Nuclear to cytoplasmic shuttling of ERK promotes differentiation of muscle stem/progenitor cells

Inbal Michailovici1, Heather A. Harrington2, Hadar Hay Azogui1, Yfat Yahalom-Ronen1, Alexander Plotnikov1, Saunders Ching3, Michael P. H. Stumpf2, Ophir D. Klein3,4, Rony Seger1 and Eldad Tzahor1,*

ABSTRACT

The transition between the proliferation and differentiation of progenitor cells is a key step in organogenesis, and alterations in this process can lead to developmental disorders. The extracellular signal-regulated kinase 1/2 (ERK) signaling pathway is one of the most intensively studied signaling mechanisms that regulates both proliferation and differentiation. How a single molecule (e.g. ERK) can regulate two opposing cellular outcomes is still a mystery. Using both chick and mouse models, we shed light on the mechanism responsible for the switch from proliferation to differentiation of head muscle progenitors and implicate ERK subcellular localization. Manipulation of the fibroblast growth factor (FGF)-ERK signaling pathway in chick embryos in vitro and in vivo demonstrated that blockage of this pathway accelerated myogenic differentiation, whereas its activation diminished it. We next examined whether the spatial subcellular localization of ERK could act as a switch between proliferation (nuclear ERK) and differentiation (cytoplasmic ERK) of muscle progenitors. A myristoylated peptide that blocks importin 7-mediated ERK nuclear translocation induced robust myogenic differentiation of muscle progenitor/stem cells in both head and trunk. In the mouse, analysis of Sprouty mutant embryos revealed that increased ERK signaling suppressed both head and trunk myogenesis. Our findings, corroborated by mathematical modeling, suggest that ERK shuttling between the nucleus and the cytoplasm provides a switch-like transition between proliferation and differentiation of muscle progenitors.

KEY WORDS: ERK, FGF signaling, Myogenesis, Chick, Mouse

INTRODUCTION

Myogenesis, the formation of muscle tissue, takes place during embryonic development, postnatal growth and regeneration. Myogenesis begins with the commitment of mesoderm precursor cells to the myogenic lineage. This is followed by proliferation of myoblasts and their differentiation into postmitotic myocytes that fuse to form multinucleated myotubes. Previous genetic studies in mice suggest that skeletal muscles have evolved to use distinct regulatory networks upstream of the myogenic regulatory factors (MRFs) to initiate myogenesis at different anatomical locations (e.g. head and trunk) (Buckingham and Vincent, 2009).

There are approximately 60 distinct skeletal muscles in the vertebrate head that control eating, facial expression and eye movement. In recent years, interest in this unique group of skeletal muscles has significantly increased, with the accumulation of lineage tracing, molecular profiling and gene targeting studies (Noden and Francis-West, 2006; Grifone and Kelly, 2007; Sambasivan et al., 2011; Tzahor and Evans, 2011). Mesoderm cells located anterior to the somites give rise to skeletal muscle precursors in the head. Pharyngeal mesoderm precursors fill the myogenic core within the pharyngeal arches (Tzahor and Evans, 2011), where cranial neural crest cells surround the muscle anlagen, separating the myoblasts from the overlying surface ectoderm (Noden, 1983; Trainor et al., 1994).

In comparison with the trunk, the molecular mechanisms underlying head myogenesis are in general less characterized. It is known that BMP and Wnt/β-catenin pathways are potent regulators of trunk and head mesoderm progenitors (Buckingham, 2006). Manipulation of these signaling molecules in chick embryos resulted in distinct myogenic responses in the head and trunk regions (Tzahor et al., 2003). In addition, BMP and FGF-ERK signaling play opposing roles in the proliferation and differentiation of anterior heart field progenitors, which are also derived from the pharyngeal mesoderm. FGF-ERK signaling blocks the premature differentiation of these heart progenitors, highlighting the importance of blocking FGF signaling as a key step in the differentiation of cardiomyocytes (Tirosch-Finkel et al., 2010).

FGF signaling affects skeletal muscle progenitors in several ways, promoting both progenitor cell proliferation and their differentiation, depending on the cellular and spatiotemporal contexts. Myoblasts grown in culture start to differentiate, when the amount of growth factors in the media is reduced. The key growth factor repressing myogenic differentiation in these cultures was found to be FGF (Olwin and Rapraeger, 1992). In the chick embryo, Fgfr4 is expressed in Myf5+ MyoD+ myogenic cells in the limb (Marcelle et al., 1995); in the mouse, this gene is directly regulated by Pax3 (Lagha et al., 2008). Forced expression of Fgf8 in the chick somites upregulated Fgfr4 expression and enhanced myogenic differentiation. Likewise, electroporation of a dominant-negative Fgfr4 inhibited myogenic differentiation (Marics et al., 2002). Together, these in vivo studies suggest that FGF signaling is required for trunk myogenesis.

Extracellular signal-regulated kinase 1/2 (ERK, also known as p42/44 mitogen-activated protein kinase MAPK) can be activated by a variety of growth factors/mitogens (such as FGF) and it has many substrates. The majority of studies in the field have been carried out in cultured myoblasts, and these have shown that ERK is crucial for growth factor-induced cellular proliferation of myoblasts and subsequently for myoblast fusion (Jones et al., 2001; Knight and Kothary, 2011), making ERK a key regulator of both myoblast proliferation and differentiation. During proliferation, ERK activity...
myogenic differentiation markers of PMEE explants cultured for 1 day revealed no expression of the head myogenesis with a focus on FGF ligands. RT-PCR analysis were cultured 2007; Harel et al., 2009). Explants of the pharyngeal mesoderm agreement with previous studies (Tzahor et al., 2003; Rinon et al., 2007; Harel et al., 2009). Explants of the pharyngeal mesoderm with its adjacent tissues, ectoderm and endoderm (termed PMEE), were cultured ex vivo to examine the dynamic molecular profiles of head myogenesis with a focus on FGFligands. RT-PCR analysis of PMEE explants cultured for 1 day revealed no expression of the myogenic differentiation markers *MyoD* (*Myod1* – Mouse Genome Informatics), *Myog* and *MHC* when compared with the same explants at 4 days, when these markers are strongly upregulated (Fig. 1B). In contrast to the myogenic genes, FGF ligands were expressed at high levels on day 1 and expression was reduced with the onset of myogenic differentiation, on day 4 (Fig. 1B). qRT-PCR verification of our culture system demonstrate a reduction in cyclin D1 (*Ccnd1*) compared with upregulation of *MyoD* that occurred in differentiating PMEE explants (Fig. 1C).

