The Company of Biologists Ltd

developed to monitor \([\text{Ca}^{2+}]\) in living cells (Miyawaki et al., 1997; Nagai et al., 2004). Using plants expressing YC3.1 or YC3.60, \([\text{Ca}^{2+}]\) dynamics in the pollen grain, pollen tube, and stigmatic papillar cell were monitored during pollination, as well as on pollen germination medium (Iwano et al., 2004; Watahiki et al., 2004; Iwano et al., 2009). These studies revealed that cytosolic \(\text{Ca}^{2+}\) concentrations (\([\text{Ca}^{2+}]_{\text{cyt}}\)) in the tip region of the growing pollen tube are maintained at submicromolar levels under all conditions.

Imaging of micropylar guidance has been performed under a semi-in vivo fertilization system in *Torenia* and *Arabidopsis* (Higashiyama et al., 1998; Palanivelu and Preuss, 2006; Higashiyama and Hamamura, 2008; Hamamura et al., 2011). In *Arabidopsis*, labeling the cytoplasm of the synergid cells and pollen tubes with GFP and/or RFP revealed that a pollen tube emerging from a cut style grows towards excised ovules, enters the ovule through the micropyle, ceases growth at the synergid cells and ruptures to release the sperm cells (Sandaklie-Nikolova et al., 2007). Furthermore, labeling of sperm cell nuclei with mRFP and labeling of the synergid, egg and central cells with GFP have enabled the successful study of double fertilization (Ingouff et al., 2007; Hamamura et al., 2011).

Here, to examine \(\text{Ca}^{2+}\) dynamics during micropylar guidance and pollen tube reception, we employed *Arabidopsis* plants expressing the \(\text{Ca}^{2+}\) sensor YC3.60 in pollen tubes and synergid cells and monitored \(\text{Ca}^{2+}\) dynamics in these cells during semi-in vivo fertilization. We set up a monitoring system using an EM-CCD camera attached to a wide-field microscope to follow \(\text{Ca}^{2+}\) dynamics and found remarkable changes in \([\text{Ca}^{2+}]_{\text{cyt}}\) both in the pollen tube and the synergid cells, suggesting an involvement of \(\text{Ca}^{2+}\) in the communication between these cells. We discuss our results in relation to the physiological relevance of \([\text{Ca}^{2+}]_{\text{cyt}}\) for the interactions between the pollen tube and synergid cell during micropylar pollen tube guidance and pollen tube reception.

MATERIALS AND METHODS

Plant materials and growth conditions

Arabidopsis thaliana accession Columbia was used for generation of transgenic plants. Plants were grown in pots containing soil/perlite (3:1, by volume) in a growth chamber with a light intensity of 120-150 mmol m\(^{-2}\) s\(^{-1}\) during the daily 12-hour light period. The temperature was maintained at 22±2°C.

Vector construction

A DNA fragment encoding DsRed was amplified from pDsRed2 vector (Clontech) by PCR using the following primers: 5'-GGCTCTAGAGGCCTCTCCCGAAGCAGT-3' and 5'-GTGGAGACCTCTCACAGGAACAGGTGTCGAC-3'; the incorporated XbaI and SacI sites are underlined. The obtained DNA fragment was digested with XbaI and SacI, and then ligated to the XbaI and SacI sites of the pBI121-pAct1::RFP vector used previously (Iwano et al., 2009), yielding the pBI121-pAct1::RFP vector.

For the constructs expressing YC3.60 in the synergid cells, promoter regions of *DD2* (At5g43510) and *DD2-like* (At5g43513) genes were amplified by PCR with primers (5'-CTAAAGCTTTCCTGTGTTTTATCC-3' and 5'-CCATGGTCTTGTAGAGAATACCAATATCAG-3' for *DD2* promoter, 5'-AACGTTGATGTGGATTAGGTGTCGACCG-3' and 5'-CCATGGTCTTGTAGAGAATACCAATATCAG-3' for *DD2-like* promoter, the incorporated HindIII and NcoI sites are underlined). Obtained fragments were digested with HindIII and NcoI and ligated to HindIII and NcoI sites of pLat52::YC3.60 previously constructed (Iwano et al., 2009) for yielding pDD2::YC3.60 and pDD2-like::YC3.60 plasmids.

