Arabidopsis HD-Zip II transcription factors control apical embryo development and meristem function

Luana Turchi1,*, Monica Carabelli1,*, Valentino Ruzza1, Marco Possenti2, Massimiliano Sassi1,*, Andrés Peñalosa2, Giovanna Sessa1, Sergio Salvi2, Valentina Forte2, Giorgio Morelli2 and Ida Ruberti1,§

SUMMARY
The Arabidopsis genome encodes ten Homeodomain-Leucine zipper (HD-Zip) II proteins. ARABIDOPSIS THALIANA HOMEOBOX 2 (ATHB2), HOMEOBOX ARABIDOPSIS THALIANA 1 (HAT1), HAT2, HAT3 and ATHB4 are regulated by changes in the red/far red light ratio that induce shade avoidance in most of the angiosperms. Here, we show that progressive loss of HAT3, ATHB4 and ATHB2 activity causes developmental defects from embryogenesis onwards in white light. Cotyledon development and number are altered in hat3 athb4 embryos, and these defects correlate with changes in auxin distribution and response. athb2 gain-of-function mutation and ATHB2 expression driven by its promoter in hat3 athb4 result in significant attenuation of phenotypes, thus demonstrating that ATHB2 is functionally redundant to HAT3 and ATHB4. In analogy to loss-of-function mutations in HD-Zip III genes, loss of HAT3 and ATHB4 results in organ polarity defects, whereas triple hat3 athb4 athb2 mutants develop one or two radialized cotyledons and lack an active shoot apical meristem (SAM). Consistent with overlapping expression pattern of HD-Zip II and HD-Zip III gene family members, bilateral symmetry and SAM defects are enhanced when hat3 athb4 is combined with mutations in PHABULOSA (PHB), PHAVOLUTA (PHV) or REVOLUTA (REV). Finally, we show that ATHB2 is part of a complex regulatory circuit directly involving both HD-Zip II and HD-Zip III proteins. Taken together, our study provides evidence that a genetic system consisting of HD-Zip II and HD-Zip III genes cooperates in establishing bilateral symmetry and patterning along the adaxial-abaxial axis in the embryo as well as in controlling SAM activity.

KEY WORDS: Auxin, Embryo bilateral symmetry, Cotyledon development, Shoot apical meristem activity, HD-Zip II transcription factors, Arabidopsis

INTRODUCTION
In plants, as in animals, the basic body plan is laid down during embryogenesis. This begins with an asymmetric cell division of the zygote that gives rise to a larger basal cell and a smaller apical cell. The basal cell and its derivatives repeatedly divide horizontally forming a filamentous suspensor, which connects the embryo with the maternal tissue. The uppermost suspensor cell is subsequently recruited by the embryo and specified to become the hypophysis, the founder of the root apical meristem (RAM). The apical cell and its derivatives undergo a series of highly coordinated divisions to form a globular embryo proper. During embryo development, formation of the apical-basal axis is followed by establishment of the radial axis and finally of bilateral symmetry. The SAM forms between the two out-growing cotyledons from the globular stage onwards (De Smet et al., 2010).

The Arabidopsis embryo has been widely used for studying patterning events in plants by virtue of the nearly invariant cell division pattern during early embryogenesis, and in recent years a number of factors underpinning the establishment of a basic body plan have been identified (De Smet et al., 2010; Zhao et al., 2011; Lau et al., 2012).

1 Institute of Molecular Biology and Pathology, National Research Council, P.le A. Moro 5, 00185 Rome, Italy. 2 National Research Institute on Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy.
3 These authors contributed equally to this work.
4 Present address: Laboratoire de Reproduction et Développement des Plantes, École Normale Supérieure de Lyon 46, Allée d’Italie, 69364 Lyon, CEDEX 07, France.
5 Author for correspondence (ida.ruberti@uniroma1.it)

Accepted 18 February 2013
of the embryonic cotyledons. DRN acts redundantly with its paralog DRN-like (DRNL) in cotyledon development, and different lines of evidence indicate that it might control auxin transport (Chandler et al., 2007; Cole et al., 2009).

Proper patterning of the apical region of the globular embryo requires the activity of members of the HD-Zip III protein family (Emery et al., 2003; Prigge et al., 2005). This family consists of five genes – PHB, PHV, REV, ATHB8 and ATHB15 (also known as CORONA (CN4) and INCURVATA 4 (ICU4)) – all predicted to be regulated by miR165 and miR166 (Emery et al., 2003; Floyd and Bowman, 2004; Mallory et al., 2004). The phb rev double, phb phv rev triple and other mutant combinations involving athb8 and athb15 lack the SAM and, in most severe cases, fail to establish bilateral symmetry (Emery et al., 2003; Prigge et al., 2005). Defects in the pattern of PIN1 expression are evident in phb phv rev embryos at the heart stage (Izhaki and Bowman, 2007). Several recent findings further support a key role for HD-Zip III proteins in apical embryo development. First, failure to restrict HD-Zip III expression in the apical domain via a miRNA-dependent pathway prevents proper establishment of the embryonic root (Grigg et al., 2009). Second, semi-dominant gain-of-function mutations in the miR-binding site of PHB, REV and ICU4 restore the tpl1-1 double-root phenotype, possibly by excluding PLETHORA 1 (PLT1) and PLT2, master regulators of root development expression of which partially depends on MP activity (Aida et al., 2004; Bilou et al., 2005; Galinha et al., 2007), from the embryo apical domain (Long et al., 2006; Smith and Long, 2010). Finally, mis-expression of miR165- and miR 166-resistant variants of REV, PHB or ICU4 in the basal cells of the embryo produces a transformation of the root pole into a second shoot pole, indicating that HD-Zip III proteins act as master regulators of embryonic apical fate (Smith and Long, 2010).

The HD-Zip III genes are also involved in patterning along the radial and adaxial-abaxial axes of the embryo. PHB, PHV and REV are all expressed in the apical half of globular embryos. Later in embryogenesis, expression is restricted to the SAM, the adaxial region of the cotyledons and the provasculature (McConnell et al., 2001; Emery et al., 2003). phb phv rev mutants frequently form a single abaxialized radial cotyledon with vascular bundles showing amphicribal symmetry and lack the SAM (Emery et al., 2003). A key role for PHB, PHV and REV in radial patterning throughout plant development has also been demonstrated (McConnell and Barton, 1998; McConnell et al., 2001; Emery et al., 2003; Zhong and Ye, 2004; Prigge et al., 2005).