In *in situ* hybridization of MyoD along with members of the FGF signaling network, at stage 16 and 20 chick embryos showed that FGF signaling is negatively correlated with head myogenesis, confirming our findings in culture (Fig. 1D and supplementary material Fig. S1). The expression of known FGF target genes (Sef, *Erm*, Pea3 and Mkp3; *Il17rd*, *Etv5*, *Etv4* and *Dusp6*, respectively – Mouse Genome Informatics) was downregulated with the onset of myogenic differentiation (stage 20), reinforcing the negative correlation between FGF signaling and head myogenesis (Fig. 1D and supplementary material Fig. S1). Immunostaining for pERK at stages 14-16 revealed strong expression in neural crest cells (marked by AP2) but later its expression was detected also within the myogenic core (Fig. 1E, circle). At stages 18-20, pERK expression was significantly reduced with the onset of differentiation. Taken together, these findings suggest that FGF signals block premature differentiation of both cardiac (Tirosh-Finkel et al., 2010) and pharyngeal muscle progenitors (Fig. 1 and supplementary material Fig. S1).

Next, we examined whether inhibition of FGF signaling is sufficient to promote head myogenesis in *vitro* and in *vivo*. Inhibition of FGF signaling using SU5402, a pharmacological inhibitor of the FGF receptor [and of other receptor tyrosine kinases (RTKs), see Discussion], promoted robust myogenesis, accompanied by reduced *Ccnd1* expression and upregulation of the cell cycle inhibitor *p21* (Fig. 2A). In contrast, infection of PMEE explants with FGF8-RCAS

RESULTS

Head muscle precursors undergo robust myogenesis in culture after 4 days, roughly at the same kinetics that occurs *in vivo* (Fig. 1A,B) in agreement with previous studies (Tzahor et al., 2003; Rinon et al., 2007; Harel et al., 2009). Explants of the pharyngeal mesoderm with its adjacent tissues, ectoderm and endoderm (termed PMEE), were cultured ex vivo to examine the dynamic molecular profiles of head myogenesis with a focus on FGFligands. RT-PCR analysis of PMEE explants cultured for 1 day revealed no expression of the myogenic differentiation markers *MyoD* (*Myod1* – Mouse Genome Informatics), *Myog* and *MHC* when compared with the same explants at 4 days, when these markers are strongly upregulated (Fig. 1B). In contrast to the myogenic genes, FGF ligands were expressed at high levels on day 1 and expression was reduced with the onset of myogenic differentiation, on day 4 (Fig. 1B). qRT-PCR verification of our culture system demonstrate a reduction in cyclin D1 (*Ccnd1*) compared with upregulation of *MyoD* that occurred in differentiating PMEE explants (Fig. 1C).

In *in situ* hybridization of MyoD along with members of the FGF signaling network, at stage 16 and 20 chick embryos showed that FGF signaling is negatively correlated with head myogenesis, confirming our findings in culture (Fig. 1D and supplementary material Fig. S1). The expression of known FGF target genes (Sef, *Erm*, Pea3 and Mkp3; *Il17rd*, *Etv5*, *Etv4* and *Dusp6*, respectively – Mouse Genome Informatics) was downregulated with the onset of myogenic differentiation (stage 20), reinforcing the negative correlation between FGF signaling and head myogenesis (Fig. 1D and supplementary material Fig. S1). Immunostaining for pERK at stages 14-16 revealed strong expression in neural crest cells (marked by AP2) but later its expression was detected also within the myogenic core (Fig. 1E, circle). At stages 18-20, pERK expression was significantly reduced with the onset of differentiation. Taken together, these findings suggest that FGF signals block premature differentiation of both cardiac (Tirosh-Finkel et al., 2010) and pharyngeal muscle progenitors (Fig. 1 and supplementary material Fig. S1).

Next, we examined whether inhibition of FGF signaling is sufficient to promote head myogenesis in *vitro* and in *vivo*. Inhibition of FGF signaling using SU5402, a pharmacological inhibitor of the FGF receptor [and of other receptor tyrosine kinases (RTKs), see Discussion], promoted robust myogenesis, accompanied by reduced *Ccnd1* expression and upregulation of the cell cycle inhibitor *p21* (Fig. 2A). In contrast, infection of PMEE explants with FGF8-RCAS

Fig. 1. FGF-ERK signaling is reduced with the onset of myogenic differentiation in the chick.

(A) Schematic experimental setting of the dissection of PMEE explants and pharyngeal arches in chick embryos. PMEE explants were dissected from stage 10 chick embryo and cultured for 1 or 4.5 days. Control stage 10 embryos were grown in an incubator for 1 or 4.5 days and their pharyngeal arches were then dissected. (B) Pharyngeal arches and the PMEE explants were further analyzed by RT-PCR for skeletal muscle markers (black bracket) and for FGF ligands. The red lines indicate downregulated genes, whereas blue lines indicate genes that were upregulated during myogenesis. These results represent more than three independent experiments, each performed in duplicates composed of a pool of five explants. (C) qRT-PCR verification of the relative expression of the indicated genes. Data are mean±s.d. (D) Comparison of gene expression during chick myogenesis (from stages 16-20), using whole-mount *in situ* hybridization. White arrowheads indicate downregulated genes; black arrowheads indicate upregulated genes. (E) Immunofluorescence on transverse sections at the level of the first pharyngeal arch of stage 14-20 chick embryo, stained for DAPI, pERK and the neural crest cell marker AP2. The mesodermal core is outlined. n.t, neural tube; SpM, splanchnic mesoderm; PM, pharyngeal mesoderm; ph, pharynx; p.a1, first pharyngeal arch.
viruses inhibited myogenesis (Fig. 2B). Furthermore, FGF-mediated inhibition of myogenesis was partially rescued in the presence of SU5402 (Fig. 2C).

We speculated that inhibition of FGF signaling should lead to cell cycle exit, which is the main trigger for myogenic differentiation. In line with this hypothesis, treatment of PMEE explants with SU5402 significantly reduced BrdU staining and induced myogenic differentiation (Fig. 2D, quantified in 2E). We then tested in the chick the effect of SU5402 soaked beads on myogenesis in vivo at both RNA and protein levels. SU5402 induced the expression of Myf5 whereas Pea3, a known target of FGF signaling, was downregulated (Fig. 2F). Notably, SU5402 induced MYF5 protein expression (which is highly correlated with myogenic differentiation) (Rinon et al., 2007) and repressed cell proliferation in vivo (Fig. 2G). Taken together, our findings suggest that FGF signaling plays a key role in maintaining pharyngeal muscle progenitors in an undifferentiated state both in vitro and in vivo.