Transformation

The pBI121-Act1::RFP, pDD2::YC3.60 plasmid and pDD2-like::YC3.60 plasmid were electroporated into *Agrobacterium tumefaciens* strain EHA105 (Hood et al., 1993). The *Agrobacterium* infiltration procedure was performed with unopened flower buds of *Arabidopsis* accession Columbia as previously described (Iwano et al., 2004). Transformed seeds were selected on 1/2 MS plates containing kanamycin (50 µg/ml) and were analyzed using PCR to test for the presence of the RFP (DsRed) gene.

Pollen tube growth, ratiometric imaging and image analysis

For imaging under the semi-in vivo condition, wild-type *Arabidopsis* flowers excised before anther dehiscence were collected onto an agar plate and the anthers were removed. Pollen grains from freshly dehisced anthers of pAct1::YC3.60-expressing plants were loaded onto the wild-type stigma. Thirty minutes after manual pollination, the upper part of the pollinated pistil was excised and mounted in the germination medium (Boavida and McCormick, 2007) in a moistened glass-bottomed dish. Next, following previously reported methods (Palanivelu and Preuss, 2006), pAct1::YC3.60- or pDD2like::YC3.60-expressing ovules were excised from transgenic *Arabidopsis* plants. After 2 hours at 23°C, the \([\text{Ca}^{2+}]_{\text{cyt}}\) in pollen tubes growing through the style and towards the synergid cells during micropylar guidance was imaged with a Zeiss Axio Observer inverted microscope equipped with a Xenon lamp, an EM-CCD Evolve 512 camera (Photometrics) and a filter exchanging system (Prior). Imaging of the cameleon emission ratio was accomplished using two emission filters (480/30 for ECFP, 535/40 for Venus and 641/75 for DsRed). After background subtraction, the Venus/ECFP ratio was determined using MetaMorph software (Molecular Devices, USA). A Zeiss C Apo 40×1.20 water immersion objective lens and a Plan-Apo 20×0.8 objective lens were used for imaging. Exposure times were typically 20 ms, and images were collected every 3-20 seconds. In each experiment, the ratio in a region of interest of 6 × 6 µm\(^2\) was measured using the MetaMorph software, and is shown as sequential line graphs. The mean and maximum values were calculated using Microsoft Excel.

To confirm that the full-length cameleon was expressed in the pollen tube, elongated pollen tubes were monitored with excitation at 442 nm using a spectral imaging fluorescence microscope system (LSM710 META, Carl Zeiss, Jena, Germany). This system is capable of resolving the spectra of various fluorescence images; therefore, we were able to obtain images with no interference from the overlapping fluorescence emissions (Iwano et al., 2009). These experiments were carried out more than 30 times.

Calibration of YC3.60 ratiometric changes

Calibration of the \([\text{Ca}^{2+}]_{\text{cyt}}\) was carried out as described previously (Allen et al., 1999). Serial dilutions of purified YC3.60 were made in Ca\(^{2+}\) calibration buffer (Molecular Probes), in which the free \([\text{Ca}^{2+}]\) ranged from 0 mM to 1 mM. Dilutions of YC3.60 that resulted in similar signal intensities to those seen in YC3.60-expressing pollen tubes were used to determine the minimum (\(R_{\text{min}}\)) and maximum (\(R_{\text{max}}\)) ratio values. For YC3.60, \(R_{\text{min}}\) and \(R_{\text{max}}\) values were 1.75 and 5.35 (supplementary material Fig. S1). These values were used to convert the YC3.60 fluorescence ratios into a \([\text{Ca}^{2+}]_{\text{cyt}}\) by fitting them to YC3.60 calibration curves obtained in vitro.

Statistical analysis

Statistical analyses were performed using Student’s t-test where necessary.