Here, we show that members of the HD-Zip II protein family, mostly known for their role in shade avoidance (Ruberti et al., 2012), and recently implicated in carpel margin development (Reymond et al., 2012) and leaf polarity (Bou-Torrent et al., 2012), also control embryonic apical patterning and SAM function at least in part through interaction with HD-Zip III proteins.

MATERIALS AND METHODS

Plant lines and growth

Wild type (wt): *Arabidopsis thaliana* (L.) Heynh var. Columbia (Col-0). Insertional lines: athb2-1 (Salk_106790) (Khanma et al., 2006), athb2-2 (Salk_006502), athb2-3 (Babychuk et al., 1997), athb4-1 (Salk_104843) (Sorin et al., 2009), athb4-3 (Sussman et al., 2000), hat3-2 (GT5653), hat3-3 (Salk_014055), phb-13 (Salk_021684) (Prigge et al., 2005), phv-11 (Salk_001806; 47.75) (Prigge et al., 2005), rev-5 (Talbert et al., 1995). Gene trap lines: hat3-4 (GT206; Cold Spring Harbor collection), which carries a gene-trap Ds insertion within *ATH3* (ATH3::GUS) (Nakayama et al., 2005) at nucleotide +194 from the ATG, yab3-2 (Kumaran et al., 2002). Insertional lines and gene trap lines were identified by PCR genotyping (see supplementary material Table S1 for primer details). The rev-5 allele was identified by dCAPS method: genomic DNA was amplified with primers rev-5 up and rev-5 down (see supplementary material Table S1 for primer details), then cut with Rsal. Restriction fragments were separated on a 2% agarose gel. The athb2-3 line, which was originally in the Arabidopsis C24 background (Babychuk et al., 1997), was backcrossed five times to Col-0 prior to any phenotypic analysis and to any cross with other lines. Plants were grown in white light as described (Steindler et al., 1999). For NPA experiments, seeds were germinated and grown for 7 days on agar plates containing either 10 μM 1-naphthalphthalamic acid (NPA) dissolved in DMSO, or DMSO alone.

Genetic analysis

HD-Zip II double mutants: *hat3-3 athb4-1, hat3-3 athb4-3, hat3-2 athb4-1, hat3-3 athb2-3, hat4b1-1, athb2-1, hat3-3 athb2-3, athb4-1 athb2-1, hat3-3 athb4-1* and *hat3-2 athb4-1-1* were selected in *F*2 by phenotyping and PCR genotyping, and re-analyzed in *F*3. *hat3-3 athb2-1, hat3-3 athb3-2, athb4-1 athb2-1 and athb4-1 athb3-2* mutants were selected in *F*2 and re-analyzed in *F*3 by PCR genotyping (see supplementary material Table S1 for primer details). Higher order *HD-Zip II* mutants: *hat3-3 athb4-1 athb2-1, hat3-3 athb4-1 athb2-2, hat3-3 athb4-1 athb2-3, hat3-3 athb4-1 athb2-1 and hat3-3 athb4-1* triple mutants, selected in *F*2 by phenotyping and PCR genotyping, growth arrested at the seedling stage either on agar plate (*hat3-3 athb4-1 athb2-1, n=70; hat3-3 athb4-1 athb2-3, n=79)*. Therefore, *hat3-3 athb4-1 athb2-1* and *hat3-3 athb4-1 athb2-3* were selected in *F*2 by genotyping and propagated. *HD-Zip II/HD-Zip III* combinations: *hat3-3 phb-11, athb4-1 phv-11, hat3-3 athb4-1 phv-11, hat3-3 phb-13, athb4-1 phb-13, hat3-3 athb4-1 phb-13, hat3-3 rev-5, athb4-1 rev-5, rev-5* and *rev-5* were selected by PCR genotyping. The rev-5 allele was identified by dCAPS (see supplementary material Table S1 for primer details). A 2×2 contingency table followed by Fisher’s exact test was used to compare the frequency of occurrence of phenotype in double or triple homozygous and other genotypes except double or triple homozygous groups. Markers were introduced in *hat3-3 athb4-1* by crossing. *hat3-3 athb4-1* plants were selected by phenotyping and genotyping. Homozygosity of all the reporters, with the exception of YAB3::GUS, was determined by unanimous GUS and GFP signal (n≥30). For YAB3::GUS, a segregating *hat3-3 athb4-1* YAB3::GUS/+ was identified.

Gene constructs and transformation

DNA constructs: *ATH3::HAT3::GFP, ATHB2::ATHB2::GUS, ATHB4::GUS, 3SS::HAT3::GFP, XVE::HAT3, 3SS::3HA::ATHB2, 3SS::ATHB2::GFP, XVE::ATHB8d*. Primers used to generate all the constructs are listed in supplementary material Table S1. Col-0 plants were transformed as described (Steindler et al., 1999). *HAT3::HAT3::GFP* and *ATHB2::ATHB2::GUS* were also stably transferred in *hat3-3 athb4-1*. Double mutants were selected by genotyping and homozygosity of *HAT3::HAT3::GFP* and *ATHB2::ATHB2::GUS* was determined by unanimous GFP and GUS signal (n≥30).

In situ hybridization and GUS analysis

In situ hybridizations were detected with digoxigenin-labeled riboprobes using the method described by Hejatko et al. (Hejatko et al., 2006) with minor modifications. *HAT3, ATHB4* and *ATHB2* probes were generated using full-length cDNAs. GUS analyses were performed as described (Carabelli et al., 2007).

Chromatin immunoprecipitation (ChIP)

Whole seedlings were fixed and nuclei were prepared according to the manufacturer’s instructions using the Celllytic PN Kit (Sigma). ChIP was performed as described by Zhao et al. (Zhao et al., 2010) with minor modifications. Chromatin was solubilized with a Misonix S-4000 Cuphorn [10 seconds on/15 seconds off for 24 minutes, using recirculating chilling water flux (8–10°C), amplitude 60], and immunoprecipitated with anti-GFP (ab290-50, Abcam, UK). A negative control was performed, including a ChIP reaction performed on wt.
Real-time PCR
For gene expression analysis, mRNA purification, cDNA synthesis and quantitative real-time PCR (qPCR) were performed as described (Ciarbelli et al., 2008). For ChIP samples, qPCR was performed with the SYBR Green PCR Master Mix (Applied Biosystems, USA) using the ABI Prism 7900HT Sequence Detection System (Applied Biosystems, USA) according to the manufacturer’s instructions. Each amplification was performed in triplicate using a primer concentration of 400 nM. Primers: ATHB2_A_Fwd (HAT4-IF) (Brandt et al., 2012), ATHB2_A_Rvs (HAT4-IR) (Brandt et al., 2012), ATHB2_B_Fwd, ATHB2_B_Rvs, ATHB2_C_Fwd, ATHB2_C_Rvs, LAX3_N_Fwd, LAX3_N_Rvs (supplementary material Table S1). Fold enrichment was determined by comparing the CT (threshold cycle) values of immunoprecipitated (IP) and negative control which were normalized by calculating input(IP)/input(control).