Activated FGF signal (reflected by pERK staining) is detected in both neural crest and within the myogenic mesoderm core (Fig. 1E). This finding may suggest that inhibition of FGF signaling promotes myogenic differentiation in a non-cell-autonomous manner. We have previously shown that ablation of the cranial neural crest population in chick embryos perturbed myogenic differentiation (Tzahor et al., 2003; Rinon et al., 2007). We further tested whether the addition of SU5402 would induce myogenic differentiation in the absence of neural crest cells. To this end, we used two different methods to ablate the cranial neural crest cells (Fig. 3). To confirm the efficiency of the cranial neural crest ablation procedure in vivo, HNK1 expression and neural crest markers were examined (Fig. 3A-F). Myogenesis was inhibited in the cranial neural crest-ablated embryos (Fig. 3C,F). This phenotype was rescued in the presence of SU5402, which strongly induced myogenic differentiation in PMEE explants of the neural crest-ablated embryos (Fig. 3C,F; marked with blue dashed lines). This experiment suggests that inhibition of FGF signaling is required cell-autonomously in the muscle progenitors, in line with experiments performed in muscle satellite cells (Fig. 5).

We next examined our explant system, to determine which intracellular signaling pathway, lying downstream of the FGF receptor, regulates myogenesis. We used several pharmacological inhibitors of different signaling pathways to test their ability to promote myogenesis in PMEE explants compared with SU5402 (Fig. 4A,B). Strikingly, inhibitors of the Raf/MEK/ERK signaling cascade induced myogenesis, whereas those against the PI3K/AKT or P38 MAPK pathways failed to do so (Fig. 4A,B). Interestingly, inhibition of PKC, which was shown to be activator of ERK, also induced myogenic differentiation.

Activation of ERK stimulates a diverse array of cellular responses. In addition to its known role in promoting cell cycle progression, it has been suggested that subcellular localization of ERK regulates distinct cellular responses (Marenda et al., 2006; Chuderland et al., 2008). ERK nuclear shuttling is mediated by a nuclear translocation sequence (NTS) within the kinase insert domain of ERK. Phosphorylation of this domain promotes ERK interaction with the nuclear importing protein, importin 7, which mediates the translocation of ERK into the nucleus via nuclear pores (Zehori et al., 2010; Plotnikov et al., 2011) (supplementary material Fig. S2).

We hypothesized that nuclear localization of pERK promotes myogenic cell proliferation and the cytoplasmic localization of pERK is associated with myogenic differentiation. To test this hypothesis, we blocked ERK translocation to the nucleus using a
competitive 18-mer myristylated peptide, termed EPE (supplementary material Fig. S2). This peptide was produced by replacing the serine residues of the SPS sequence in the kinase insertion domain (KID) of ERK2 to glutamic acid, to form phospho-mimetic EPE (Chuderland et al., 2008) (supplementary material Fig. S2). Indeed, PMEE explants treated with the EPE peptide underwent robust myogenesis (Fig. 4A). Thus, inhibition of the ERK signaling cascade or ERK nuclear translocation strongly promoted myogenic differentiation in head muscle progenitors.

We then examined the subcellular localization of ERK by immunostaining of PMEE explants. Nuclear staining of pERK along with BrdU/pHis3 staining was detected in day 1 explants, similar to its expression in vivo at stage 14 (Fig. 1E and Fig. 4C). In contrast, day 4 explants displayed high levels of MHC, reduced BrdU and diffuse pERK staining throughout the cytoplasm (Fig. 4D, quantified in 4F,G). Further examination of a high-resolution image of PMEE explants revealed a clear cytoplasmic expression of pERK in differentiating myoblasts (MHC+), whereas nuclear pERK expressing cells did not express MHC (Fig. 4E; supplementary material Movie 1 shows the 3D reconstruction of these images). Combined, these results suggest that nuclear-to-cytoplasmic translocation of ERK promotes myogenic differentiation in PMEE explants.

We then tested the effect of the EPE peptide in vivo. Injection of the EPE peptide into the right side of stage 10 chick embryos induced MYF5 and repressed ISL1 protein expression with contralateral control and PBS injection (Fig. 4L-N).

In order to better resolve the effect of the EPE peptide on nuclear and cytoplasmic localization of ERK, we used mouse satellite cells derived from the lower jaw digastric muscle that originated in the pharyngeal mesoderm (Harel et al., 2009). We asked whether EPE indeed blocks ERK nuclear translocation and hence triggers myogenesis in adult muscle stem cells. Whereas ERK expression was detected in nuclei of cells treated with a scrambled (control) peptide, EPE treatment induced robust myogenic differentiation with formation of myotubes accompanied by strong cytoplasmic expression of ERK (Fig. 5A, quantified in 5B). Furthermore, both the MEK inhibitor U0126, and the EPE peptide induced myogenic differentiation of head muscle satellite cells and reduced cell proliferation (Fig. 5C,D, quantified in 5E). These findings demonstrate that ERK sequestering outside the nucleus (by blocking its nuclear translocation) can activate myogenic differentiation in embryonic and adult head muscle progenitor/stem cells.

We then examined whether the nuclear-cytoplasmic shuttling of ERK during muscle differentiation is a unique phenomenon to head muscle progenitors/stem cells or whether it could also affect trunk myogenesis. Gastrocnemius-derived mouse satellite cells treated with the EPE peptide exhibited increased cytoplasmic ERK localization and a significantly higher amount of myofibers with formation of myotubes accompanied by strong cytoplasmic expression of ERK compared with control (Fig. 5F, quantified in 5G,H). Next, we used stage 10 chick somite explants (Fig. 5I) treated with the EPE peptide, EPE treatment induced robust myogenic differentiation with formation of myotubes accompanied by strong cytoplasmic expression of ERK (Fig. 5A, quantified in 5B). Furthermore, both the MEK inhibitor U0126, and the EPE peptide induced myogenic differentiation of head muscle satellite cells and reduced cell proliferation (Fig. 5C,D, quantified in 5E). These findings demonstrate that ERK sequestering outside the nucleus (by blocking its nuclear translocation) can activate myogenic differentiation in embryonic and adult head muscle progenitor/stem cells.

Sprouty (Spry) genes act as inhibitors of several receptor tyrosine kinases, primarily FGF receptor signaling (Kim and Bar-Sagi, 2004; Lagha et al., 2008) (Fig. 6E). Spry1 has been recently shown to be involved in adult muscle stem cell quiescence and self-renewal during homeostasis and tissue repair (Shea et al., 2010). Because Spry1−/− and Spry2 function redundantly in several tissues, we analyzed Spry1−/−
Spry2+/− (double mutants) mouse embryos, which are used as a model for increased FGF-ERK signaling (Petersen et al., 2011). At E11.5, the myogenic core within the first pharyngeal arch was reduced in the double mutants compared with the control, as evidenced by the reduced numbers of MyoD- and MyoG-expressing cells (Fig. 6A, quantified in 6B,C). pERK staining was augmented in the pharyngeal arches of the double mutants (Fig. 6F,G). In addition, the Spry double mutants contained ∼3-fold increase of Pax7+ MyoD+ cells compared with control mice (Fig. 6A, quantified in 6D). Conceivably, myogenic cells in the mutant embryos are 'stuck' at a proliferative (Pax7+ MyoD+) state, allowing fewer cells to undergo proper myogenic differentiation. Analysis of myogenesis in the trunk of Spry1−/−;Spry2−/− (double mutant) embryos revealed a clear loss of MyoD (RNA) and MHC (protein) in the hypaxial somites (Fig. 6H,I). Taken together, our findings suggest that ERK signaling blocks the differentiation of head and trunk muscle progenitors during mouse and chick embryogenesis.