RESULTS

\(\text{Ca}^{2+}\) imaging in pollen tube tips growing in the presence and absence of functional ovules

\([\text{Ca}^{2+}]_{\text{cyt}}\) in pollen tubes growing under in vitro and semi-in vivo conditions has been examined in previous studies (Iwano et al., 2004; Iwano et al., 2009). However, it remained unclear whether ovules affect \([\text{Ca}^{2+}]_{\text{cyt}}\) dynamics in the pollen tube. First, we examined whether growth and \([\text{Ca}^{2+}]_{\text{cyt}}\) in pollen tubes changes in the presence of ovules. In these experiments, wild-type ovules were placed about 450 µm away from the pistil excision site. After incubation of the pollinated pistil for ~2 hours at 23°C, pollen tubes emerged from the pistil excision site. The \([\text{Ca}^{2+}]_{\text{cyt}}\) in pollen tubes
supplementary material Movie 2). Furthermore, in the pollen tubes growing out of a cut style without wild-type ovules, the average ratio was 1.98±0.15 (n=10), which was significantly different from that in the presence of wild-type ovules (P<0.001), but not in the presence of myb98 mutant ovules (Fig. 2C-E). These results were reproducibly obtained in the experiments using another pAct1::YC3.60-expressing line (wild-type ovule, 3.30±0.32; myb98 ovule, 2.21±0.31; without ovule, 2.07±0.21).

To convert the YC3.60 ratios into approximate [Ca2+]\textsubscript{cyt} values, calibration of [Ca2+]\textsubscript{cyt} was carried out as described previously (Allen et al., 1999; Iwano et al., 2009). We derived a titration curve (supplementary material Fig. S1, see Materials and methods), from which we estimated that the [Ca2+]\textsubscript{cyt} in the tip region shown in Fig. 2 ranged from 0.2 to 0.7 μM in the presence of wild-type ovules and from 0.2 to 0.3 μM in the absence of ovules.

Furthermore, in order to examine whether [Ca2+]\textsubscript{cyt} in the pollen tip increases just after emergence from the pistil or gradually during its approach to the ovules, the ratio in the pollen tubes emerging from the pistil was monitored every 3-5 minutes over a range of 150 to 400 μm from the pistil excision site, the ovules being 450 to 500 μm away. Without ovules and in the presence of myb98 mutant ovules, there was no obvious change in the ratio (Fig. 2F). In the presence of wild-type ovules, the ratio was no different from that without ovules or with the myb98 ovules in the range of 150-200 μm, but increased between ~250-300 μm, where the pollen tubes started to turn; the increase continued at ~350-400 μm (Fig. 2F). These observations indicate that [Ca2+]\textsubscript{cyt} in the pollen tip increases as the pollen tubes approach the ovules, before it decreases as the tubes grow closer to the micropyle. Collectively, these results suggest that [Ca2+]\textsubscript{cyt} dynamics in the pollen tube changes in response to ovules, especially synergid cells, supporting our hypothesis that Ca2+ signaling in pollen tubes is involved in micropylar guidance. Moreover, as [Ca2+]\textsubscript{cyt} in pollen tubes increases at some distance in the presence of wild-type but not myb98 ovules, functional synergids are also involved in producing long-range effects on [Ca2+]\textsubscript{cyt} in the pollen tube.

Expression of YC3.60 in synergid cells

Previously, eight independent YC3.60-expressing plants were obtained by transformation with the pAct1::YC3.60 plasmid (Iwano et al., 2009). Surprisingly, one of these transgenic lines expressed YC3.60 not only in the pollen grain and pollen tube, but also in the synergid cells, and to a lesser degree the central cell of the embryo sac and the sporophytic tissues of the ovule (supplementary material Fig. S2A,B). Seed set in this transgenic line (51.8±5.2 seeds, n=30) was no different from that of wild-type plants (50.9±6.7 seeds, n=30). In particular, the intensity of YC3.60 in the synergid cells was the same as that in the pollen tube. To confirm that the synergid cells expressed the ECFP and Venus components of YC3.60, we obtained fluorescence spectra from these cells using a spectral-imaging microscope system with excitation at 442 nm. The YC3.60 spectrum was a combination of the spectra typically observed for recombinant ECFP and Venus proteins. Photobleaching the synergid cells with a 514 nm light induced ~90% increase in ECFP fluorescence (supplementary material Fig. S2C). However, as the expression of the ACTIN1

were monitored at intervals of 10 seconds using a 20× objective lens. As a result, 75% of ovules successfully attracted pollen tubes, which entered the micropyle and stopped growth at the synergid cells (18/24 samples).

