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Fig. 7. Long-term clonal analyses in the cornea. (A,B) Corneal clones at 10 and 15 dpf. (C,C�) Peripheral cornea clones become scattered and
interspersed by smaller cells. (D-D�) Rosette-like structures are seen in the central cornea (compare D with D�, circle marks a rosette). In optical cross-
section at the center of the rosette (D�), a cell that has been extruded from the corneal surface can be seen (arrowhead). (E,F) Two examples of wedge-
shaped clones in juvenile stage fish. (G) The anterior segment of the eye, shown in cross-section. The limbus marks the boundary of the cornea (pink)
and the conjunctiva (green). (H) Optical cross-section at the plane indicated by the white line in F. Arrowheads indicate the peripheral and central
boundaries of the clone. Arrow marks the limbus. (I-L) Top panels show lateral view of the cornea, with an olive-colored, late-born clone outlined (clone
is not found at 5 dpf ). Part of the olive-colored clone is underneath cyan-colored cells, which become more dispersed over time. Middle panels show
optical cross-sections at the plane indicated by the white line in the top panels. Bottom panels show the region outlined in the box in the middle
panels. The olive-colored clone is outlined. Arrows indicate the limbus; arrowheads mark the peripheral and central boundaries of the clone. 
(M-P) Model of clone development in the corneal epithelium. Large circle indicates the cornea and small polygons indicate cells. (M) At 5 dpf, clones are
small and cohesive. (N) At 10 dpf, cells proliferate and remain cohesive. Small clones at the limbus region are formed (dark purple cluster). (O) At 14 dpf,
early formed clones are scattered in the peripheral cornea (blue cluster) and form rosettes in the central cornea (light purple and yellow clusters). Cells
in the late-formed purple cluster proliferate and migrate towards the center. (P) Early-formed clusters are further dispersed. Late-formed clusters begin
to form wedge-shape structures. Scale bars: 100 μm in A,B; 50 μm in C,D; 200 μm in E,F,H; in I-L, 100 μm in the top and middle panels, and 25 μm in the
bottom panels. D
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maturation time is to induce Cre-mediated recombination prior to
the significant accumulation of RFP. To maintain color stability, it
is also essential that Cre activity is transient so that RFP expression
is not continuously changed to CFP or YFP expression.

Imaging conditions also impact color stability. Different
fluorescent proteins have different photostability profiles,
excitation and emission spectra, and abilities to withstand fixation
(Shaner et al., 2008; Shaner et al., 2005; Weissman et al., 2011).
These factors can impact color after sample preparation and
imaging. For example, in deeper tissues, longer wavelength light
(emitted by RFP) will be scattered less than shorter wavelength
light. We have focused on more superficial structures because
imaging beyond the depth of 200-300 μm remains challenging. It
will be interesting to test whether recent advances in microscopy
or tissue clearing techniques will improve Zebrabow imaging in
deeper structures (Hama et al., 2011; Kaufmann et al., 2012;
Keller et al., 2008; Kuwajima et al., 2013). Intense laser excitation
may also skew the relative ratio of the three fluorophores because

RFP and CFP are less photostable than YFP (Weissman et al.,
2011). Our results show the ability of Zebrabow to generate stable
colors, but color establishment and stability need to be tested
empirically.

Color diversity is another important variable in multicolor
imaging. High color diversity makes each cell more traceable and
reduces the chance that different clones have identical colors. Our
results show that Zebrabow color profiles change in a predictable
trajectory in response to increasing Cre levels and activity. As long
as Cre activity is tunable (with heat shock or tamoxifen), it is
possible to generate optimal color diversity. We also found that the
number of cells that have undergone recombination increases with
increasing Cre activity. Recombination takes place in fewer cells
under low color diversity conditions and in more cells under high
diversity conditions. In applications in which both sparse labeling
and high color diversity are required, transplantation approaches
(e.g. ubi:Zebrabow into wild type) can be used to reduce labeling
density (data not shown).
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Fig. 8. Zebrabow labeling in different
organ systems. (A-D�) Two-photon
image of the dorsal telencephalon and
optic tectum at late larval stage (14 dpf,
A-A� and C-C�) and juvenile stage (28 dpf,
B-B� and D-D�). A-D show diagrams of the
zebrafish brain, viewed dorsally. A�-D�
show horizontal optical sections of the
areas highlighted in the diagrams above.
A�-D� show sagittal optical sections along
the horizontal lines in the middle panel.
Clusters of single-colored cells are seen 
at different regions of the dorsal
telencephalon (white arrows). (E) The
pectoral fin of a 15 dpf animal, viewed
from the side. Muscle (mu), cartilage (ca)
and vasculature (va) can be seen in this
view. (F,G) In the caudal fin, an array of
lateral line organs (asterisks) extend from
the base of the tail to the edge of the
caudal fin (G). Scale bars: 100 μm in A-E; 
1 mm in F; 250 μm in G.
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Clonal analyses
Our study demonstrates that Zebrabow has the potential for clonal
analysis in a wide variety of tissues, including the cornea, brain,
muscle, cartilage and vasculature. The diversity of clone-like
clusters in different organs suggests different modes of progenitor
expansion during organogenesis. For example, the presence of large
cohesive clusters suggests not only rapid proliferation of a small
pool of progenitor cells but also limited dispersal of daughter cells
from their site of origin. Such aspects of cell behavior can be studied
readily with the techniques used here.

Putative clones can be identified not only by the shared colors of
cohesive clusters, but color may also be used to determine whether
dispersed cells might be clonally related. Compared with single or
double labeling, the wide diversity of color in Zebrabow reduces
the likelihood that unrelated cells have the same color. However,
extensive dispersal of cells with similar color can hinder the
unambiguous assignment of clonal relationships. One approach to
help identify clones would be to compare the number of cells per
single-color clone (clone size) at different labeling density: if cells
with the same color are clonally related, clone size will be the same
regardless of labeling density. By contrast, if many unrelated cells
share the same color, clone size would increase with labeling
density. Such calculations have been performed in retroviral clonal
analysis and could be applied to color analysis (Galileo et al., 1990).

In the cornea, it has long been believed that epithelial stem cells
are located exclusively in the limbus and that corneal clones are
formed by centripetal growth from the limbus (Davies and Di
Girolamo, 2010; Lavker et al., 2004). Interestingly, new evidence
suggest that corneal stem cells might be scattered over the entire
cornea and that corneal clones may be formed by centrifugal, rather
than centripetal, growth (Majo et al., 2008). We find that many
zebrafish corneal clones are derived from the peripheral cornea, a
region analogous to the limbus. Although our results do not exclude
the possibility that a subset of clones might originate from the
central cornea, time-lapse imaging of single clones suggests that
corneal clones form by centripetal expansion of limbus-derived
clones. These results demonstrate that the Zebrabow resource
described here is ideally suited to address fundamental questions in
organogenesis and tissue homeostasis.
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