Small molecule-directed specification of sclerotome-like chondroprogenitors and induction of a somitic chondrogenesis program from embryonic stem cells

Jiangang Zhao¹, Songhui Li², Suprita Trilok¹, Makoto Tanaka², Vanta Jokubaitis-Jameson², Bei Wang², Hitoshi Niwa³ and Naoki Nakayama¹,²,⁴, **

ABSTRACT

Pluripotent embryonic stem cells (ESCs) generate rostral paraxial mesoderm-like progeny in 5-6 days of differentiation induced by Wnt3a and Noggin (Nog). We report that canonical Wnt signaling introduced either by forced expression of activated β-catenin, or the small-molecule inhibitor of Gsk3, CHIR99021, satisfied the need for Wnt3a signaling, and that the small-molecule inhibitor of BMP type I receptors, LDN193189, was able to replace Nog. Mesodermal progeny generated using such small molecules were chondrogenic in vitro, and expressed trunk paraxial mesoderm markers such as Tcf15 and Mefx1, and somite markers such as Uncx, but failed to express sclerotome markers such as Pax1. Induction of the osteochondrogenically committed sclerotome from somite requires sonic hedgehog and Nog. Consistently, Pax1 and Bapx1 expression was induced when the isolated paraxial mesodermal progeny were treated with SAG1 (a hedgehog receptor agonist) and LDN193189, then Sox9 expression was induced, leading to cartilaginous nodules and particles in the presence of BMP, indicative of chondrogenesis via sclerotome specification. By contrast, treatment with TGFβ also supported chondrogenesis and stimulated Sox9 expression, but failed to induce the expression of Pax1 and Bapx1. On ectopic transplantation to immunocompromised mice, the cartilage particles developed under either condition became similarly mineralized and formed pieces of bone with marrow. Thus, the use of small molecules led to the effective generation from ESCs of paraxial mesodermal progeny, and to their further differentiation in vitro through sclerotome specification into growth plate-like chondrocytes, a mechanism resembling in vivo somitic chondrogenesis that is not recapitulated with TGFβ.

KEY WORDS: Pluripotent stem cells, Paraxial mesoderm, Sclerotome, Chondrogenesis, Mouse

INTRODUCTION

Repair of large bone defects and damaged cartilage remain a significant clinical challenge. The combination of therapy with mesenchymal stromal cells (MSCs) and the use of biodegradable biomimetic scaffolds appears to be a promising therapeutic approach, as MSCs from bone marrow or fat tissue can be both osteogenic and chondrogenic under certain conditions in vitro and in vivo. However, the difficulty of the approach lies in controlling the clinical outcome. As bone and cartilage are naturally formed during embryogenesis, we hypothesize that one way to alleviate the difficulty is to use embryonic osteochondro-progenitors instead of adult cells.

For human embryonic cells, pluripotent stem cells (PSCs) [i.e. embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs)] are thus far the only practical source. PSC culture is scalable, and in vitro differentiation of PSCs can mimic early embryogenesis (Murry and Keller, 2008; Nishikawa et al., 2007) such that large numbers of a particular type of embryonic cell can be obtained under the appropriate conditions of differentiation to mimic embryogenesis. Furthermore, the wealth of information emanating from developmental biology studies is expected to aid in the discovery and refinement of such conditions. However, although ESCs have been shown to generate mesenchymal progeny capable of developing cartilage in vitro (Nakayama and Umeda, 2011), the resultant chondrogenic activities were generally poor, and with the exception of ours and a few others (Craft et al., 2013; Oldershaw et al., 2010; Tanaka et al., 2009; Umeda et al., 2012), most reports did not define the developmental origin of the mesenchymal cells generated. The osteochondro-progenitors that develop during embryogenesis are limb bud mesenchyme (derived from lateral plate mesoderm) responsible for limb bone and cartilage generation, sclerotome (from somite/rostral paraxial mesoderm) responsible for rib, vertebral joint, intervertebral disc and vertebral body formation, and ectomesenchyme (from cranial neural crest) responsible for craniofacial bone and cartilage generation. These progenitors are differentially specified through the action of protein factors such as Wnt, and members of the transforming growth factor (TGFβ)-superfamily: Nodal and bone morphogenetic protein (BMP), and their inhibitors. Therefore, to make use of such knowledge to improve and refine the condition for osteochondro-progenitor development, PSC differentiation should be directed toward a particular lineage.

In the first step toward testing our hypothesis, we have previously demonstrated that somitic/rostal presomatic mesoderm-like progeny (hereafter referred to as ‘rostal paraxial mesoderm’) is specified from mouse and human ESCs and is enriched in the Flk1(Kdr)/Pdgfrα cell fraction of embryoid bodies (EBs) generated in a chemically defined medium (CDM) (Tanaka et al., 2009; Umeda et al., 2012). The specification process is strictly dependent on the activation of Wnt signaling and suppression of BMP signaling (Craft et al., 2013; Tanaka et al., 2009; Umeda et al., 2012).