The cellular responses regulated by ERK can be linked to various intracellular signaling mechanisms that affect the magnitude and/or the duration of ERK activation, as well as its subcellular localization. We developed a mathematical model for spatial compartmentalization of the FGF-ERK signaling cascade to better understand how this pathway regulates the progressive differentiation of muscle progenitors (detailed in the supplementary methods). The compartment model is a system of ordinary differential equations. It includes phosphorylated MEK (activated by mitogenic FGF stimuli) as well as ERK in unphosphorylated and phosphorylated states (as model variables), which can exist in both the nucleus and cytoplasm (see supplementary methods for model equations). All model results are based on analysis of the model at steady-state (∼24-36 h). According to this model, when FGF levels are high, phosphorylated ERK is shuttled to the nucleus, a process that should lead to proliferation of myogenic progenitors and inhibition of myogenesis (Fig. 7A,C). Any perturbation along the FGF-ERK pathway would result in low levels of phosphorylated ERK in the nucleus, which would lead to myogenic differentiation (Fig. 7B,C, colored lines). Under both stimulatory and inhibitory conditions, the model predicts a switch-like (all-or-none) cellular response that qualitatively agrees with the behavior observed experimentally during myogenesis in the embryo and in satellite cells (Fig. 7A-D). In sum, we suggest that shuttling of MEK/ERK between the cytoplasm and the nucleus provides a stable switch between two cellular responses: myogenic proliferation and differentiation (Fig. 7D).

ERK activation can generate both graded and all-or-none (on-off) cellular outputs in distinct cell types (Fig. 7D). If we consider, in our mathematical model, the simple phosphorylation-dephosphorylation of ERK in a homogeneous environment, the model can yield only
a graded response. However, by including in the model two cellular compartments and the shuttling of ERK between them, we found that this response became a bistable/ultrasensitive switch (Fig. 7D and supplementary material Fig. S3). The key feature of this spatiotemporal model is the prediction of a switch between responses, meaning that cells cannot both proliferate and differentiate simultaneously. Taken together, our findings shed light on the underlying mechanisms responsible for the cell fate switch, implicating ERK nuclear-cytoplasmic compartmentalization as a central mechanism that regulates myogenesis.

DISCUSSION

The development of skeletal muscles provides a classical paradigm with which to understand the signals and molecular events that control the proliferation and differentiation of muscle progenitors. In addition to providing basic insights into developmental biology, this area of research can be relevant to regenerative medicine, as myogenesis in adult muscle stem cells recapitulates that of the embryo (Wagers and Conboy, 2005; Bryson-Richardson and Currie, 2008).

A major challenge in the signal-transduction field is to understand how a single signaling molecule can give rise to different cellular responses, such as proliferation and differentiation. Initial insights obtained from PC12 cells revealed that transient ERK activation by epidermal growth factor (EGF) leads to proliferation whereas sustained ERK activation by nerve growth factor (NGF) leads to differentiation, showing that the duration of ERK signaling is crucial for cell-fate decisions (Marshall, 1995).

In the current study, we found a mechanism that allows the ERK signaling cascade to play a crucial role in the switch from proliferation to differentiation of muscle progenitors. We demonstrated that ERK shuttling between the nucleus (proliferation) and cytoplasm (differentiation) is the molecular mechanism underlying this switch (Fig. 8). We show that inhibition of ERK nuclear translocation is sufficient to induce myogenic progenitor/stem cell differentiation.

The relationship between proliferation and differentiation is a classic example of a biological yin and yang. In the embryo, cessation of cell proliferation is considered to be a trigger for differentiation. In most cells, proliferation is dependent on ERK signaling, which facilitates the transition through the early G1 phase of the cell cycle. We propose that proliferation-promoting signals act as suppressors of muscle differentiation during embryogenesis. Inhibition of ERK nuclear translocation promotes robust myogenic differentiation in both head and trunk muscle progenitors (Fig. 8). Thus, it seems that ERK shuttling as a key mechanism that regulates myogenesis is conserved in both embryonic and adult, as well as head and trunk muscle progenitors.

We have previously demonstrated in chick embryos that inhibitors of both Wnt and BMP signaling promote head myogenesis (Tzahor et al., 2003; Tirosh-Finkel et al., 2010). We now show that inhibition of FGF signaling in pharyngeal mesoderm progenitors promotes robust myogenic differentiation in head muscle progenitors. Both Wnt (Tzahor, 2007) and FGF signaling pathways appear to be important in maintaining the progenitor cell state in pharyngeal mesoderm and in delaying myogenic differentiation (this study; Tirosh-Finkel et al., 2010). In addition, a positive crosstalk between FGF and Wnt...
pathways reinforces this response (Dailey et al., 2005). Altogether, FGF signaling affects head myogenesis by promoting progenitor cell proliferation, consistent with previous studies (von Scheven et al., 2006; Knight et al., 2008). We revealed a negative correlation between the expression of FGF ligands and myogenesis, suggesting that the temporal regulation of FGF ligand expression controls the onset of myogenesis. What regulates FGF ligand expression in the pharyngeal arches is therefore a key question. Our previous study (Tirosh-Finkel et al., 2010) demonstrated that BMP signaling suppresses the expression of many FGF ligands, although the mechanism by which this inhibition occurs is still unclear. However, BMP signaling needs to be downregulated in order to promote skeletal myogenesis, as BMPs are potent inhibitors of both head and trunk myogenesis (Tzahor et al., 2003; Tirosh-Finkel et al., 2006). Hence, it is not trivial to assume that BMP signaling by itself shuts off FGF ligand expression, as it would block myogenesis. Thus, other regulators of FGF ligands expression are yet to be found.

In addition to contributing to the formation of skeletal elements and connective tissue in the head, cranial neural crest cells are involved in the patterning and differentiation of the head musculature (reviewed by Tzahor and Evans, 2011). Although it is generally accepted that the cranial neural crest cells influence cranial muscle formation, exactly how cranial neural crest cells participate in this process has yet to be elucidated. Neural crest ablation in the chick results in increased FGF signaling and elevated proliferation in the pharyngeal mesoderm (Fig. 3) (Waldo et al., 2005; Hutson et al., 2006; Rinon et al., 2007). These findings suggest that neural crest cells buffer proliferative signals (presumably FGFs) secreted from the endoderm and ectoderm, to promote migration and differentiation of pharyngeal mesoderm progenitors (this work; Tirosh-Finkel et al., 2010).