For comparison, excised pollinated pistils were placed on the pollen growth medium without ovules and monitored. In this case, pollen tubes grew straight, even when their lengths were over 400 μm out of excised pistils (Fig. 1A). However, in the presence of ovules, pollen tubes grew straight until they were ~150 μm from a microple, then grew in a wave-like pattern towards an ovule (Fig. 1B; supplementary material Movie 1). To elucidate whether the wave-like turning of the pollen tube was related to synergid function, ovules from the myb98 mutant, in which the formation of the filiform apparatus and pollen tube guidance are defective, were placed on the growth medium. In this case, pollen tubes grew straight and only rarely grew into a micropyle (1/29) (Fig. 1C; supplementary material Movie 2).

Next, we monitored the [Ca2+]\textsubscript{cyt} in pollen tubes growing towards the micropyles of wild-type and myb98 ovules, or without ovules. When the distance from the micropyles of wild-type ovules was about 30-70 μm, the average Venus/ECFP ratio in the tip was 3.18±0.48 (n=18) (Fig. 2A1-A3). Especially, when the pollen tube was turning towards a micropyle, a broader and stronger [Ca2+]\textsubscript{cyt} signal at the pollen tip was observed (Fig. 2B). By contrast, in pollen tubes growing within 70 μm of the micropyles of myb98 ovules, the [Ca2+]\textsubscript{cyt} did not change when the pollen tubes approached the micropyles more closely by chance and the average ratio was 2.10±0.16 (n=10), which was significantly different from that in the presence of wild-type ovules (P<0.001) (Fig. 2C,D). Furthermore, in the pollen tubes growing out of a cut style without wild-type ovules, the average ratio was 1.98±0.15 (n=10), which was significantly different from that in the presence of wild-type ovules (P<0.001), but not in the presence of myb98 mutant ovules (Fig. 2C-E).
gene has not previously been reported in synergid cells, several lines expressing YC3.60 in synergids were made using promoters of the DD2 gene expressing specifically in synergid cells (Steffen et al., 2007) and of a paralogous gene (DD2-like). We obtained two lines for pDD2::YC3.60 and four lines for pDD2-like::YC3.60. The YC3.60 protein was specifically expressed in synergid cells in both pDD2-like::YC3.60 lines, and two synergid cells could be distinguished under confocal microscopy (supplementary material Fig. S2D-F); expression in the pDD2::YC3.60 lines was similar but low. Seed sets in these transgenic lines (48.5±6.5 seeds, 49.1±7.0 seeds, n=30) were not different from that of wild-type plants (50.9±6.7 seeds, n=30). Therefore, in this study, two distinct YC3.60 lines, pAct1::YC3.60 and pDD2-like::YC3.60, were used.

[Ca²⁺]cyt changes in both the pollen tube and synergid cells during micropylar guidance and pollen tube rupture

In order to examine Ca²⁺ dynamics in the pollen tube and synergid cells during the interaction between these two gametophytic cells, we simultaneously monitored their [Ca²⁺]cyt dynamics using ovules with pAct1::YC3.60-expressing synergid cells in the semi-in vivo fertilization system described above. In these experiments, ovules were placed 300 μm from the excised edge of the pistil.

First, [Ca²⁺]cyt in the synergid cells was monitored under a 20× objective before and after pollen tube arrival (Fig. 3). At intervals of 3 to 10 seconds, pollen tubes terminated at 90% of the synergid cells (10/11 samples), and 60% of the pollen tubes that reached the synergid cells burst (6/10 samples).

Next, both the pollen tube and the synergid cells inside the ovule were observed under a 40× objective (data not shown). [Ca²⁺]cyt dynamics were monitored in these cells as the pollen tube approached at intervals of 3 to 20 seconds. Pollen tubes terminated at about 75% of the synergid cells (9/12 samples), and 55% of the pollen tubes that reached the synergid cells burst (5/9 samples).