Phenotype analysis and microscopy
For vascular pattern analysis, samples were analyzed as described (Carabelli et al., 2007). For differential interference contrast (DIC) analysis of embryos, ovules were cleared in chloral hydrate (Weigel and Glazebrook, 2002), mounted on slides and viewed under Axioskop 2 plus binocular microscope (Zeiss, Germany). Sections were performed as described by Steindler et al. (Steindler et al., 1999). Means were compared using t-test analysis. Phenotypic distributions were compared using a contingency table followed by Fisher’s exact test.

Confocal microscopy
Confocal microscopy analyses were performed on Inverted Z.1 microscope (Zeiss, Germany) equipped with Zeiss LSM 700 spectral confocal laser scanning unit (Zeiss, Germany). Samples were excited with a 488 nm, 10 mW solid laser with emission at 492-539 nm. Embryos were dissected from ovules and fixed under vacuum for 30 minutes in 4% paraformaldehyde. Samples were washed twice in PBS and mounted in 50% glycerol.

RESULTS
hat3 athb4 mutants display defects in cotyledon number and development
The Arabidopsis genome contains ten HD-Zip II genes, five of which are regulated by light quality changes (γ clade: HAT1, HAT2, ATHB2; δ clade: HAT3, ATHB4) (Ciarbelli et al., 2008). To address the function of HD-Zip II genes, we characterized hat3 (hat3-2, hat3-3) and athb4 (athb4-1, athb4-3) insertional lines. All hat3 and athb4 alleles are likely to represent loss-of-function mutants (supplementary material Fig. S1A-D). Single mutants show no obvious morphological defect in white light (supplementary material Fig. S2). However, seedlings with altered cotyledons segregated with the ratio expected for two independent and recessive mutations in the F2 of the crosses between hat3 and athb4. Phenotype/genotype co-segregation analyses demonstrated that cotyledon alteration is associated with the hat3 and athb4 mutations (supplementary material Fig. S3 and Tables S2-S5).

In all double mutants characterized the cotyledon phenotype displays variable expressivity. hat3 athb4 seedlings show varying degrees of cotyledon expansion, from round-shaped to almost completely radialized organs. Furthermore, seedlings with fused/single cotyledon(s) were often found among the hat3 athb4 mutants (P<0.0001). The pattern of vascular development is also profoundly altered in hat3 athb4 cotyledons, and the defects correlate with the severity of the expansion phenotype. For example, fully radialized cotyledons have no recognizable vasculature (supplementary material Fig. S4). The hat3 athb4 cotyledon phenotype was almost completely rescued by introducing the wt HAT3 gene in the double mutant (supplementary material Figs S5, S6).

HAT3 and ATHB4 are co-expressed during embryogenesis
The double mutant phenotypes imply that HAT3 and ATHB4 are required for proper embryo patterning. Consistent with this, in situ hybridization revealed specific expression patterns of HAT3 and ATHB4 during embryogenesis (Fig. 1; supplementary material Fig. S7). At the early globular stage, HAT3 is expressed in the embryo proper and excluded from the hypophysis. By the heart stage, the expression domain of HAT3 is mostly restricted to the apical part of the embryo, marking the incipient cotyledons. At the torpedo stage, HAT3 is mainly expressed in the adaxial side of the cotyledons and in the SAM. In mature embryos, HAT3 marks the SAM and the provascular system (Fig. 1A-E). ATHB4 is mainly expressed in the apical domain of globular and transition stage embryos. By the heart stage, ATHB4 expression resembles that of HAT3 (Fig. 1F-J).

Auxin distribution and response are altered in hat3 athb4 embryos
hat3-3 athb4-1 plants are profoundly altered throughout development and produce few seeds (data not shown). Therefore, to gain insights into the role of the HD-Zip II genes in the early stages of development, mature embryos were isolated from hat3-3 athb4-1/+ plants. Embryos with altered cotyledons segregated with the ratio expected for a single recessive mutation. As expected, embryos with fused/single cotyledon(s) were observed. The remaining altered embryos display, as observed in hat3-3 athb4-1 seedlings, varying degrees of defects in cotyledon development (supplementary material Fig. S8).

Auxin has a key role in both initiation and development of cotyledons during embryogenesis (Chandler, 2008). To investigate whether HAT3 and ATHB4 interfere with auxin distribution and response, hat3-3 athb4-1 was crossed with DR5rev::GFP (Friml et al., 2003). Mature embryos with two cotyledons differing in their...
degree of expansion and those with fused/single cotyledon(s) were selected to determine DR5rev::GFP pattern. Among the former, consistent with the phenotypes observed in hat3-3 athb4-1 seedlings, the most frequently seen were those with one cotyledon moderately expanded and one more significantly impaired in expansion (Fig. 2E,F; supplementary material Fig. S4A; data not shown). No significant difference was observed in DR5rev::GFP maximum in the root tip in hat3-3 athb4-1 embryos relative to Col-0. By contrast, GFP signal was significantly reduced or almost undetectable in cotyledons of mutant embryos (Fig. 2C,G).

Remarkably, DR5rev::GFP expression strictly correlated with the degree of cotyledon expansion (Fig. 2G; data not shown). A significant number of hat3-3 athb4-1 seedlings displayed fused/single cotyledon(s) (Fig. 2I,J,M,N; supplementary material Fig. S4A).

hat3-3 athb4-1 embryos with fused/single expanded cotyledon(s) display either two very close DR5rev::GFP maxima (Fig. 2K) or a single DR5rev::GFP maximum (Fig. 2O).