Sprouty proteins are known as general inhibitors of RTKs with pleiotropic roles within development. Here, we have used Spry1−/−;Spry2−/− double mutant embryos as a model for increased FGF-ERK signaling (Petersen et al., 2011). However, we cannot exclude the possibility that other RTKs can also stimulate ERK signaling in these mutant mice. In addition, SU5402 inhibits FGFR signaling but can also affect other RTKs such as VEGFR and PDGFR. Which signaling pathway is therefore operated in vivo? Collectively, our data strongly suggest that the FGF-ERK signaling is the major signaling pathway that represses head myogenesis.

There are several unanswered questions that remain to be addressed. For example, does cytoplasmic ERK promote myogenic differentiation (or inhibits cell proliferation), and more specifically how does nuclear ERK suppress the differentiation of muscle progenitors? A plausible scenario for the effect of ERK on cell cycle progression, supported by the known functions of ERK in myogenesis (Knight and Kothary, 2011) and partially by our data (Figs 1, 2), is the following: activation of ERK and its translocation to the nucleus lead to the shutting of p21 to

Fig. 6. Increased ERK signaling suppresses head and trunk myogenesis in the mouse. (A–A′) Immunofluorescence on transverse sections of E11.5 control and Spry1−/−;Spry2−/− double mutant embryos, at the level of the first pharyngeal arch, stained for DAPI, MyoD, Pax7 and MyoG. Dashed lines in A represent the magnified areas in A′ and A″; dotted circular lines mark the myogenic core. Insets in A′ are higher magnifications of the boxed areas in A′. White arrowheads indicate Pax7+MyoD+ double-positive cells. (B-D) Quantification of the indicated markers. Data are mean±s.d. *P<0.05, **P<0.01. (E) Schematic representation of Sprouty-mediated inhibition of the ERK cascade. (F-G′) Similar sections to those in A (F,F′) or sagittal sections (G,G′) stained for DAPI and pERK. (H) Whole-mount in situ hybridization for MyoD on E11.5 control and Spry1−/−;Spry2−/− double mutant embryos. (a′) Magnification of MyoD expression inside the myogenic core. (b′) Transverse section at the level of the somites (as indicated in b). (l) Immunofluorescence on transverse sections at the level of the somites, stained for DAPI, MF20 and Pax7. n.t, neural tube; o.v, otic vessel; ph, pharynx; p.a, pharyngeal arch; som, somite.
the cytoplasm, where it undergoes ubiquitin-dependent degradation (Hwang et al., 2009) and/or ERK-dependent activation of Ccn1, thereby enabling cell cycle progression.

Many biological processes and cell fate decisions in particular, are binary (‘on-off’). These on-off cellular responses (termed ultrasensitivity and bistability) filter out extraneous ‘noise’, and are quickly and robustly activated, and thus can sharply alter cell fate. A broad array of signaling strategies (e.g. positive feedback loops) have been proposed to underlie this robust ultrasensitivity response (Shah and Sarkar, 2011). Recent mathematical models (Ferrell, 1998; Bhalla, 2011; Santos et al., 2012; Harrington et al., 2013) have revealed that the subcellular spatial organization of signaling molecules is best suited for generating a diverse set of cellular states, including such bistable switches. Based on both experimental and mathematical data sets, we propose that ERK shuttling between the nucleus and cytoplasm generates a switch from proliferation to differentiation (Fig. 8). We provide a concise mechanistic model that both predicts and confirms the myogenic states found experimentally in head muscle progenitors. We propose that ERK nuclear shuttling can change a graded response into a bistable switch (Fig. 7D) (Santos et al., 2012; Harrington et al., 2013). Taken together, our findings shed light on the underlying mechanisms responsible for the stable switch from proliferation to differentiation, implicating ERK subcellular localization as the major mechanism underlying regulation of myogenesis.

Understanding the mechanism of myogenic differentiation in the embryo can shed light on numerous diseases in which this crucial process is disrupted. Our demonstration that inhibition of the ERK signaling cascade is a key step in myogenic differentiation has several implications. Rhabdomyosarcoma is a muscle tumor that expresses high levels of ERK and thus muscle progenitors do not undergo proper myogenic differentiation. Treatment of rhabdomyosarcoma-derived cell lines with the specific MEK inhibitor U0126 reversed the transformed phenotype, and induced growth arrest and myogenic differentiation, both in vitro and in vivo (Marampon et al., 2006). In addition, ERK was found to be involved in the pathogenesis of muscle wasting (termed cachexia) in individuals with cancer (Penna et al., 2011). Taken together, we propose that ERK signaling is a key process in the control of cell cycle progression and differentiation during embryogenesis and adulthood, under normal and pathological conditions.

MATERIALS AND METHODS

Eggs, embryos and explant culture assays
Fertilized white eggs were incubated for 1-6 days at 38.5°C in a humidified incubator to reach Hamburger & Hamilton stages 8-28. PMEE explants were cultured for 1-5 days on a collagen drop covered with 700 µl of dissection medium (10% fetal calf serum, 2.5% chick embryo extract and 1% penicillin/streptomycin in αMEM medium) in a four-well plate. Pharmacological reagents that were added to the medium are listed below. Alternatively, PMEE explants were infected with replication-competent retroviruses (RCAS) expressing FGFR8 (Tzahor et al., 2003). Gene expression was measured at the RNA level following RT-PCR or at the protein level following immunofluorescence on cryosections. The following reagents were added directly to the explant dissection medium: U0126, SU5402 and SB203580 (20 µM, Calbiochem); PLX-4032 (2 µM, Selleck); PD184352 (2 µM, Sigma); GF 109203X (6 µM, Selleck).
Calbiochem); wortmannin (100 nM, Sigma); BAPTA-AM (10 µM, Sigma); EPE peptide (Mrry-QGLNHILGILGPEQEDLI-NH2) (20 µM, Peptide 2.0); and SCR peptide (Mrry-GNLSQELPHSGDLOQI-NH2) (20 µM, Peptide 2.0).