Before the approach of the pollen tube, the Venus/ECFP ratios of synergid cells were 1.96±0.06 (n=5), and [Ca²⁺]cyt was estimated at about 0.1 μM (supplementary material Fig. S3); there was no significant [Ca²⁺]cyt change over time. When a pollen tube arrived at the synergid cells, however, [Ca²⁺]cyt in the synergid cell increased in the area next to the point of the pollen tube contact.
Ca2+ dynamics in pollen tubes during micropylar guidance and pollen tube reception

We observed [Ca2+]\text{cyt} changes in pAct1::YC3.60-expressing pollen tubes growing towards and inside wild-type ovules (Fig. 3B,C; supplementary material Movie 3). After entering the micropyle and approaching the synergid cells, pollen tube growth ceased temporarily and pollen tube tips swelled (Fig. 3B1,B2). Pollen tubes later resumed growth (Fig. 3B3,B4) and ruptured shortly afterward (Fig. 3B5,B6). Interestingly, between the time of growth cessation and rupture, [Ca2+]\text{cyt} at the pollen tube tip did not significantly change and the tip-focused [Ca2+]\text{cyt} gradient was prominent, except for a slight elevation of [Ca2+]\text{cyt} in the shank region of the pollen tube (Fig. 3B3,B4). However, [Ca2+]\text{cyt} increased from a ratio of 2.5 to 5 (0.15 \(\mu\)M to >1 \(\mu\)M) at the time of pollen tube rupture. In bursting pollen tubes, an area of high [Ca2+]\text{cyt} rapidly spread from the tip to the shank. These [Ca2+]\text{cyt} changes were observed in all experiments (3/3).

Ca2+ dynamics in the synergid cells during micropylar guidance and pollen tube reception

In order to observe the precise [Ca2+]\text{cyt} change in the synergid cells alone, we monitored [Ca2+]\text{cyt} dynamics in the pAct1::YC3.60-expressing synergid cells that were approached by RFP-expressing pollen tubes (Fig. 4; supplementary material Movie 4). When the pollen tubes made contact with the synergid cells, they temporarily ceased growth, and a Ca2+ oscillation was initiated at the contact point near the micropylar end of the synergid cells (Fig. 4A1,A2; 4B1,B2) and subsequently spread throughout the cell (Fig. 4A3; 4B3). When the pollen tubes grew further, the amplitude of the oscillation eventually decreased (Fig. 4A4,B4), but [Ca2+]\text{cyt} increased again at about 5 minutes before pollen tube rupture (Fig. 4A5,B5). Finally, the [Ca2+]\text{cyt} in the synergid cells reached a maximum (ratio=3.99\(\pm\)1.06; concentration=0.7 \(\mu\)M, \(n=4\)) when the pollen tube ruptured and decreased afterwards (Fig. 4B5). These [Ca2+]\text{cyt} changes were also observed in all experiments using plants expressing pDD2-like::YC3.60 (3/3) (maximum ratio=4.08\(\pm\)1.05; concentration=0.75 \(\mu\)M, \(n=3\)) and indicate that physiological changes in the synergid cells during pollen tube guidance and reception involve [Ca2+]\text{cyt} dynamics.

Upon closer examination, we detected some variation in the timing of the appearance of Ca2+ oscillation in the synergids after the pollen tubes enter the micropyle. Of the 10 pAct1::YC3.60 synergids and 30 pDD2-like::YC3.60 synergids monitored at intervals of 5 seconds, [Ca2+]\text{cyt} in the synergid cells increased after a pollen tube contacted them (8/10, 26/30) (Fig. 5A,B1). But in some synergids (2/10, 4/30), a Ca2+ elevation was observed before pollen tube contact when it was still 10 \(\mu\)m to 30 \(\mu\)m away from the synergid cell (Fig. 5A,B2). These results suggest the possible existence of diffusible signals from the pollen tube. However, the level of Ca2+ elevation before contact was lower and the interval of oscillation was longer than that after contact. In addition, [Ca2+]\text{cyt} increased strongly only after pollen tube contact. These results suggested that pollen tube contact with the synergid is important for Ca2+ oscillation.

DISCUSSION

Using recently developed imaging techniques, micropylar guidance in *Arabidopsis* has been visualized in a semi-in vivo fertilization system (Palanivelu and Preuss, 2006; Ingouff et al., 2007;
Sandaklie-Nikolova et al., 2007; Hamamura et al., 2011). In this study, using Arabidopsis plants expressing the GFP-based Ca2+-sensing probe YC3.60 in pollen tubes and synergid cells, we visualized Ca2+ dynamics in these cells during micropylar guidance and pollen tube reception.