To investigate further the links between auxin response and distribution and HAT3 and ATHB4 function, hat3-3 athb4-1 was crossed with PIN1::PIN1:GFP (Benková et al., 2003). Remarkably, PIN1:GFP expression in mature mutant embryos (Fig. 2H,L,P) closely mirrors the vascular defects observed in hat3-3 athb4-1 seedlings (Fig. 2F,J,N; supplementary material Tables S6, S7). The phenotype of hat3-3 athb4-1 athb2-1 and hat3-3 athb4-1 athb2-3 is significantly more severe than that of hat3-3 athb4-1. Remarkably, almost all triple mutants display radialized cotyledons. Moreover, the number of seedlings with fused/single cotyledon(s) is significantly higher in the hat3-3 athb4-1 athb2-1 and hat3-3 athb4-1 athb2-3 populations than in the hat3-3 athb4-1 one (Fig. 3G,H; supplementary material Fig. S9 and Table S8).

athb2 loss-of-function mutations enhance hat3 athb4 defects in cotyledon number and development

The incomplete expressivity of the hat3 athb4 phenotype suggests functional redundancy within the HD-Zip II protein family. The genes most closely related to HAT3 and ATHB4 are HAT1, HAT2 and ATHB2, all belonging to clade γ (Ciareblli et al., 2008). HAT1 and HAT2 are paralogous genes, and, therefore, ATHB2 was chosen to investigate redundancy between HD-Zip IIγ and HD-Zip IIδ genes.

In situ hybridization revealed specific expression pattern of ATHB2 during embryogenesis (Fig. 3A-C; supplementary material Fig. S7). At the globular stage, ATHB2 is expressed in the procambial cells. The vascular expression is maintained throughout all developmental stages. By the late torpedo stage until maturation, ATHB2 is also expressed in RAM. A weak expression of ATHB2 is also detected in SAM of mature embryos (Fig. 3A-C).

To investigate ATHB2 function, we characterized athb2 insertional lines. athb2-1 and athb2-3 are likely to represent loss-of-function mutants whereas athb2-2 is a gain-of-function mutant (supplementary material Fig. S1E-G). athb2-1 and athb2-3 show no obvious morphological defect in white light whereas athb2-2 seedlings display slightly elongated hypocotyls and smaller cotyledons. Lack of ATHB2 in hat3-3 and athb4-1 does not result in any major phenotype in white light (supplementary material Fig. S2). We then isolated and characterized hat3-3/+ athb4-1 athb2-1 and hat3-3/+ athb4-1 athb2-3 lines (supplementary material Tables S6, S7). The phenotype of hat3-3 athb4-1 athb2-1 and hat3-3 athb4-1 athb2-3 is significantly more severe than that of hat3-3 athb4-1. Remarkably, almost all triple mutants display radialized cotyledons. Moreover, the number of seedlings with fused/single cotyledon(s) is significantly higher in the hat3-3 athb4-1 athb2-1 and hat3-3 athb4-1 athb2-3 populations than in the hat3-3 athb4-1 one (Fig. 3G,H; supplementary material Fig. S9 and Table S8).

athb2 gain-of-function mutation and ATHB2:GUS expression attenuate hat3 athb4 defects in cotyledon organogenesis

To gain further insights into the relationships between ATHB2 and HD-Zip IIδ genes, we took advantage of the athb2-2 gain-of-
function mutant. In situ hybridization in athb2-2 embryos revealed the presence of ATHB2 transcript not only in the provascular cells, as observed in wt, but also in the adaxial side of incipient cotyledons (Fig. 3B,D) where HAT3 and ATHB4 are expressed. Moreover, increased levels of ATHB2 were detected in vascular cells and in SAM of athb2-2 mature embryos relative to wt (Fig. 3C,E). Remarkably, athb2-2 significantly attenuates the hat3-3 athb4-1 cotyledon development phenotype (Fig. 3I,J; supplementary material Fig. S10 and Table S9). However, no significant difference was observed in cotyledon number between hat3-3 athb4-1 and hat3-3 athb4-1 athb2-2 (P=0.54).

To analyze the expression pattern of ATHB2 in hat3-3 athb4-1, ATHB2::ATHB2:GUS chimeric gene was constructed (supplementary material Fig. S5). In wt embryos, ATHB2:GUS is localized in provascular cells from the early globular stage throughout all developmental stages (Fig. 3K-M), as ATHB2 RNA. There are, however, some differences in ATHB2:GUS expression pattern compared with that of ATHB2. Weak expression of ATHB2:GUS was detected in the apical side of heart embryos, but no GUS signal was seen in SAM at late stages of embryo development (Fig. 3L,M). This might be due to the absence of one or more regulatory elements in the chimeric gene or might be the consequence of additional regulation at the translational and/or post-translational level. Interestingly, ATHB2:GUS expression was enhanced in the apical side of early heart hat3-3 athb4-1 embryos with respect to wild-type ones (Fig. 3L,N; P=0.0002). Furthermore, ATHB2:GUS was also detected in SAM of several hat3-3 athb4-1 mature embryos (Fig. 3O). To evaluate whether the increase of ATHB2 expression in hat3-3 athb4-1 is functionally relevant, hat3-3 athb4-1 ATHB2::ATHB2:GUS seedlings were phenotypically analyzed. Remarkably, the phenotype of hat3-3 athb4-1 ATHB2::ATHB2:GUS was significantly less severe than that of hat3-3 athb4-1. Most of the hat3-3 athb4-1 ATHB2::ATHB2:GUS seedlings display round and lancet cotyledons (Fig. 3R,S). Moreover, ~10% of hat3-3 athb4-1 ATHB2::ATHB2:GUS seedlings show a completely rescued phenotype characterized by round cotyledons with normal vasculature (Fig. 3Q). It is worth noting that ATHB2:GUS expression is severely impaired in hypocotyl and root of hat3-3 athb4-1 seedlings displaying lancet and flamingo cotyledons (Fig. 3S,T), suggesting that simultaneous lack of HAT3 and ATHB4 might affect vascular development in these organs also.

The finding that ATHB2:GUS is expressed at higher levels in apical embryo domain and in SAM of hat3-3 athb4-1 suggests that ATHB2 might be negatively regulated by HAT3 and/or ATHB4 in these domains in wt. Several pieces of evidence support the hypothesis that HAT3 and/or ATHB4 may directly repress ATHB2. All HD-Zip IIδ and HD-Zip IIγ proteins contain an LxLxL type of EAR repression motif (Ciarcelli et al., 2008; Kagale et al., 2010), and there is evidence that at least some of them function as negative regulators of gene expression (Steindler et al., 1999; Ohgishi et al., 2001; Sawa et al., 2002). The upstream regions of the HD-Zip II genes, including that of ATHB2, are significantly enriched for HD-Zip-binding sequences (Ciarcelli et al., 2008) (Fig. 4A), and it has
been shown that inducible chimeric proteins consisting of the DNA-binding domain of HD-Zip II proteins and the transactivation domain of VP16 (HD-Zip II-V; H2-V-G) directly induce the expression of all HD-Zip II and HD-Zip III genes in vivo, implying an intricate negative-feedback network within this gene family (Ciarcelli et al., 2008). Consistent with the above-mentioned hypothesis, mRNA levels of ATHB2 were reduced after 4 hours of β-estradiol-induced HAT3 expression (Fig. 4B; supplementary material Fig. S5). To investigate whether HAT3 regulates ATHB2 expression by physically interacting with its promoter, we performed ChiP using seedlings expressing HAT3:GFP driven by the HAT3 promoter. Two fragments of the ATHB2 promoter were over-represented in the immunoprecipitated chromatin, indicating direct binding to HAT3:GFP (Fig. 4C). This, together with the rapid repression of ATHB2 expression upon HAT3 induction indicates that ATHB2 is a direct target of HAT3.