RNA analysis

Total RNA was extracted using QiaGene RNeasy micro kit (Qiagen), followed by reverse transcription using the cDNA Reverse Transcription kit (Applied Biosystems). The cDNA product was then amplified using different sets of primers via semi-quantitative RT-PCR or quantitative real time PCR (qRT-PCR) (supplementary material Table S1 and Table S2, respectively). Gene expression analysis for representative genes was validated by qRT-PCR, using the SYBER GREEN PCR Master mix and Step One Plus Real Time PCR system instrument and software (Applied Biosystems). Primer sets were designed using Primer Express3 (Applied Biosystems) or the Universal ProbeLibrary Assay Design Center (Roche Applied Science). To avoid amplification of contaminating genomic DNA, primers for qRT-PCR were designed to be located at the exon-exon junction. The comparative Ct method was used for quantification of transcripts according to the manufacturer’s protocol. Measurement of ΔCt was performed in triplicate. Gapdh (glyceraldehyde-3-phosphate dehydrogenase) was used as the endogenous control gene.

BrdU assay for explant culture

A BrdU assay was used in order to validate cell proliferation. After 1-5 days in culture, PMEE explants were incubated for an additional 45 min with final concentration of 10 µM BrdU. To stop the reaction, the explants were fixed in 4% PFA, and BrdU incorporation was assessed by immunofluorescence staining. Cell proliferation is measured as the proportion of BrdU-positive cells of total cell nuclei.

Bead implantation and peptides injection experiments

Resin beads (Sigma) were incubated with 5 mM SU5402 or DMSO overnight at 4°C. Beads were rinsed in PBS and inserted into the right pharyngeal mesoderm of stage 10 chick embryos using tungsten needles. Alternatively, 100 µM EPE or SCR peptides were injected into the right pharyngeal mesoderm of stage 10-12 chick embryos. Embryos were returned to the incubator for an additional 24-48 h, and then fixed in 4% PFA and subjected for in situ hybridization or immunofluorescence analyses.

Staining procedures

Whole-mount in situ hybridization was performed as previously reported (Tirosh-Finkel et al., 2006). For immunofluorescence, embryos and explants were fixed in 4% PFA in PBS. For frozen sections, embryos and explants were transferred to 30% sucrose in double-distilled water overnight at 4°C, embedded in OCT and sectioned at ~7 µm, using a Leica cryostat. Sections from explants were further fixed in pre-cooled (~20°C) acetone. Paraffin sections were deparaffinized using standard methods, and subjected to sodium citrate antigen retrieval. Sections were then permeabilized for 15 min with 0.1%-0.25% Triton X-100 and blocked for 1 h with 5% horse serum, 1% bovine serum albumin and 0.1% Tween 20 in PBS. Sections were sequentially incubated with the appropriate primary antibodies diluted in blocking solution as listed below. DAPI was diluted 1:2000. Secondary antibodies used were: Cy2-, Cy3- or Cy5-conjugated anti-mouse or anti-rabbit IgG (1:100, Jackson ImmunoResearch; #111-225-003, #115-165-003 or #111-175-144); and Cy3-conjugated anti-mouse IgG1 and Cy5-conjugated anti-mouse IgG2b (1:100, Jackson ImmunoResearch; #115-165-205 or #115-175-207, respectively.). Images were obtained with a Nikon 90i fluorescence microscope using the ImagePro+ program (Media Cybernetics) and assembled using Photoshop CS software (Adobe). Quantification of the staining results was obtained using ImagePro+ software. Additional images were obtained using a DeltaVision Elite system (Applied Precision) on an Olympus IX71 inverted microscope, running SoftWorX 6.0. Fluorescent images were acquired at 20× and 100× magnifications (UPlanSapo 20×/0.85 and UPlanFl 100×/1.3 objectives, Olympus) by a CoolSnap HQ2 CCD camera (Roper Scientific). 3D imaging was obtained by a series of 2-sections taken at 0.2 µm intervals. Image deconvolution was performed using Imaris (Bitplane). The staining results were quantified using ImagePro+ software, based on ≥5 sections from at least two different embryos, and confirmed using a t-test: *P<0.05; **P<0.01; ***P<0.001. The following antibodies were used for immunofluorescence: AP2 (385 or 5E4) (1:20 or 1:5, respectively, DSHB); BrdU (G34G) (1:100, DSHB); general ERK (1:400, M5670 Sigma); HKN (CD57) (1:80, BD Pharmingen); Isl1 (1:1, DSHB); MHC (MF20) (1:5, DSHB); Myf5 (1:500, a generous gift from Bruce Paterson, NIH, USA); MyoD (1:100, Santa Cruz; sc-760 or sc-32758); MyoG (5F5a) (1:20, DSHB); Pax7 (1:5, DSHB); pERK (M8159) (1:200, Sigma); pH3 (1:400, Santa Cruz; sc-8656).

Neural crest ablation

Cranial neural crest cells were ablated from chick embryos using two different techniques. Surgical ablation was performed by physically ablating the dorsal neural tube just before the neural crest cells start to delaminate (~stage 8) as previously described (Tzahor et al., 2003; Rinon et al., 2007). Alternatively we used a molecular ablation technique that was established by the Marcelle lab (Rios et al., 2011) to ablate neural crest cells by electroporation of a DTA construct under the control of a neural-crest-specific promoter (U2-DTA: the U2 is an evolutionary conserved Sox10 enhancer sequence, cloned upstream to the diphertheria toxin gene).

Satellite cell culture

Isolation of satellite cells was performed as previously described (Harel et al., 2009). Briefly, wild-type female mice 3-4 weeks old (ICR strain) were sacrificed, and the digastic or gastrocnemius muscles were dissected and minced, followed by enzymatic dissociation at 37°C with 0.25% trypsin-EDTA for 30 min. Cells were collected, and trypsinization of the remaining undigested tissue was repeated twice. After 70 min filtration (Cell Tricks), cells were cultured in proliferation medium (BIO-AMF-2, Biological Industries). For ERK inhibition, digastric-muscle satellite cells were grown for 2-3 days in starvation medium (DMEM with 50% BIO-AMF-2) supplemented with U0126 (10 µM, Calbiochem), DMSO, EPE or SCR peptide (10-20 µM, Peptide 2.0). Alternatively, gastronome-derived satellite cells were cultured overnight in proliferation medium, then the medium was replaced to starvation medium for 4 h and treated with EPE for an additional 2 h prior to 15 min of FGFR8 (250 ng/ml). The myogenic differentiation process was quantified by the amount of fibers expressing MHC (MF20) per total cell number (DAPI). The number of viable cells was measured by Methylene Blue assay after 72 h incubation with the indicated treatments.

Sprotyt mutant mice

Embryos deficient for Sproty1 and Sproty2 were produced as previously reported (Petersen et al., 2011). Embryos were fixed and embedded in paraffin. Paraffin sections were subjected for immunofluorescence analysis.

Acknowledgements

We deeply thank Liat Buzaglo, Prof. Menahem Segal (WIS), Calinett Raanan, the Department of Veterinary Research (WIS), Prof. Christophe Marcelle, Dr Olivier Serralbo (ARMI, Australia) and Bruce Paterson (NIH) for technical help and reagents.

Competing interests

The authors declare no competing financial interests.