Considering future application to humans, it is important to determine whether the PSC progeny developed in vitro behave in the
same way as the in vivo progeny and generate mature progeny. Axial skeletogenesis by somite goes through the osteochondrogenically committed progeny, sclerotome (Chal and Pourquié, 2009; Dockter, 2000), in a process involving platelet-derived growth factor (PDGF) (Hoch and Soriano, 2003; Tallquist et al., 2000), sonic hedgehog (Shh) (Fan et al., 1995; Fan and Tessier-Lavigne, 1994; Johnson et al., 1994; Murtaugh et al., 1999; Zeng et al., 2002), and the BMP inhibitor Noggin (Nog) (Hirsinger et al., 1997; Marcelle et al., 1997; McMahon and Martindale, 1998). The Flk1-Pdgfra rostral paraxial mesoderm from ESCs consistently show chondrogenic activity in vitro (Tanaka et al., 2009). However, it was not clear whether the paraxial mesoderm went through chondrogenesis via sclerotome specification, as occurs in vivo.

In addition, considering the necessity for culture scale-up for clinical application, there would be a significant cost benefit if the protein factors could be replaced with small-molecule signaling modifiers. Many chemical compounds have been developed that target relevant signaling mechanisms: e.g. the inhibitors of glycogen synthase kinase (Gsk)3, BIO (Sato et al., 2004) and CHIR99021 (Cohen and Goedert, 2004) for mimicking canonical Wnt signaling; SAG1 for mimicking hedgehog signaling (Chen et al., 2002), the dorsomorphin analog LDN193189 for inhibiting Alk1/2 and to a lesser degree Alk3 (type I BMP receptor (BMPR)) signaling (Yu et al., 2008), and SB431542 for inhibition of Alk4/5/7 (type I Nodal/activin/TGFβ) receptor signaling (Inman et al., 2002; Laping et al., 2002).

Here, we describe the establishment of a novel, small-molecule based differentiation method for the specification of chondrogenic rostral paraxial mesoderm from ESCs. We then demonstrate that the paraxial mesodermal progeny respond properly to a set of signals (hedgehog+Nog) known to be essential in vivo for generating sclerotome, and also specify sclerotome-like intermediates before forming chondrocytes in vitro. The same outcome was not recapitulated by TGFβ, which is used widely for the induction of chondrogenesis from various mesenchymal cell types. We have also demonstrated that the cartilage particles developed are mineralized and vascularized, leading to bone and marrow formation in a mouse model.

RESULTS

β-catenin activation without BMP signaling specifies chondrogenic rostral paraxial mesoderm from ESCs

During differentiation of the mouse brachyury (Bry)-GFP ESC in CDM, the presence of Wnt3a and Nog effectively induces rostral paraxial mesoderm but not lateral plate mesoderm in the Bry-GFP Flk1-Pdgfra- cell fraction (Tanaka et al., 2009). Similarly, MIXL1-GFP KDR-Pdgfra paraxial mesoderm can be specified from Mix1-GFP human ESCs in CDM in the presence of BIO and Nog (Umeda et al., 2012).

The canonical Wnt signaling mechanism involves suppression of Gsk3 activity and subsequent stabilization/nuclear translocation (hereafter described as 'activation') of β-catenin. Therefore, to confirm that canonical Wnt signaling is sufficient to induce paraxial mesoderm in the presence of Nog, we constructed the mouse ESC line, EBRβcatM, expressing the cDNA encoding a 4-hydroxy tamoxifen (OHT)-activatable β-catenin, i.e. Ctnnb1(S33Y)-Mer, in a tetracycline (Tet)-sensitive manner (supplementary material Fig. S1). The protein expression was monitored by the expression of yellow fluorescent protein (YFP). When the expression of Ctnnb (S33Y)-Mer protein was induced by lower concentrations of Tet from one day before differentiation and activation by OHT on day 2 of differentiation (Fig. 1A, supplementary material Fig. S2A), the expression of rostral paraxial mesoderm genes (e.g. Meox1 and Uncx), but not lateral plate/extra-embryonic mesoderm genes (e.g. Fosl1 and Hand2) was induced by day 6 of differentiation (T+OHT, Fig. 1B, supplementary material Fig. S2B,C). The addition of Nog enhanced the level of paraxial mesoderm gene expression (T+OHT+N).

Under OHT+Nog, a significant level of YFP+ Flk1-Pdgfrα progeny was generated (Fig. 1C). Similar to progeny generated under Wnt3a+Nog, the YFP+ Flk1-Pdgfrα but not the YFP+ Flk1-Pdgfrα cell fraction isolated by fluorescence-activated cell sorting (FACS) contained cells expressing paraxial mesodermal genes such as Meox1 (Fig. 1C, supplementary material Fig. S2D left). Furthermore, cartilage nodule-forming activity was detected in the YFP+ Flk1-Pdgfrα cell fraction generated under OHT+Nog during 2D micromass culture in the presence of PDGF+TGFβ (Fig. 1D), similar to what was observed for the Pdgfrα lateral plate/extra-embryonic mesoderm fraction generated with either Wnt3a or BMP4 (Tanaka et al., 2009). Thus, the activated β-catenin is a substitute for Wnt3a signaling in the generation of chondrogenic paraxial mesoderm from ESCs.