HAT3, ATHB4 and ATHB2 act redundantly in regulating SAM activity

HAT3 and ATHB4 are expressed in the SAM of mature embryos (see Fig. 1), suggesting that both genes also act in the early stages of shoot development. Therefore, SAM activity of hat3-3 athb4-1 was analyzed. Almost all double mutants with two cotyledons display active SAM as deduced by the presence of leaf primordia (566/568). Consistent with this, no significant difference in the expression of WUSCHEL (WUS) and CLAVATA3 (CLV3), which mark the stem cells in the SAM (Fletcher et al., 1999; Schoof et al., 2000; Gross-Hardt et al., 2002), was observed in hat3-3 athb4-1 mutants with two cotyledons relative to wt (Fig. 5A,B,G,H). By contrast, hat3-3 athb4-1 seedlings with fused/single cotyledon(s) could be split into two groups, one with active SAM and the other one with inactive SAM, characterized by the absence of any cell dome in the site of presumptive SAM (supplementary material Fig. S11). The former group expresses WUS::GUS and CLV3::GUS whereas the latter one does not (Fig. 5C,D,I,J).

Together, these data indicate that a significant number of hat3-3 athb4-1 seedlings lack an active SAM, as deduced by the absence of leaf primordia (36/369, P<0.0001) or expression of WUS::GUS (9/222, P=0.0039) and CLV3::GUS (12/250, P=0.0043). The SAM phenotype was restored by HAT3::HAT3:GFP (363/364 seedlings displayed active SAM). However, the majority of hat3-3 athb4-1 mutants do form leaf primordia. Several pieces of evidence indicate that auxin is required for lateral organ formation and that PIN1 has a key role in this process (Reinhardt et al., 2000; Reinhardt et al., 2003; Benková et al., 2003). To investigate whether there is any link between the function of HAT3 and ATHB4 and the distribution of auxin in SAM, the effects of NPA, an inhibitor of polar auxin transport, on leaf organ formation in hat3-3 athb4-1 was analyzed. After NPA application, the fusion of first leaves was infrequently observed in wt (Fig. 5E,F). By contrast, in hat3-3 athb4-1 first leaf fusion was greatly enhanced by NPA (Fig. 5K,L). A similar phenotype was observed in hat3-3 athb4-3 and hat3-3 athb4-1 (69/150 and 46/98, respectively). By contrast, in the presence of NPA the number of hat3-3 athb4-1 SAM phenotype of both triple mutants is significantly lower (30/305).

We investigated next whether the lack of ATHB2 enhances the SAM phenotype of hat3-3 athb4-1. Most of the hat3-3 athb4-1 athb2-1 and hat3-3 athb4-1 athb2-2 seedlings with two cotyledons or single cotyledon lack an active SAM (363/388 and 258/283, respectively). Among the triple mutants with two cotyledons are also present few seedlings displaying a pin-like structure in the site of presumptive SAM (10/226 and 9/158, respectively). Among the triple mutants with two cotyledons, the SAM activity between hat3-3 athb4-1 and hat3-3 athb4-1 athb2-1 (P<0.0001). By contrast, the SAM phenotype of hat3-3 athb4-1 is significantly attenuated by expression of ATHB2::ATHB2::GUS (4/276; P=0.0041). No significant difference was observed in SAM activity between hat3-3 athb4-1 and hat3-3 athb4-1 athb2-2 (36/639 and 19/331 seedlings displayed inactive SAM, respectively).

HAT3, ATHB4 and ATHB2 act redundantly in specifying adaxial identity of lateral organs

All the defects seen in hat3 athb4 and hat3 athb4 athb2 seedlings are reminiscent of the phenotypes observed in multiple mutants in HD-Zip III genes, master regulators of apical fate (Emery et al., 2003; Prigge et al., 2005; Smith and Long, 2010). Furthermore, both HAT3 and ATHB4 exhibit overlapping expression patterns with PHB, PHV and REV in the adaxial domain of cotyledons, in the vasculature and in the SAM (see Fig. 1) (Emery et al., 2003), suggesting that HD-Zip II and HD-Zip III genes might functionally interact. PHB, PHV and REV also function in specifying adaxial identity of lateral organs (McConnell and Barton, 1998; McConnell et al., 2001; Emery et al., 2003), and recent work provided some evidence for a role of HAT3 and ATHB4 in leaf polarity (Bouttorent et al., 2012). To investigate HD-Zip II function in adaxial
identity specification, we examined the polarity defects associated with \textit{hat3} and \textit{athb4} mutations.

A fraction of \textit{hat3-3} \textit{athb4-1} seedlings produces two radialized cotyledons, a phenotype similar to that seen in less severely affected \textit{phb-6 piv-5 rev-9} plants (Emery et al., 2003). As observed in these mutants, the vasculature in the radialized cotyledons of \textit{hat3-3 \textit{athb4-1}} is also radialized, with phloem surrounding the xylem (supplementary material Fig. S12). Cotyledon polarity defects were also observed in \textit{hat3-1 \textit{athb4-1}} seedlings (Bou-Torrent et al., 2012).

Simultaneous lack of \textit{HAT3} and \textit{ATHB4} also affects leaf polarity (Fig. 6A,E). Lower order leaves of \textit{hat3-3 \textit{athb4-1}} show varying degrees of expansion, from expanded to completely radialized organs, whereas higher order leaves all display a severe phenotype. The pattern of vascular development is profoundly altered in \textit{hat3-3 \textit{athb4-1}} trumpet-shaped leaves whereas \textit{hat3-3 \textit{athb4-1}} radialized leaves have no recognizable vasculature (supplementary material Fig. S13A,B). Leaf polarity defects were also observed in \textit{hat3-1 \textit{athb4-1}} seedlings (Bou-Torrent et al., 2012). Furthermore, the \textit{hat3-3 \textit{athb4-1}} leaf phenotype was completely rescued by introducing the wt \textit{HAT3} gene in the double mutant (supplementary material Fig. S6C-e).