Author contributions

I.M. and E.T. developed the concepts and approach, analyzed the data for these studies and wrote the manuscript, with the remaining authors commenting on the manuscript. I.M. performed most of the experiments with help from H.H.A., Y.Y.R., A.P. and S.C. The mathematical model was developed and written by H.A.H. and M.P.H.S.

Funding

This work was supported by grants to E.T. from the European Research Council, Israel Science Foundation, United States-Israel Binaional Science Foundation, German Israeli Foundation and Association Française Contre les Myopathies. M.P.H.S. and H.A.H. gratefully acknowledge support from a Leverhulme Trust Grant. O.D.K. is supported by the National Institutes of Health [R01-DE021420]. Deposited in PMC for release after 12 months.
Supplementary material

Supplementary material available online at http://dev.biologists.org/lookup/suppl doi:10.1242.dev.107078/-/DC1

References

Supplementary methods for the mathematical model (S3):

The mathematical model developed is a compartment ODE model and is a variation of that developed by (Harrington et al., 2013). It is a phosphorylation and dephosphorylation system, with reactions following mass-action kinetics; however the shuttling reactions are not symmetric here (Fig. S3, A-C). Inhibitions along the pathway are studied to support the experimental findings in the main text. We use the Jacobian Injective Criterion to establish that this model in two compartments (cytoplasm and nucleus) is not injective and then determine parameter values from the Chemical Reaction Network Theory (CRNT) Toolbox, that provide bistability—a switch from one stable state to another, observed as two distinct responses. Often these distinct states are observed in mathematics using bifurcation diagrams (Fig. S3D), corresponding to dose-response curves in experimental science. This enables for different strengths or efficiencies of inhibitors to be studied. For example, the green curve shows that when FGF levels are low enough it results in the differentiation. Past this threshold level of FGF, the system undergoes proliferation. Similarly, the rate of ERK phosphorylation by Mek (k₃) results in differentiation under simulation settings similar to that of UO126; however, as the rate of phosphorylation increases, the system hits a critical rate and the response switches so that differentiation can no longer occur. Finally, when studying the inhibition of ERKpp translocation by EPE peptide, if the peptide decreases the shuttling rate, then this will always result in low nuclear ERKpp (see red curve Fig S3D).

The compartment ODE model has 12 variables and 17 parameters describing the kinetic reactions and shuttling reactions (Fig S3, A-C). The presented model equations below describe the above reactions where subscript n denotes proteins in the nucleus, with conservation equations following.

\[
\begin{align*}
\text{[MEK]} &= -k_{13}[\text{MEK}] + [\text{MEK}] + k_{3}[\text{MEK}] + k_{1}[\text{MEK}][\text{ERK}] + k_{10}[\text{MEK}], \\
[\text{MEK}] &= -k_{2}[\text{MEK}] + k_{3}[\text{MEK}] + k_{4}[\text{MEK}][\text{ERK}], \\
\text{[ERK]} &= k_{2}[\text{MEK}] + k_{3}[\text{MEK}] + k_{1}[\text{MEK}][\text{ERK}], \\
\text{[ERK]} &= k_{3}[\text{MEK}] + k_{4}[\text{MEK}][\text{ERK}], \\
\text{[F]} &= k_{5}[\text{MEK}][\text{ERK}] + k_{6}[\text{F}][\text{ERK}], \\
\text{[F]} &= k_{7}[\text{MEK}][\text{ERK}].
\end{align*}
\]

These conservation laws can be verified by adding the corresponding equations in the model. Since the model does not incorporate shuttling of the phosphatase, the amount of phosphatase is conserved separately in each compartment. We assume that the total activated MEK is proportional to the FGF signal. The differential equations in the conservation laws lead to the following equations that are fulfilled:

\[
\begin{align*}
\text{MEK}_{\text{tot}} &= [\text{MEK}][\text{MEK}][\text{MEK}], \\
\text{F}_{\text{tot}} &= [\text{F}][\text{F}], \\
\text{ERK}_{\text{tot}} &= [\text{ERK}][\text{ERK}][\text{ERK}], \\
\text{F}_{\text{tot}} &= [\text{F}][\text{F}]
\end{align*}
\]
A description of variables and parameters that were chosen within an order of magnitude of those reported in (Fukjioka J Biol Chem 2006, Harrington Phys Biol 2012) were found by using Latin Hypercube Sampling and satisfying bistability conditions.

In the main text (Fig 7C), the stimulus/inhibitors were included in the model by changes to the values of parameters/total amounts as follows: high FGF signal (MEK\text{tot} = 2), SU5401 inhibition (MEK\text{tot} = 1), UO126 (k3 = 0.006), EPE (k17 = 0.001)

\begin{align*}
k_1 &= 0.012 \text{ } \mu\text{M}^{-1}\text{s}^{-1}, \\
k_2 &= 0.00172 \text{ s}^{-1}, \\
k_3 &= 0.02419 \text{ } \mu\text{M}^{-1}\text{s}^{-1}, \\
k_4 &= 0.038 \text{ } \mu\text{M}^{-1}\text{s}^{-1}, \\
k_5 &= 0.0146 \text{ s}^{-1}, \\
k_6 &= 0.0406 \text{ } \mu\text{M}^{-1}\text{s}^{-1}, \\
k_7 &= 0.0625 \text{ } \mu\text{M}^{-1}\text{s}^{-1}.
\end{align*}

\begin{align*}
k_8 &= 0.0474 \text{ s}^{-1}, \\
k_9 &= 0.00845 \text{ } \mu\text{M}^{-1}\text{s}^{-1}, \\
k_{10} &= 0.0321 \text{ } \mu\text{M}^{-1}\text{s}^{-1}, \\
k_{11} &= 0.0014 \text{ s}^{-1}, \\
k_{12} &= 0.00178 \text{ } \mu\text{M}^{-1}\text{s}^{-1}, \\
k_{13} &= 0.01 \text{ s}^{-1}, \\
k_{14} &= 0.00058, \\
k_{15} &= 0.0015 \text{ s}^{-1}, \\
k_{16} &= 0.0096 \text{ s}^{-1}, \\
k_{17} &= 0.0013 \text{ s}^{-1}.
\end{align*}

\text{MEK}_{\text{tot}} = 1.4414 \text{ } \mu\text{M}, \text{Fntot} = 0.41068 \text{ } \mu\text{M}, \text{ERK}_{\text{tot}} = 97.1807 \text{ } \mu\text{M}, \text{Ftot} = 1.2301 \text{ } \mu\text{M}.
Figure S1: FGF signaling is reduced with the onset of myogenic differentiation in chick embryos.

Analysis of FGF signaling during chick myogenesis (from stage 16 to stage 20) using whole-mount *in situ* hybridization for FGF ligands (A) and FGF target genes (B). White arrowheads indicate down-regulated genes in the area of the pharyngeal arches.