Specification of chondrogenic paraxial mesoderm from ESCs by small molecules

Gsk3 occupies a crucial node in the mediation of various cellular processes (Hur and Zhou, 2010). However, the effects of Gsk3 suppression are considered to represent those of canonical, but not noncanonical, Wnt signaling that leads to β-catenin activation. Therefore, to complement the study involving overexpression of activated β-catenin (Fig. 1), the parental ESCs (EBRTcH3) were treated with various concentrations of three Gsk3 inhibitors: BIO, AcBIO or CHIR99021 (CHIR) (Fig. 2B). BIO stimulated Meox1 expression by day 6 in a dose-dependent manner, but its inactive analog (MeBIO) did not (supplementary material Fig. S3E). Inclusion of Nog significantly enhanced the expression of Meox1 in all cases (Fig. 2B left). Of the three inhibitors, CHIR had the strongest effect on the induction of Meox1 transcript (peaking at 5 μM), but at >5 μM induced significant levels of Meox1 even in the absence of Nog (CN, C). Thus, the overexpressed, activated β-catenin could be effectively replaced with either Gsk3 inhibitor, BIO or CHIR.

We next attempted to replace the pan-BMP inhibitor Nog, which prevents BMPs from binding to BMPRs, with the Alk1/2/3 inhibitor, LDN193189 (LDN). At about 0.6 μM, LDN augmented the CHIR-induced expression of Meox1 during ESC differentiation (Fig. 2B right). The enhancement of Meox1 expression with Nog or LDN was more pronounced with 5 μM CHIR than with BIO or 2.5 μM CHIR. Furthermore, similar to Wnt3a+Nog (Tanaka et al., 2009), CHIR+LDN also induced the formation of Flk1-Pdgfrα progeny from EBRTcH3 and Bry-GFP ESCs. The Flk1-Pdgfrα cells were Bry-GFP+” (Tanaka et al., 2009), suggesting mesendodermal origin, and the majority of them were E-cadherin+” (Fig. 2C), i.e. mesoderm. Consistently, the E-cadherin+ Bry+ Flk1-Pdgfrα progeny, but not the E-cadherin+ Bry+ Flk1-Pdgfrα progeny isolated by FACS were enriched in the rostral paraxial mesoderm transcripts Meox1, Tcf15 and Unx (see Fig. 3C, supplementary material Fig. SSC), and were also found to be chondrogenic in the subsequent micromass culture (Fig. 2C). Thus, LDN could effectively replace Nog, although
LDN preferentially inhibited Alk1/2 instead of the classical type I BMPR Alk3/6 (Yu et al., 2008).

Nodal signaling is involved in gastrulation and germ layer specification in a dose-dependent manner (Schier, 2009). By day 5 of ESC differentiation, Wnt3a, and to a lesser degree BIO, induced expression of the Nodal gene via a pathway independent of BMP signaling, as shown by the lack of effect of Nog (supplementary material Fig. S3B,C right). This finding revealed the potential to optimize differentiation by manipulating Nodal signaling using activin A (activin) and the Nodal/activin/TGFβ receptor inhibitor SB431542 (SB). Attempts to optimize the differentiation method using activin and SB resulted in a parabolic response (Fig. 2D) similar to that seen with EBRβcatM cells (supplementary material Fig. S2D right). The optimal concentrations fell within a small range from 0-5 ng/ml activin to 0-1 μM SB, depending on the type of Wnt activator used. Further, insufficient specification of Meox1-expressing paraxial mesoderm in the presence of activin at higher concentrations (5-20 ng/ml) correlated with the reduction in the Flk1+Pdgfra+ (YPF ‘P’+) and YFP ‘P’ – progeny isolated from the former, and Flk1+Pdgfra+ (P+) and Flk1+Pdgfra+ (P–) progeny were form the latter, respectively, by FACS. RT-PCR analysis was performed with the Meox1 primers. Pre: total OHT+N treated EB cells, OHT+N and 500 ng/ml Nog, WN: Wnt3a and 500 ng/ml Nog. (D) Chondrogenic activity of the activated β-catenin-induced progeny. EBRβcatM (CI24-5) ESCs were differentiated with the indicated factors. YFP ‘P’ + and YFP ‘P’ – progeny were isolated by FACS and subjected to micromass culture in the presence of PDGF and TGFβ as described (Nakayama et al., 2003; Tanaka et al., 2009). Cultures were fixed on day 12, and stained with acid Alcian Blue. OHT+B: OHT and 1 ng/ml BMP4. Typical dark blue spots (signs of chondrogenesis) in OHT and in OHT+N are highlighted with yellow arrowheads.

These results indicate that small-molecule inhibitors of Gsk3 and BMPR successfully replace Wnt3a and Nog for efficient specification of chondrogenic, rostral paraxial mesoderm from ESCs. Manipulation of Nodal/activin/TGFβ signaling is not always necessary, but must be a special consideration when differentiation efficacy is of a critical matter (supplementary material Fig. S4).

Specification of sclerotome from ESCs via a rostral paraxial mesoderm intermediate

Early expression of Pax1 among the mesodermal progeny is largely restricted to the ventral part of sclerotome (Deutsch et al., 1988; Koski et al., 1993), which is induced by the diffusible factors Shh and Nog, produced from the floor plate and the notochord. The Flk1+Pdgfra+ rostral paraxial mesoderm induced from ESCs in KSR-based serum-free medium expressed Pax1 mRNA (Tanaka et al., 2009), but those induced in CDM under either Wnt3a+Nog (data not shown) or CHIR+LDN (CL, Fig. 3B,C, supplementary material Fig. S5C) seemed to lack Pax1 mRNA despite Meox1, Tcf15 and Unx3 transcripts being highly enriched. We therefore examined the effect of hedgehog on the expression of Pax1 during differentiation of...
ESCs in CDM. The small-molecule SMO (hedgehog receptor subunit)-agonist SAG1 (SAG) was used to activate hedgehog signaling. The addition of SAG to the (CHIR+LDN)-based differentiation culture on day 4 significantly upregulated Pax1 expression by day 6 (CLS4, Fig. 3B), but had only marginal effects on Meox1 expression and no effect on the progenitor profile distinguished by Flk1 and Pdgfrα expression (data not shown). Consistently, the FACS-purified E-cadherin-Flk1-Pdgfrα cell fraction thus generated was enriched in Pax1 mRNA (i.e. sclerotome) and Meox1, Tcf15 and Uncx transcripts (i.e. rostral paraxial mesoderm) (Fig. 3C, supplementary material Fig. S5C). The induction of Pax1 occurred more slowly or to a lesser extent when SAG was added on day 2 instead of day 4 (CLS2, Fig. 3B).