Early in development, leaf primordia establish dorsoventral polarity, which is of primary importance for proper lamina growth. Anatomical differences along the abaxial-adaxial axis of leaf primordia are evident in wt (Fig. 6B) (Eshed et al., 2004). By contrast, leaf primordia of \textit{hat3-3 \textit{athb4-1}} were nearly radial with large vacuolated cells on both adaxial and abaxial sides (Fig. 6F). Consistent with a role of the HD-Zip Iii6 proteins in specifying organ polarity, \textit{HAT3::GUS} and \textit{ATHB4::GUS} expression in leaf primordia is restricted to the adaxial domain (Fig. 6C,D; supplementary material Fig. S5). To characterize further the polar nature of \textit{hat3-3 \textit{athb4-1}} leaf primordia, abaxial-specific gene expression in the mutant was assessed. To this end, we analyzed \textit{YAB3} expression in \textit{hat3-3 \textit{athb4-1}} using the \textit{yah3-2} gene trap line, which faithfully reproduces \textit{YABBY3 (YAB3)} expression in leaves (YAB3::\textit{GUS}) (Kumaran et al., 2002). \textit{GUS} activity was detected uniformly throughout first leaf primordia in a significant number of \textit{hat3-3 \textit{athb4-1}} \textit{YAB3::GUS/+} descendants whereas it was restricted to the abaxial domain of the young lateral organs of \textit{YAB3::GUS} plants (Fig. 6G,H; \(P=0.0001\)). The expressivity of the phenotype in the first leaves of \textit{hat3-3 \textit{athb4-1}} plants is variable, and it seems likely that the observed uniform expression of \textit{YAB3::GUS} is associated with radialized primordia. Consistent with this, \textit{YAB3::GUS} was expressed both in the adaxial and abaxial regions of the third and fourth leaf primordia of almost all the \textit{hat3-3 \textit{athb4-1}} \textit{YAB3::GUS/+} descendants whereas it was restricted to the abaxial domain in \textit{YAB3::GUS} plants (58/58). Thus, simultaneous lack of both \textit{HAT3} and \textit{ATHB4} is associated with loss of adaxial identity.

We then assessed whether \textit{ATHB2::GUS} expression attenuates the leaf phenotype of \textit{hat3-3 \textit{athb4-1}}. Leaf development defects in \textit{hat3-3 \textit{athb4-1}} \textit{ATHB2::GUS} were significantly less severe than those of \textit{hat3-3 \textit{athb4-1}} (Fig. 6L; supplementary material Fig. S13C). In \textit{ATHB2::GUS} leaf primordia, \textit{GUS} activity was detected exclusively in provascular cells. By contrast, a significant number of \textit{hat3-3 \textit{athb4-1}} plants also express \textit{ATHB2::GUS} in the adaxial domain of leaf primordia (Fig. 6K,L; \(P<0.0001\)). A GFP-tagged \textit{ATHB2} driven by the 35S promoter is uniformly expressed in leaf primordia (Fig. 6M; supplementary material Fig. S5), indicating that \textit{ATHB2} expression is largely regulated at the transcriptional and/or post-transcriptional level. We then investigated whether ectopic expression of \textit{ATHB2} would result in upward leaf curling, which is usually observed when HD-Zip III
genes are resistant to regulation by miRNAs and thus expressed in both adaxial and abaxial regions of lateral organs (Juarez et al., 2004; Mallory et al., 2004; Ochando et al., 2006; Ochando et al., 2008). Remarkably, 35S::3HA:ATHB2 leaves are severely curled upwards (Fig. 6N,O; supplementary material Fig. S5). The same phenotype was also observed in 35S::HAT3:GFP and in 35S::ATHB4:GFP (Fig. 6P; supplementary material Fig. S5; data not shown), and in dexamethasone (DEX)-treated 35S::FLAG-GR-HAT3 plants (Bou-Torrent et al., 2012).

Genetic interaction between HD-Zip II and HD-Zip III genes

To gain further insights on the relationships between HD-Zip II δ genes and PHB, PHV and REV, we examined their genetic interactions. phv and phb resemble wt (Emery et al., 2003; Prigge et al., 2005), and lack of either PHV or PHB in hat3-3 and athb4-1 does not result in any obvious phenotype (n>175). We then isolated and characterized hat3-3/athb4-1 phv-11 and hat3-3/athb4-1/ phb-13 (supplementary material Tables S10-S12). To evaluate whether lack of PHV or PHB enhances the developmental defects of hat3-3/athb4-1, the SAM phenotype of hat3-3/athb4-1 phv-11 and hat3-3/athb4-1 phb-13 seedlings with two cotyledons was analyzed. A significant number of both triple mutants lack an active SAM (supplementary material Fig. S14; Fig. 7A,B; P<0.0001). Loss of PHV but not PHB also enhances hat3-3/athb4-1 defects in bilateral symmetry (supplementary material Fig. S14; P<0.0021).

Furthermore, a significant number of embryos isolated from hat3-3/athb4-1/ phb-13 plants display embryo lethality (Fig. 7C,D), probably because of failure to establish normal patterning (Fig. 7E-H). Among the progeny of hat3-3/athb4-1/ phb-13, two-cell pro-embryos in which the apical cell divided horizontally rather than vertically were observed (P=0.0001), suggesting that HD-Zip II and HD-Zip III proteins may influence cell division planes in early embryo development.

rev mutants fail to produce axillary meristems and functional floral meristems, and exhibit alterations in the position of interfascicular fibers in the stem (Talbert et al., 1995; Zhong and Ye, 1999; Ratcliffe et al., 2000; Otsuga et al., 2001). hat3-3 rev-5 (718/723) and athb4-1 rev-5 (60/60) display the rev phenotype at late stages of development, and are largely indistinguishable from wt at the seedling stage. We then isolated and characterized hat3-3/athb4-1 rev-5 (supplementary material Tables S10, S13). Almost all hat3-3/athb4-1 rev-5 seedlings with two cotyledons as well as those with single cotyledon (Fig. 7I-L; supplementary material Fig. S14) lack an active SAM (hat3-3/athb4-1, 1/224; hat3-3/athb4-1 rev-5, 24/30; P=0.0001). Loss of REV also significantly enhances hat3-3/athb4-1 defects in bilateral symmetry (supplementary material Fig. S14; P<0.0001).