Figure S2: Schematic representation of ERK2 and its nuclear translocation inhibitory peptide, EPE. The nuclear translocation signal (NTS) of ERK, promotes its association with Importin7 and its translocation to the nucleus. The 18 mer EPE myristoylated (Myr) peptide fits to the kinase insertion domain (KID) of ERK2, in which the SPS sequence of ERK2 was changed to the phosphomimetic Glutamic acid residues forming EPE sequence instead. This peptide blocks the ERK-Importin interaction.

Figure S3: ERK compartmentalization provides a bistable switch from proliferation to differentiation

Dose response curves of the mathematical model. A, B, Simplified schematic of the model (FGF and its inhibitors). C, Full schematic of all enzymatic and translocation reactions. Gray lines are kinetic reactions, dashed lines are shuttling reactions. Depending on parameter values, the system can exhibit either a high or low nuclear ERK\(^{pp}\) state, or for regions of dashed lines, two response states, although this is a small region. D, Bifurcation diagrams (dose-response curves). Solid lines correspond to one response (low nuclear ERK\(^{pp}\) state (differentiation, colored) or high nuclear ERK\(^{pp}\) state (proliferation, black), dashed lines are the region when two responses can co-exist. Note that at low translocation rate of ERK\(^{pp}\) into the nucleus and at baseline (low) FGF levels, the system will always undergo differentiation.

Movie S1: Cytoplasmic expression of pERK in differentiating myoblasts (MHC+).

Immunofluorescence of transverse sections of 4.5 days PMEE explants stained for DAPI, MHC and pERK. 3D imaging was obtained by a series of z-sections taken at 0.2 μm intervals. Image deconvolution was performed using Imaris (Bitplane).
Figure S3

A. FGF

FGF

Cytoplasm

Mek^{pp} \rightarrow Erk \rightarrow Erk^{pp}

Nucleus

No myogenesis

B. FGF

FGF

Cytoplasm

Mek^{pp} \times Erk \rightarrow Erk^{pp}

Nucleus

Myogenesis

C. Cyttoplasm

Cytoplasm

F + Erk^{P}

F

Erk

Mek^{pp} + Erk

Mek^{pp}

Erk

Response

Nucleus

D. Graphs

Graph showing nuclear phosphorylated Erk vs. ppMek ~ FGF activation.

Graph showing rate of Erk phosphorylation by Mek.

Graph showing nuclear Erk^{pp} vs. Erk^{pp} translocation rate (cyt \rightarrow nuc).
Movie 1.
Table S1: a table of primer sequences for RT-PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>Annealing Temp.</th>
<th>Forward primer sequence</th>
<th>Reverse primer sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ccnd1</td>
<td>55</td>
<td>GTG GCT TCC AAA ATG AAG GA</td>
<td>CAG GAA AGG TCT GCT TCG TC</td>
</tr>
<tr>
<td>FGF10</td>
<td>50</td>
<td>AGC AAC TTC TGA GGC GAT CTG</td>
<td>GCC GTT CTT CTC GAT CTT GAG</td>
</tr>
<tr>
<td>FGF19</td>
<td>55</td>
<td>TTTCTCCCGCTGTCTCACTT</td>
<td>AATATGGCAACTGGGCACCT</td>
</tr>
<tr>
<td>FGF8</td>
<td>55</td>
<td>AGC AGA GCC TGG TGA CAG AT</td>
<td>CGG TTG AAG GGG TAG TTG AG</td>
</tr>
<tr>
<td>Frzb</td>
<td>60</td>
<td>TGG CAA CTG TAG AGG CAC TG</td>
<td>TTG CTG CTC CAA CAG TGA AG</td>
</tr>
<tr>
<td>GAPDH</td>
<td>60</td>
<td>AGT CAT CCC TGA GCT GAA TG</td>
<td>ACC ATC AAG TCC ACA ACA CG</td>
</tr>
<tr>
<td>MyoG</td>
<td>60</td>
<td>AGC CTC AAC CAG CAG GAG</td>
<td>TGC GCC AGC TCA GTC TTA GA</td>
</tr>
<tr>
<td>MHC</td>
<td>65</td>
<td>GAT CCA GCT GAG CCA TGC CA</td>
<td>GCT TCT GCT CAG CATCAA CC</td>
</tr>
<tr>
<td>Myf5</td>
<td>55</td>
<td>CCC ATC CGA GCT CTG CTA TG</td>
<td>GAT GCT GGA GAG GCA GTC C</td>
</tr>
<tr>
<td>MyoD</td>
<td>60</td>
<td>GCA AGA GGA AGA CCA CCA AC</td>
<td>AAT CTG GGC TCC ACT GTC AC</td>
</tr>
<tr>
<td>Noggin</td>
<td>50</td>
<td>CGA CCC TAA CTT TAT GGC TAT</td>
<td>GGA CAG AGC AAG ACC TTT TAC</td>
</tr>
<tr>
<td>P21</td>
<td>55</td>
<td>CGGCTCCAAGAGAAGAGTTTG</td>
<td>CAG TGA GGC TCT GAG GGT TC</td>
</tr>
<tr>
<td>PEA3</td>
<td>55</td>
<td>TGT GCC ACC TGA TCG TGT AT</td>
<td>CTG GGC AGA AGA GAA GGT TG</td>
</tr>
<tr>
<td>Slug</td>
<td>60</td>
<td>GCC AAA CTA CAG CGA ACT GG</td>
<td>GCA GTG AGG ACA GGA AAA CG</td>
</tr>
<tr>
<td>Sox9</td>
<td>60</td>
<td>AGG AAG CTG GCT GAC CAG TA</td>
<td>AGG TAC CGC TGT AGG TGG TG</td>
</tr>
<tr>
<td>Twist</td>
<td>60</td>
<td>CCG CAG TCC TAC GAG GAG CTG</td>
<td>GTG GGA TGC GGA CAT GGA CCA</td>
</tr>
</tbody>
</table>
Table S2: a table of primer sequences for qRT-PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>Annealing Temp.</th>
<th>Forward primer sequence</th>
<th>Reverse primer sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ccnd1</td>
<td>60</td>
<td>TAGTCGCCACTTTGGATGCT</td>
<td>AGGGGAAAAACTTCCTTTTCG</td>
</tr>
<tr>
<td>GAPDH</td>
<td>60</td>
<td>GGAGTCCACTGTTGTCCTTCAC</td>
<td>GCTTAGCACCACCCTTCAGA</td>
</tr>
<tr>
<td>MyoD</td>
<td>60</td>
<td>ACTACACGGAATCCAATGA</td>
<td>GGAAATCCTCTCCACAATGC</td>
</tr>
</tbody>
</table>