When both Bry-Flk1-Pdgfrα and Bry-Flk1-Pdgfrα progeny were isolated by FACS from EBs developed from Bry-GFP ESCs under CHIR+LDN, and subjected to micromass culture in the presence of Shh+Nog with PDGF, only the Bry-Flk1-Pdgfrα cells were capable of inducing the sclerotomal genes Bapx1 (Tribioli et al., 1997) and Pax1 as well as the more committed chondroprogenitor gene Sox9 within 6 days (Fig. 3D). Therefore, the Pax1-expressing sclerotomal cells were probably generated from Pax1-negative Flk1-Pdgfrα rostral paraxial mesoderm.

Transient treatment with small-molecule SMO agonist and BMPR inhibitor allows exogenous TGFβ-independent chondrogenesis from the isolated rostral paraxial mesoderm

To demonstrate that the Pax1-positive Flk1-Pdgfrα sclerotomal cells are qualitatively more chondrogenic than the immediate precursor cells: i.e. Pax1-negative Flk1-Pdgfrα rostral paraxial mesoderm, we first isolated them individually from EBs generated in CDM under CHIR+LDN+SAG (day 4) and CHIR+LDN conditions, respectively, and performed micromass culture in the presence of PDGF, TGFβ and BMP4. However, no significant difference in the efficiency of chondrogenesis was observed (data not shown). The exposure to SAG for 2 days (from day 4 to day 6) during ESC differentiation might be too short to promote commitment of sufficient rostral paraxial mesodermal cells to sclerotome.

Therefore, we isolated the Pax1-negative Flk1-Pdgfrα rostral paraxial mesoderm, and addressed whether treatment with Shh...
Nog or with their small-molecule analogues SAG+LDN for a longer time would affect the efficiency of chondrogenesis. The 12-day micromass cultures were performed under the following four different conditions, all of which included PDGF (P) as a growth/viability-supporting factor: (1) PHN→PB: Shh+Nog for 6 days (as in Fig. 3D) then BMP4 for 6 days, (2) PSL→PB: SAG+LDN for 6 days then BMP4 for 6 days, (3) PTHN→PTB: condition 1 plus TGFβ, and (4) PTSL→PTB: condition 2 plus TGFβ, with appropriate controls (Fig. 4B). The chondrogenesis cultures with TGFβ (PT→PT), but not those without TGFβ (P→P), generated micromass stained with Alcian Blue. Later (i.e. day 6) addition of BMP4 to the PT culture (PT→PTB) enhanced chondrogenesis as

Fig. 3. Hedgehog and small-molecule SMO agonist for sclerotome specification from ESCs. (A) The experimental scheme. (B) EBRTcH3 cells were differentiated under no factor (purple), CHIR (C, green), CHIR+LDN (CL, pink), CHIR+LDN+SAG (day 2) (CLS2, orange) and CHIR+LDN+SAG (day 4) (CLS4, blue). RNA was extracted on days 6 and 7, and subjected to RT-PCR using Meox1 and Pax1 primers. (C) EBRTcH3 cells were differentiated for 6 days under CL and CLS4, and the E-cadherin−Flk1−Pdgfrα+ (P+) and Flk1−Pdgfrα− (P−) progeny were isolated by FACS on day 6 and subjected to RT-PCR using Tcf15, Pax1 and Uncx primers. (D) Bry-GFP cells were differentiated under CL, and the Bry−Fk1−Pdgfrα (P−) and Bry+Fk1−Pdgfrα (P+, green) progeny were sorted and subjected to micromass culture in the presence of PDGF+hedgehog+Nog. Cultures were harvested on days 3 and 6 for RT-PCR analysis.