ATHB2 is a direct target of REV

To examine whether HD-Zip II and HD-Zip III genes also interact at the molecular level, ATHB2 was selected for further
investigations. Induction of HD-Zip-2-V-G does not result in any significant change in the expression of the HD-Zip III genes (supplementary material Fig. S15), therefore it is unlikely that the ATHB2 DNA-binding domain interacts physically with HD-Zip III genes. HD-Zip II- and HD-Zip III-binding sites share the same core sequence (AAT[G/C]ATT) (Sessa et al., 1993; Sessa et al., 1998), thus suggesting that ATHB2 might physically interact not only with HAT3 but also with one or more member of the HD-Zip III protein family. Consistent with this hypothesis, ChIP-Seq using plants expressing a FLAG-tagged ligand-binding domain of the glucocorticoid receptor, fused to a microRNA-resistant version of REV under control of the 35S-promoter (35S::FLAG-GR-REVd) identified loci with the motif AT(G/C)ATT, including the promoter regions of several HD-Zip II genes (Brandt et al., 2012). To investigate further whether REV physically interacts with ATHB2, we performed ChIP using rev-5 seedlings expressing REV:GFP driven by the REV promoter, which complements the mutant phenotype (Lee et al., 2006) (G.M., unpublished). Fragment C of the ATHB2 promoter was over-represented in the immunoprecipitated chromatin, demonstrating direct binding to REV:GFP (Fig. 8A; see Fig. 4A). By contrast, no reproducibility of the ChIP results was observed with fragment A of the ATHB2 promoter (Fig. 8A), previously reported to be over-represented in the immunoprecipitated chromatin of DEX-treated 35S::FLAG-GR-REVd (Brandt et al., 2012).

The role of HD-Zip III proteins in the regulation of ATHB2 was examined further by analyzing ATHB2 mRNA in single and double HD-Zip III mutants displaying a wt phenotype at the seedling stage and in plants expressing an inducible miR 165/166-resistant variant of ATTHB8 (ATTHB8d; supplementary material Fig. S5). In the presence of β-estradiol, XVE::ATTHB8d plants display upward leaf curling (data not shown), as observed with miR 165/166-resistant variants of other HD-Zip III genes (Juarez et al., 2004; Mallory et al., 2004; Ochando et al., 2006; Ochando et al., 2008). ATHB2 mRNA levels were reduced in rev-5 and phy-11 phb-13 and increased after 4 hours of β-estradiol-induced ATTHB8d expression (Fig. 8B,C). Higher ATHB2 mRNA levels have also been observed in DEX-treated 35S::FLAG-GR-REVd plants (Brandt et al., 2012). Together, the data indicate that ATHB2 is a direct target of REV and that HD-Zip III proteins other than REV are also involved in ATHB2 regulation.

DISCUSSION

In this study, we demonstrate a crucial role for HD-Zip IIβ proteins in embryo development. Simultaneous lack of HAT3 and ATHB4 results in striking cotyledon phenotypes and defects in bilateral symmetry. Auxin maxima and distribution are also altered in hat3 athb4, indicating a link between auxin-mediated embryo patterning and HD-Zip IIβ function. Auxin maxima formation at the sites of incipient cotyledons largely depends on changes in auxin flow occurring at the transition stage. PIN1 is expressed throughout the apical embryo during the globular stage, but later, at the transition stage, resolves into domains of higher expression that mark the sites of cotyledon initiation (Benková et al., 2003). Mutations that cause altered PIN1 expression or polarity during the transition stage affect bilateral symmetry (Izhaki and Bowman, 2007; Michniewicz et al., 2007; Ploense et al., 2009). The low number of embryos with single cotyledon in the progeny of hat3-3/+ athb4-1 prevented us from analyzing PIN1:GFP pattern at the early stages of development. However, it seems likely that the single D5::GFP maximum observed in mature hat3-3 athb4-1 embryos with a single expanded cotyledon reflects defects in PIN1 expression pattern at the transition stage. The interplay between auxin and its efflux transporter PIN1 is also important in organ separation at the SAM. pin1 mutants display leaf fusion defects (Reinhardt et al., 2003), and failure in leaf separation is evident in plants lacking MP in the presence of NPA (Donner et al., 2009). Furthermore, mutations in NO VEIN (NOV), which encodes a nuclear factor required for cotyledon outgrowth and separation, leaf vascular development, and stem cell maintenance in RAM, also enhance leaf organ fusion in the presence of NPA (Tsugeki et al., 2009). NOV genetically interacts with GNOM, a gene encoding an ARF GDP/GTP exchange factor involved in proper subcellular localization of PIN proteins (Steinmann et al., 1999; Geldner et al., 2003; Kleine-Vehn et al., 2008), and is required for provascular PIN1
synergistic interaction with HD-Zip II et al., 2008). Here, we demonstrate that HAT3 and ATHB4 exhibit that members of this family negatively regulate each other (Ciarbelli significantly enriched for HD-Zip-binding sequences, suggesting All HD-Zip II promoters are EAR repression motif (Ciarbelli et al., 2008; Kagale et al., 2010) auxin transport inhibition. ATHB2 became induced in the cross-regulation within the two subfamilies. The finding that (Tsugeki et al., 2009). Significantly, we find that mutations in expression and region-specific expression of PIN7 in leaf primordia (Tsugeki et al., 2009). Significantly, we find that mutations in HAT3 and ATHB4 strongly enhance leaf organ fusion in the presence of NPA, thus demonstrating augmented sensitivity of hat3 athb4 to auxin transport inhibition. HD-Zip II and HD-Zip III proteins contain an LxLxL type of EAR repression motif (Ciarelli et al., 2008; Kagale et al., 2010) and behave as negative regulators of gene expression (Ohihishi et al., 2001; Sawa et al., 2002). All HD-Zip II promoters are significantly enriched for HD-Zip-binding sequences, suggesting that members of this family negatively regulate each other (Ciarelli et al., 2008). Here, we demonstrate that HAT3 and ATHB4 exhibit synergistic interaction with HD-Zip II proteins, which involves cross-regulation within the two subfamilies. The finding that ATHB2 became induced in the HAT3-ATHB4 expression domain in the apical part of the embryo, marking the incipient cotyledons, as well as in the SAM of hat3 athb4, and thus can at least partially compensate for HAT3 and ATHB4 function, indicates that HD-Zip II and HD-Zip III proteins are to some extent functionally interchangeable. In agreement, athb2 loss-of-function mutations significantly enhance the hat3 athb4 phenotype. Almost all hat3 athb4 athb2 mutants display radialized cotyledons and, among these, more than one-third shows loss of bilateral symmetry. Furthermore, gain-of-function mutation in ATHB2 significantly attenuates the hat3 athb4 phenotype. The discovery that HAT3:GFP physically interacts with two ATHB2 promoter fragments, as determined by ChIP, together with the rapid repression of ATHB2 expression upon HAT3 induction indicate that ATHB2 is indeed a direct target of HAT3.