First, we examined whether ovules on the germination medium affected pollen tube growth and [Ca2+]\textsubscript{cyt} dynamics. We found that pollen tubes repeatedly turned within 150 \(\mu\text{m}\) of the micropyles of wild-type ovules, whereas such turning was never observed near myb98 mutant ovules or in the absence of ovules. In addition, [Ca2+]\textsubscript{cyt} in pollen tube tips close to wild-type ovules was significantly higher than in those near myb98 ovules or in the absence of ovules. By contrast, [Ca2+]\textsubscript{cyt} near the pistil in the presence of wild-type ovule was not different from that in the presence of myb98 ovules. From the above observations, we can associate the turning of the pollen tubes with an increase in [Ca2+]\textsubscript{cyt}. Thus, we hypothesize that pollen tubes sense some substance produced by wild-type ovules that affects the growth direction and [Ca2+]\textsubscript{cyt} in the pollen tube.

Regarding the interaction between pollen tubes and synergid cells, an increase in pollen tube [Ca2+]\textsubscript{cyt} was observed at the time of pollen tube rupture. Monitoring revealed an absence of the [Ca2+]\textsubscript{cyt} increase at the tip region before pollen tube burst and a spreading of the high [Ca2+]\textsubscript{cyt} area from the tip region to the shank after pollen tube rupture. Recent evidence suggests that the pollen tube receptor-like kinases ANXUR1 and ANXUR2, which are closely related to the receptor-like kinase FERONIA, prevent premature rupture during pollen tube growth (Miyazaki et al., 2009; Boisson-Dernier et al., 2009; Kessler and Grossniklaus, 2011). However, it is currently not known whether Ca2+ signaling is involved in transducing a signal after the interaction of ANXUR with a putative ligand from the synergid cells. In addition, in aca9 mutants, where a predicted Ca2+/calmodulin-activated Ca2+ pump is disrupted, pollen tubes normally reach the embryo sac and cease growth, but fail to rupture and release the sperm cells (Schiott et al., 2004). Monitoring [Ca2+]\textsubscript{cyt} dynamics in these aca9 mutants and other mutants, in which the pollen tube fails to rupture within the ovule, will elucidate the precise role of Ca2+ signaling in controlling pollen tube rupture.
There was no change in the \([\text{Ca}^{2+}]_{\text{cyt}}\) of synergid cells until they were approached by the pollen tube after it had entered the ovule. In very few cases, however, \([\text{Ca}^{2+}]_{\text{cyt}}\) oscillations initiated in the synergid cells before pollen tube reached them. Finally, \([\text{Ca}^{2+}]_{\text{cyt}}\) in synergid cells reached the maximum level at the time that the pollen tube burst. These \([\text{Ca}^{2+}]_{\text{cyt}}\) monitoring data suggest that the pollen tube induces \([\text{Ca}^{2+}]_{\text{cyt}}\) change in the synergid cells, and that \(\text{Ca}^{2+}\) signaling is involved in pollen tube-synergid cell interactions.

In legumes, \textit{Rhizobium} bacteria cause the development of a nodule, which is the site for bacteria and plant to cooperate in the fixation and assimilation of nitrogen (Mylona et al., 1995). \textit{Rhizobium} Nod factors induce \([\text{Ca}^{2+}]_{\text{cyt}}\) oscillations in root hair cells. It has been reported that the oscillation with a mean period of 60 seconds starts within 10 minutes of Nod factor addition (Ehrhardt et al., 1996). In this study, we observed rare cases where \([\text{Ca}^{2+}]_{\text{cyt}}\) increase occurred in the synergid cells when the pollen tube was more than 20 \(\mu\)m away. This might suggest the existence of a diffusible signal from pollen tube, which affects \([\text{Ca}^{2+}]_{\text{cyt}}\) in synergid cells, although contact of the pollen tube with the synergid cells would be necessary for the strong \(\text{Ca}^{2+}\) oscillation observed later on.