Fig. 4. Small-molecule-facilitated chondrogenesis from the isolated rostral paraxial mesoderm. (A) Experimental scheme. EBRTcH3 ESCs were differentiated under CHIR+LDN. (B) Effects of protein factors versus small molecules (Shh versus SAG, and Nog versus LDN) on chondrogenesis. Micromass cultures were performed with the sorted E-cadherin−Flk1−Pdgfrα+ progeny under the conditions indicated. Conditions; P: PDGF, T: TGFβ, H: Shh, N: Nog, S: SAG, L: LDN, →: factor change on day 6. (C) Requirement for both SAG and LDN. The E-cadherin−Flk1−Pdgfrα+ progeny were isolated and subjected to micromass culture under PL, PS and PSL conditions, and then PB from day 6. The cultures (B,C) were then fixed on day 12, and stained with acid Alcian Blue. (D) Quantification of bound Alcian Blue. The E-cadherin−Flk1−Pdgfrα+ progeny were subjected to micromass culture under the indicated conditions for 12 days. After fixation and Alcian Blue staining, the bound Alcian Blue was extracted from each micromass, and quantified by OD600. *P<0.05. (E) Quantification of sGAG. The E-cadherin−Flk1−Pdgfrα+ progeny were subjected to micromass culture for 18 days under the indicated conditions. The total DNA and sGAG were quantified (supplementary material Fig. S6G), and normalized values (μg sGAG/μg DNA) are displayed. *P<0.05.
shown by darker blue staining. No such enhancement was observed without TGFβ (P→PB). Interestingly, even in the absence of TGFβ, conditions 1 (PHN→PB) and 2 (PSL→PB) gave rise to a large micromass that stained strongly with Alcian Blue. The micromass accumulated similar amounts of sulfated glycosaminoglycan (sGAG), as judged by the guanidine hydrochloride-extractable Alcian Blue per mass, as that developed under PT→PTB (Fig. 4D). Furthermore, the micromasses developed under PT→PTB and PSN→PB (SAG+Nog followed by BMP4, similar to condition 2) conditions for 18 days contained a similar proportion of active chondrocytes, as indicated by sGAG normalized to DNA, but significantly more than those developed under P→PB conditions (Fig. 4E). The yield of DNA from a micromass reflects cell number, which did not differ significantly at this stage (supplementary material Fig. S6G).

The PSL→PB as well as PSN→PB conditions favor exogenous TGFβ-independent chondrogenesis from the Flk1−Pdgfrα rostral paraxial mesoderm, but not from the Flk1−Pdgfrα+ progeny (Fig. 4C, supplementary material Fig. S6D). The later treatment with BMP4 proved important. Without it, the efficiency of overall chondrogenesis was reduced significantly (PSL→P, supplementary material Fig. S6E,F). Addition of both SAG and LDN/Nog during the first 6 days of micromass culture was also essential, as treatment with either SAG (PS→PB) or LDN (PL→PB) resulted in zero or only very weak chondrogenesis (Fig. 4C,D, supplementary material Fig. S6C,D,F), with a small change in the growth of micromass (data not shown).

Real-time RT-PCR analyses demonstrated that SAG+LDN (PSL) stimulation during the first 6 days of micromass culture was crucial for inducing Pax1 and Bapx1 expression from the isolated E-cadherin−E-cadherin−Pdgfrα rostral paraxial mesoderm (Fig. 5B), as was the Shh+Nog stimulation (Fig. 5D). Both transcripts were highly induced at around day 3 by either treatment, but not by treatment with TGFβ (PT, Fig. 5B), LDN (PL) or SAG (PS) alone. The PSL treatment should continue for longer than 3 days before the change to PDGF+BMP4 (PB), and consistent with the notion that BMP signaling counteracts Shh+Nog and inhibits sclerotome induction (Dockter, 2000), an early (day 3) transition led to a somewhat weaker degree of chondrogenesis (supplementary material Fig. S6B). By contrast, expression of Sox9 was strongly induced under PT and somewhat weakly induced under PSL within the first 6 days, but was not induced under PS conditions. In support of differentiation toward chondrocytes, the somite transcript Uncx also disappeared.

These differences in the sclerotomal gene expression during early micromass culture might simply reflect different kinetics of induced chondrogenesis, such that the sclerotomal genes Pax1 and Bapx1 might be expressed at a later time under PT conditions. Therefore, the entire chondrogenesis process was monitored. As LDN shows BMPR subtype specificity (Yu et al., 2008), the SAG+Nog (PSN) condition was included as a control. As shown in Fig. 5C and supplementary
material Fig. S7B, under PSL/PSN→PB conditions, *Pax1* and *Bapx1* expression was induced and peaked within the first 6 days (i.e. before BMP4 stimulation), consistent with the previous results (Fig. 3D and Fig. 5B). *Pax1* and *Bapx1* expression then significantly decreased or disappeared by day 7 and day 11, respectively, and did not reappear by day 19. Both the type II collagen (*Col2a1*) and aggrecan (*Acan*) transcripts, the signs of chondrocyte formation, were detectable from days 11-14 under PSL→PB and from approximately day 6 under PSL→PB. By contrast, under PT→PTB conditions, *Pax1* and *Bapx1* expression was scarcely detectable until days 19-20, but *Col2a1* and *Acan* transcripts were detectable by day 6, and the levels peaked at around day 11. *Sox9* expression was detected under both PSL/PSN→PB and PT→PTB conditions, as with the previous observations (Fig. 3D and Fig. 5B). However, whereas the *Sox9* level peaked by day 6 under PT→PTB, *Sox9* was expressed over a longer period under PSL/PSN→PB, and especially under PSN→PB for which the peak was delayed to days 7-11 (Fig. 5C, supplementary material Fig. S7B). Concomitantly, *Col2a1* and *Acan* transcripts were induced significantly earlier under PT→PTB than under PSN→PB, but kinetic differences between PT→PTB and PSL→PB conditions were not clear (Fig. 5C, supplementary material Fig. S7C). Thus, the transition from early expression of *Pax1* and *Bapx1* to later expression of *Sox9*, *Col2a1* and *Acan* was apparent under the PSL/PSN→PB conditions, while induction of *Sox9*, *Col2a1* and *Acan* without expression of *Pax1* and *Bapx1* was observed under PT→PTB condition.