A significant number of hat3 athb4 seedlings also lack active SAM and fail to express stem cell niche-specific markers. The SAM phenotype in hat3 athb4 is strictly linked to defects in bilateral symmetry. By contrast, essentially all hat3 athb4 seedlings with two cotyledons form leaves that display severe polarity defects (Bout-Torrent et al., 2012) (this work). The abaxial marker YAB3 (Kumaran et al., 2002) is uniformly expressed throughout leaf primordia of hat3 athb4, thus demonstrating that simultaneous lack of HAT3 and ATHB4 is associated with loss of adaxial identity. The ectopic expression of HAT3, ATHB4 or ATHB2 results in upward leaf curling, a phenotype similar to that seen when HD-Zip III genes are expressed in both adaxial and abaxial regions of lateral organs (Juarez et al., 2004; Mallory et al., 2004; Ochando et al., 2006; Ochando et al., 2008). ATHB2:GUS was induced in the HAT3-ATHB4 domain on the adaxial side of leaf primordia of hat3 athb4, thus leading to an attenuation of the phenotype. By contrast, loss-of-function mutations in ATHB2 significantly enhance the SAM phenotype of hat3 athb4. Indeed, most of the triple mutants lack an active SAM, displaying a phenotype similar to that of multiple HD-Zip III loss-of-function mutants. A few of the hat3 athb4 athb2 seedlings with two cotyledons show a pin-like structure that lacks a vascular cylinder in the side of presumptive SAM, which is reminiscent of the phenotype of loss of PINHEAD (PNH; also known as ZWILLE and ARGONAUTE 10) (Lynn et al., 1999; Moussian et al., 1998). The primary cause of the severe SAM defects in pnh seems to be the accumulation of miR165 and miR166 and the consequent downregulation of the HD-Zip III mRNAs in the SAM (Liu et al., 2009).

All double and triple HD-Zip II mutant phenotypes described here are indeed reminiscent of those seen in phb rev and phb phv rev (Emery et al., 2003; Prigge et al., 2005), suggesting that HD-Zip II and HD-Zip III proteins may cooperate in establishing bilateral symmetry in the embryo as well as in controlling SAM activity. Consistent with the overlapping expression pattern of HD-Zip II and HD-Zip III gene family members, loss-of-function mutations in PHV, PHB or REV enhance the SAM phenotype of hat3 athb4. Loss of PHV and, to an even greater extent, of REV also augments the defects in bilateral symmetry of hat3 athb4. Furthermore, a fraction of hat3 athb4 phb mutants display abnormal cell divisions at the early stages of embryo development and fail to complete embryogenesis. The functional interaction between HD-Zip II and HD-Zip III genes is further corroborated by the discovery that ATHB2 interacts not only with HAT3 but also with REV. This, together with the finding that ATHB2 expression is reduced in rev and phb phv but is rapidly induced in plants expressing an inducible miR165/166-resistant variant of ATHB2, establishes ATHB2 as a component of developmental pathway(s) regulated by REV and, probably, by other members of the HD-Zip III family.

The finding that ATHB2 is positively regulated by REV and negatively regulated by HAT3 highlights the potential complexity of regulatory interactions among HD-Zip II and HD-Zip III proteins. There is some recent evidence that closely related sub-family members might share regulation of target genes through redundant promoter occupancy, in a way that varies quantitatively from gene to gene (Zhang et al., 2013). In this scenario, the expression pattern of each HD-Zip II gene in white light would depend on its responsiveness to the different HD-Zip III family members, levels of which are tightly regulated during development. The negative-feedback network within the HD-Zip II family adds an additional level of complexity. The relative level of each HD-Zip II protein is
likely to influence significantly this feedback. For example, ATHB2, which is strongly induced by changes in light quality, has a central role in negatively regulating HD-Zip Iγ and HD-ZipIIα genes at late stages of shade avoidance (G.S., unpublished).

In conclusion, we uncover a crucial role for HAT3, ATHB4 and ATHB2 in embryo development and SAM activity, and provide evidence for genetic and molecular interaction between HD-Zip II and HD-Zip III genes, which are primary determinants of apical shoot development. HD-Zip Iγ and HD-Zip IIα genes are mostly known for their role in shade avoidance (Ruberti et al., 2012), and evidence exists that at least ATHB2 is a direct target of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 (Hornitschek et al., 2012). Low red (R)/far red (FR) light rapidly induces ATHB2::GUS expression in all cell layers of the elongating portion of the hypocotyl and cotyledon petioles (V.R., unpublished), thus suggesting that ATHB2 acts, at least in part, in these organs to control shade avoidance. HAT3, ATHB4, ATHB2 and HAT1 (also known as JAI4) (Zúñiga-Mayo et al., 2012) were also recently identified as genes positively regulated by SPATULA, a basic helix-loop-helix (bHLH) protein related to PIFs but lacking the active phytochrome-binding domain involved in their negative regulation by the phytochrome in high R/FR, and were proposed to be involved in carpel margin development (Reymond et al., 2012). Given the dual role of HD-Zip II proteins in development and in shade avoidance, it will be interesting to identify target genes and regulatory modules in high and low R/FR in specific cell types and to understand how HD-Zip II factors impinge on embryo patterning as well as on plant response to changes in the light environment.

Acknowledgements
We thank Philip Benfey, Luca Cornai, Mark Curtis, Jit Friml, Sergei Kushnir, Thomas Laux, Nottingham Arabidopsis Stock Centre and Cold Spring Harbor Laboratory for providing seeds and constructs. We are grateful to Angela Ciabelli and Carmen Melatti for preliminary analysis of HD-Zip II and HD-Zip II/HD-Zip III alleles; Alberto Fruscalzo for generating the HAT3::HAT3:GFP construct; and Daniela Bongiorno for technical assistance.

Funding
This work was supported, in part, by the Ministry of Education, University and Research: Fondo per gli Interventi alla Ricerca di Base – European Research Area Networks in Plant Genomics (FIRB-ERA-PG) program; the Ministry of Economy and Finance: FaReBio di Qualità program. Agricultural, Food and Forestry Policies: AGRONANOTECH and NUTRIGEA Area Networks in Plant Genomics (FIRB-ERA-PG) program; the Ministry of Research: Fondo per gli Interventi alla Ricerca di Base – European Research development 134: 1653-1662.