The synergid cell that receives the pollen tube undergoes cell death. It is thought that degeneration of the synergid cell is required for pollen tube entry into the synergid cell and to provide access of the sperm cells to the egg and central cell for fertilization (Punwani and Drews, 2008). Sandaklie-Nikolova et al. proposed a model in which a signaling cascade triggered by the contact of the pollen tube with the synergid cell induces synergid cell death in \textit{Arabidopsis} (Sandaklie-Nikolova et al., 2007). In pathogen-plant interactions, \([\text{Ca}^{2+}]_{\text{cyt}}\) increase is involved as an early signal in the hypersensitive response (HR) (Levine et al., 1996). Therefore, the finding that \([\text{Ca}^{2+}]_{\text{cyt}}\) increase and oscillation were induced by the interaction of the pollen tube with the synergid cells suggests that synergid cell death occurs downstream of the \(\text{Ca}^{2+}\) signaling cascade. In this study, when the pollen tube reaches the micropylar pole of the synergid cells, \(\text{Ca}^{2+}\) oscillations can be observed in all synergid cells after contact with the pollen tube. Furthermore, before pollen tube rupture and cell death of synergid cells occurs, \(\text{Ca}^{2+}\) oscillations can also be observed in all synergid cells, even in those where subsequently the pollen tube did not rupture. Therefore, it is probable that \(\text{Ca}^{2+}\) oscillation in the synergid cell is a necessary but not a sufficient condition for pollen tube rupture.

In this study, a \([\text{Ca}^{2+}]_{\text{cyt}}\) increase was observed at the time of pollen tube rupture. Changes in \([\text{Ca}^{2+}]_{\text{cyt}}\) are thought to be regulated by transporters localized in the membrane of \(\text{Ca}^{2+}\) storage organelles and the plasma membrane (Sze et al., 2000). Previous electron microscopic studies in pearl millet ovaries reported that \(\text{Ca}^{2+}\) precipitations with antimonate were observed at the cell wall in the filiform apparatus and the developed ER structure under the cell membrane in synergid cells (Chaubal and Reger, 1992a; Punwani and Drews, 2008). We could not clarify the source of \(\text{Ca}^{2+}\) for the observed \([\text{Ca}^{2+}]_{\text{cyt}}\) increase in the synergid cells in this study, so it is still unknown whether the \(\text{Ca}^{2+}\) is delivered from the extracellular region, the ER, or both. Our \([\text{Ca}^{2+}]_{\text{cyt}}\) imaging results suggest that signaling molecules from the pollen tube, or physical stimulation by the pollen tube, affect \(\text{Ca}^{2+}\) dynamics in the synergid cells, and vice versa.

Fig. 5. Relationship between \(\text{Ca}^{2+}\) oscillation in the synergid cell and the pollen tube approach. pDD2-like::YC3.60-expressing ovules and pAct1::RFP-expressing pollen were used.
(A) Ratio changes at the micropylar pole of the synergid cells (8 \(\mu\)m \(\times\) 8 \(\mu\)m). Numbers in the traces correspond to the image numbers in B. The timing of contact of the pollen tube with the synergid cell is the time point when pollen tube temporarily ceases growth (blue arrows). Data were obtained at 5-second intervals.
(B) Left panels: images of pollen tube (RFP) and synergid cells (Venus) in the ovule. Right panels: ratio images of synergid cells. Ratio images at 5-second intervals are shown. Scale bar: 20 \(\mu\)m.
Acknowledgments
We thank Mrs Onishi, Mrs Okamura and Mrs Yamamoto for their technical assistance, and Prof. Higashiyama at Nagoya University and Dr Kaotien Nakayama for critical reading of the manuscript. We also thank Prof. Okada at National Institute for Basic Biology (Okazaki, Japan) for providing myo98 seeds.

Funding
This work was supported in part by Grant-in-Aid for Scientific Research on Innovative Areas [21113003 to M.I.; 23113001 and 23113002 to S.T.] by Grants-in-Aid for Scientific Research [23570056 to M.I.; 21428014 to S.T.] and by Grants-in-Aid for Creative Scientific Research [16GS0316 to A.I.] from the Ministry of Education, Culture, Sports, Science and Technology of Japan. Work in U.G.’s laboratory is supported by the University of Zürich and grants from the Swiss National Science Foundation. Q.A.N.’s visit to Japan was supported by a Human Frontier Science Program short-term fellowship.

Competing interests statement
The authors declare no competing financial interests.

Supplementary material
Supplementary material available online at http://dev.biologists.org/lookup/suppl?doi=10.1242/dev.081208/-/DC1

References