Furthermore, quantitation of sGAG (normalized to DNA) indicated that the micromass developed under both PSL/PSN→PB and PT→PB conditions accumulated proteoglycan-producing active chondrocytes (Fig. 5D). Consistently under PSN→PB conditions (blue) such active chondrocytes accumulated more slowly than those under PT→PTB (brown) and PSL→PB (green) conditions.

Thus, the ESC-derived rostral paraxial mesoderm can give rise to chondrocytes through two different developmental programs: one initiated by SAG and LDN/Nog (PSL/PSN), which involves *Pax1* and *Bapx1* induction, i.e. sclerotome specification, and the second by TGFβ (PT), which does not involve sclerotome specification. Interestingly, the PSL→PB condition tended to induce *Pax1* and *Bapx1* more efficiently and show faster chondrogenesis than the PSN→PB condition, implying that inhibition of Alk1/2-dependent BMP signaling may be the key for sclerotome specification in vitro.

Capacity of the macroscopic cartilage particles developed from rostral paraxial mesoderm via different chondrogenesis mechanisms to mature in vitro and in vivo

Different chondrogenesis programs might lead to different cartilage types. As BMP4 is a robust chondrogenic inducer for many mesenchymal cell types but is also known to facilitate terminal maturation of the developed chondrocytes, we addressed whether chondrocytes developed from the rostral paraxial mesoderm during micromass culture under the conditions in which *Pax1* and *Bapx1* were induced (PSL/PSN→PB) and not induced (PT→PTB) would differentially express the *Col10a1* and *Alpl* transcripts, a sign of hypertrophic differentiation (Fig. 6B, supplementary material Fig. S7B,C). Chondrocytes generated under all conditions expressed *Col10a1* and *Alpl* slightly later than *Col2a1* and *Acan*.

Fig. 6. Stability of the cartilage formed with the ESC-derived rostral paraxial mesoderm. (A) Experimental scheme. EBRTcH3 ESCs were differentiated under CHIR+LDN, and the E-cadherin ’Pdgfrα’ progeny were isolated. (B) The micromass cultures were performed for 19-20 days under PSL→PB (green), PSN→PB (blue), PT→PTB (brown) and P→PB conditions and were periodically harvested for RT-PCR with primers for *Col10a1* and *Col2a1*. The ratio of *Col10a1* (*Col10*) to *Col2a1* (*Col2*) was calculated based on the day 20 results (supplementary material Fig. S8C). Conditions: P: PDGF, T: TGFβ, B: BMP4, N: Nog, S: SAG, L: LDN, →: factor change on day 6. (C) Cartilage particles generated under PT→PTB and PSN→PB in 21 days. Toluidine Blue (T-Blue) staining. (D) The cartilage particles from (C) were transplanted subdermally for 12 weeks after which the resulting particles were fixed, plastic embedded, sectioned. The sections were subjected to von Kossa-van Gieson staining (left panels) and acid T-Blue staining (right panels). The von Kossa stains bony, mineralized area black, T-blue stains the cartilaginous area purple and other areas blue. The upper panels show mineralized bone-like tissue with hematopoietic marrow. The yellow triangle indicates the area with blood cells.
(Fig. 5C). Similarly, the kinetics of expression under PSL→PB and PT→PB were faster than under PSN→PB. However, the ratio of the normalized levels of Col2α1 and Col10α1 transcripts accumulated under PT→PTB and PSN→PB conditions did not differ significantly (Fig. 6B upper), suggesting that the rate of maturation of the developed chondrocytes is indistinguishable under both conditions.

In addition, using the 3D pellet culture method, we made cartilage particles under PSN→PB and PT→PTB conditions (Fig. 6C,D). The resulting particles were indistinguishable in size and degree of chondrogenesis, as judged by histological examination. Multiple sections of individual particles demonstrated that all consisted of cartilaginous area that stained uniformly with Toluidine Blue. When such particles were transplanted subcutaneously into immunocompromised mice, both developed in 12 weeks into vascularized and mineralized tissues that contained bone-like structure with hematopoietic marrow. Nog, not LDN, is in vivo, and PSN→PB, not PSL→PB, resulted in a significant difference in the kinetics of chondrogenesis compared with PT→PTB (Fig. 5C,D and Fig. 6B). Interestingly, however, the cartilage particles made under PSL→PB conditions yielded essentially the same mineralized cartilage (supplementary material Fig. S8D,E). These observations suggest that the chondrocytes produced from the rostral paraxial mesoderm under both PSL/PSN→PB and PT→PTB conditions resemble growth plate chondrocytes in being able to go through endochondral ossification.

DISCUSSION

We have demonstrated that small-molecule signaling-modifiers that inhibit Gsk3 and type I BMPR and promote hedgehog signaling effectively specify rostral paraxial mesoderm and then sclerotomal progeny from mouse ESCs as the corresponding protein factors. Therefore, it is now feasible to scale up the culture to obtain a large number of these progeny. We have also demonstrated that chondrocytes can be generated from isolated rostral paraxial mesoderm through two developmental mechanisms (Fig. 7) – the authentic (Shh+Nog)-initiated somitic chondrogenesis mechanism through sclerotome specification, and the TGFβ-induced chondrogenesis mechanism with no sign of sclerotome specification.

In sclerotome, Pax1 and Pax9 interact with Meox1 to induce Bapx1 (Nkx3.2) expression (Rodrigo et al., 2004, 2003). This leads to activation of the Bapx1-Sox9 positive-feedback mechanism that allows sclerotome to respond to BMP signaling and differentiate into chondrocytes (Kempf et al., 2007; Tribioli and Lufkin, 1999; Yamashita et al., 2009; Zeng et al., 2002). Thus, Bapx1 is crucial for chondrocyte formation for developing vertebral bodies and intervertebral discs (Akazawa et al., 2000; Herbrand et al., 2002; Lettice et al., 1999). The protein (i.e. Shh+Nog)-induced or small-molecule (i.e. SAG+LDN)-induced Pax1 and Bapx1 expression followed by Sox9 expression and BMP4-enhancement of chondrogenesis, therefore, suggests that mouse ESC-derived rostral paraxial mesoderm possesses the capacity of going through the somitic chondrogenesis program as embryonic somitic mesoderm (Dockter, 2000). By contrast, the TGFβ-induction of Sox9 and BMP4-enhancement of chondrogenesis without Pax1 and Bapx1 expression suggests that paraxial mesodermal chondrogenesis can also proceed directly without the Bapx1-Sox9 positive-feedback mechanism.

The conditions in which TGFβ and BMP are involved have been widely used for inducing chondrogenesis *in vitro* from a variety of mesenchymal cells. In chick embryos, induction of Sox9 expression and chondrogenesis by Shh or by forced Bapx1 expression is observed specifically in paraxial mesoderm (Kempf et al., 2007; Zeng et al., 2002). The same treatments of lateral plate mesoderm fail to induce chondrogenesis. However, forced Sox9 expression allows chondrogenesis from both mesodermal types. These findings suggest that exogenous TGFβ may directly induce Sox9 in many mesenchymal cell types, leading to rapid chondrogenesis *in vitro*.

The two different mechanisms of chondrogenesis may be mediated by two types of chondrogenic cell present in the rostral paraxial mesoderm fraction, or by one cell type (i.e. sclerotome) with dual capacity. Evidence suggests that the latter is more likely. More than 97% of the cells in the E-cadherin − Flk1−Pdgfra− rostral paraxial mesoderm fraction were Bry-GFP+, in which no sign of lateral plate mesoderm and neural crest specification was detected, and both conditions commonly give rise to chondrocytes with the tendency to ossify (Fig. 6).

The question arises as to the importance of the slower and more complex ‘somitic chondrogenesis’ program over the faster and simpler ‘TGFβ-induced chondrogenesis program’. Bone and cartilage
Differentiation with Wnt3a (Tanaka et al., 2009) at 100 ng/ml, BMP4 (R&D Systems) at 2 ng/ml, Noggin (Noggin-Fc, R&D Systems) at 100-500 ng/ml, BIO, Acetoxyime-BIO (AcBIO), 1-methyl BIO (MeBIO) (all from Calbiochem), and CHIR99021 (BioVision) at 5 μM, and/or LDN193189 (Stemgent) at 0.6 μM, unless otherwise stated. activin A (PeproTech) was added at 1-25 ng/ml, and SB431542 (Tocris Bioscience) at 1-3 μM. Activation of the expressed Ctnnb(S33Y)-Mer protein was achieved by addition on day 2 of 4-hydroxytamoxifen (OHT, Sigma) at 0.9 μM.

Flow cytometry on EB cells

Flow cytometric analysis of EB cells and fractionation by FACS were performed as described (Tanaka et al., 2009), except that the viable cells were gated using DAPI (Sigma), and the cell sorter used was Aria or Aria II (BD Biosciences). Since the (Bry)Pdgfrα cell fraction may contain endoderm, and since E-cadherin is a marker for endoderm (and ectoderm), E-cadherin (clone Decma1, Sigma) was added to the FACS strategy to ensure removal of the E-cadherin-endoderm within the Pdgfrα fraction.

Chondrogenesis cultures

Two-dimensional (2D)-micromass culture was initiated by spotting 1×10^5 cells in 5 μl to a well of a 24-well plate and maintained in the chondrogenic medium supplemented with 40 ng/ml PDGF (PDGF-BB, R&D Systems) as described (Tanaka et al., 2009). When indicated, TGFβ (TGFβ3, R&D Systems) was added at 10 ng/ml on day 1. When the EBRcKatM clone-derived YFP + EB cells were used, Tet was included at 1 μM to suppress the accumulation of Ctnnb(S33Y)-Mer protein. Furthermore, for induction of the somitic chondrogenesis program, the chondrogenic medium with PDGF was further supplemented with either 300 ng/ml Shh (SHH-N, R&D Systems) or 100 nM SAG1 (Calbiochem), together with either 0.3-0.6 μM LDN193189 or 100-200 ng/ml Nog, both of which were replaced on day 6 with 50 ng/ml BMP4 (R&D Systems). On day 12 to 20 of culture, the developed micromass was either fixed with 10% (v/v) buffered Zn-formalin (Z-Fix, American MasterTech), and stained with 1% (w/v) acid Alcian Blue (Sigma) pH 1, as described (Nakayama et al., 2003), or subjected to analyses of DNA, RNA and sulfated glycosaminoglycans (sGAGs). The stained micromasses were then treated with 400 μg/ml papain digestion for 18-20 h at 60°C [125 μg/ml papain, 10 mM cysteine in sodium phosphate-EDTA pH 6.5 (all from Sigma)], as described (Hoemann, 2004), and the fluorescence (emission 460 nm, excitation 360 nm) was normalized to 100 μg DNA/mass, and the amount of sGAG was normalized to 100 μg DNA/mass, and the amount of sGAG was normalized to the absorbance of the extract was measured at 600 nm (OD600) using SpectraMax M2 (Molecular Devices) to determine the relative amount of bound sGAG per micromass. The 3D pellet culture was carried out in the serum-free chondrogenic medium with PDGF, as described (Tanaka et al., 2009). The concentrations of protein factors and timings of addition were the same as for the 2D micromass culture. Developed cartilage particles were fixed on days 21-30 of culture by Z-Fix, paraffin sectioned, and stained primarily with 0.1% (w/v) Toluidine Blue (Sigma).

Isolation and quantification of DNA, RNA and sulfated glycosaminoglycan from micromass

The micromass was lysed using the guanidine isothiocyanate buffer (RLT, Qiagen), insoluble materials separated, and then DNAs, RNAs and proteins were individually isolated using AllPrep DNA/RNA-Protein Mini Kit (Qiagen). The purified RNAs were used for real-time RT-PCR analyses. The isolated proteins and the insoluble materials were both subjected to papain digestion for 18-20 h at 60°C [125 μg/ml papain, 10 mM cysteine in sodium phosphate-EDTA pH 6.5 (all from Sigma)], and released sGAGs were quantified with 1.9-dimethyl melibiose [DMMB (Sigma), 16 μg/ml in glycine-NaCl pH 3], as described (Hoemann, 2004), using bovine tracheal chondroitin-4-sulfate (Biocolor) as standard. The OD590-530 was measured with SpectraMax M2. The DNAs isolated with the AllPrep kit and DNAs present in the papain-digest of insoluble materials were quantified using Hoechst 33258 (Sigma, 0.2 μg/ml in Tris.HCl-EDTA-NaCl pH 7.5), as described (Hoemann, 2004). The fluorescence (emission 460 nm, excitation 360 nm) was measured with SpectraMax M2 or Infinite M1000 (Tecan). The amounts of sGAG and DNA from a soluble extract and the corresponding insoluble material were combined to obtain total sGAG and DNA per micromass (μg sGAG/mass, μg DNA/mass), and the amount of sGAG was normalized to the amount of corresponding DNA to determine the active chondrocyte population within each micromass (μg sGAG/μg DNA).
Subcutaneous transplantation of cartilage particles

One to three cartilaginous particles (2-3 mm ‘wet’ diameter), formed by 3D pellet culture for 21-28 days using freshly sorted Flk1+Pdgfrα+ roxarial mesoderm cells were wrapped in one 0.5 cm×1 cm Gelfoam (Pharmacia Upjohn) and transplanted to one or two sites under the dorsal skin of NSG mice. Ten to 12 weeks later, the cartilage/bone particles were harvested, fixed with Z-fix for 4 days, embedded in plastic, sectioned (5 μm), and stained with von Kossa counterstained with van Gieson, or with acid T-Blue [i.e. 0.1% (w/v) Toluidine Blue pH 3.7, 0.1% (w/v) urea (Sigma)]. The transplantation experiments were performed under the regulation of the IACUC for the University of Texas Health Science Center at Houston.

Real-time PCR for gene expression profiling

Total RNAs were purified with RNaseasy Micro Kit or AllPrep RNA/DNA/Protein Mini Kit (Qiagen). Reverse transcription (RT) performed as described (Nakayama et al., 1998; Wang and Nakayama, 2009) was followed by the real-time quantitative PCR analysis using the ABI 7900 system (Applied Biosystems). All experiments were performed in duplicate or triplicate using either ABI SYBR Green Master mix and gene-specific primers, or ABI TaqMan Mix and TaqMan Gene Expression Assay (Applied Biosystems). The gene-specific oligonucleotide primers were purchased from Realtimeprimers.com or synthesized by IDT (supplementary material Table S1) (Takana et al., 2009). The eukaryotic translation elongation factor 1 alpha 1 (Eef1a1) gene was used as a reference gene, and the relative expression values were calculated as described (Wang and Nakayama, 2009). All RT-PCR results are presented as average relative expression levels with the s.d. shown as a thin vertical line. The F-value was determined by the Student’s t-test using Excel or KaleidaGraph software.

Acknowledgements

We acknowledge T. Nakano for providing the Ctnnb1(S33Y)-Mer DNA constructs, Q. Yan for assistance in RT-PCR analyses, N. Matthia for transplantation, A. Hazen, D. Haviland and A. Fryga for cell sorting, S. Amra and M. Starbuck for histological sections and staining, and E. Zsigmond and A. Mitchell for proofreading.

Competing interests

The authors declare no competing financial interests.

Author contributions

J.Z., S.L., S.T., M.T., V.J.-J. and B.W. performed experiments and analysed data, H.N. constructed and provided the complete EBRTcH3 cell system. N.N. designed the research, performed additional experiments, analysed data and completed the preparation of the manuscript.

Funding

This work was supported partly by the Haemopoiesis Therapeutic Focus Fund [P017, P009 to N.N.] from the Australian Stem Cell Centre, by a Startup Fund (N.N.) from The Skeletal System (2004). GSK3 inhibitors: development and therapeutic potential. Nature 479, 479-487.

