CORRECTION

An essential role for LPA signalling in telencephalon development

Timothy J. Geach, Laura Faas, Christelle Devader, Anai Gonzalez-Cordero, Jacqueline M. Tabler, Hannah Brunsdon, Harry V. Isaacs and Leslie Dale

There was an error published in Development 141, 940-949.

Supplementary figures S3, S4 and S5 were incorrect and have been replaced.

The authors apologise to readers for this mistake.
RESEARCH ARTICLE

An essential role for LPA signalling in telencephalon development

Timothy J. Geach¹, Laura Faas², Christelle Devader¹, Anaï Gonzalez-Cordero¹,³, Jacqueline M. Tabler¹,⁴, Hannah Brunsdon², Harry V. Isaacs² and Leslie Dale¹,*

ABSTRACT

Lysophosphatidic acid (LPA) has wide-ranging effects on many different cell types, acting through G-protein-coupled receptors such as LPAR6. We show that Xenopus lpar6 is expressed from late blastulae and is enriched in the mesoderm and dorsal ectoderm of early gastrulae. Expression in gastrulae is an early response to FGF signalling. Transcripts for lpar6 are enriched in the neural plate of Xenopus neurulae and loss of function caused forebrain defects, with reduced expression of telencephalic markers (foxg1, emx1 and nkx2-1). Midbrain (en2) and hindbrain (egr2) markers were unaffected. Foxg1 expression requires LPAR6 within ectoderm and not mesoderm. Head defects caused by LPAR6 loss of function were enhanced by co-inhibiting FGF signalling, with defects extending into the hindbrain (en2 and egr2 expression reduced). This is more severe than expected from simple summation of individual defects, suggesting that LPAR6 and FGF have overlapping or partially redundant functions in the anterior neural plate. We observed similar defects in forebrain development in loss-of-function experiments for ENPP2, an enzyme involved in the synthesis of extracellular LPA. Our study demonstrates a role for LPA in early forebrain development.

KEY WORDS: LPAR6, FGF, ENPP2, Forebrain, Telencephalon, Xenopus

INTRODUCTION

Lysophosphatidic acid (LPA) is a small ubiquitous phospholipid that acts as an extracellular signal and is believed to be involved in numerous physiological and pathological processes. It evokes a wide range of cellular responses from different cell types, including effects on cell proliferation, migration, adhesion, shape changes and death (Noguchi et al., 2009; Skoura and Hla, 2009; Choi et al., 2010). These diverse cellular functions are mediated by at least six members of the large superfamily of G-protein-coupled receptors (GPCR): LPA receptors 1 to 3 (LPAR1-3) belong to the Endothelial differentiation gene (EDG) subgroup, which also includes receptors for the bioactive lipid Sphingosine-1-phosphate, whereas LPA receptors 4 to 6 (LPAR4-6) belong to the Purinergic receptor (P2Y) subgroup, which includes receptors for extracellular Adenosine triphosphate (ATP) and Uridine triphosphate (UTP) (Choi et al., 2010). All six receptors couple to multiple G-protein subtypes that regulate multiple intracellular signalling pathways, including Cyclic adenosine monophosphate (cAMP), Ca²⁺, Mitogen-activated protein (MAP) kinase, and Rho GTPases.

LPAR6 is the most recently characterised member of the family of LPA receptors (Chun et al., 2010). Identified as an orphan GPCR (Kaplan et al., 1993), it was subsequently named P2Y5 because of homology to nucleotide receptors (Webb et al., 1996). However, it failed to elicit detectable responses to extracellular nucleotides (Li et al., 1997). More recently, LPAR6 was shown to be a receptor for LPA, activating Gαi and Gα12/13 G proteins, inhibiting Adenylyl cyclase, phosphorylating ERK1/2, and activating Rho GTPase (Pasternack et al., 2008; Lee et al., 2009; Pasternack et al., 2009; Shimomura et al., 2009b). However, both LPAR6 and LIPH have been observed in families carrying loss-of-function mutations (Kazantseva et al., 2006; Kazantseva et al., 2008). Abnormalities have been described in embryos lacking Ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2; also known as Autotaxin and Lysophospholipase D), a secreted enzyme involved in the synthesis of extracellular LPA (Tokumura et al., 2002; Umezuo-Goto et al., 2002). Enpp2−/−mutant mice fail to complete cranial neural tube closure and exhibit defects in the forebrain and at the midbrain-hindbrain boundary (MHB) (Fotopoulou et al., 2010; Koike et al., 2010; Koike et al., 2011).

LPAR6 receptors are widely expressed in vertebrate embryos, with distinct but overlapping expression patterns (Ohuchi et al., 2008; Massé et al., 2010a). Several LPA receptors are expressed in the developing nervous system (Ohuchi et al., 2008) but loss-of-function studies have provided few clues as to their role in neural development. Only minor phenotypic changes are observed, which presumably reflects redundant functions among LPA receptors (Contos et al., 2000; Contos et al., 2002; Ye et al., 2005; Lee et al., 2008). Abnormalities have been described in the cerebral cortex of Lpar1−/−mutant mice, including a reduction in neuronal progenitors (Estivill-Torrús et al., 2008) – a phenotype consistent with Lpar1 expression in the ventricular zone of the developing cortex (Hecht et al., 1996). Lpar5 is strongly expressed in a subset of neurons in dorsal root ganglia and loss-of-function studies have indicated a role in neuropathic pain (Lin et al., 2012). Severe neural defects have also been described in embryos lacking Ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2; also known as Autotaxin and Lysophospholipase D), a secreted enzyme involved in the synthesis of extracellular LPA (Tokumura et al., 2002; Umezuo-Goto et al., 2002). Enpp2−/−mutant mice fail to complete cranial neural tube closure and exhibit defects in the forebrain and at the midbrain-hindbrain boundary (MHB) (Fotopoulou et al., 2010; Koike et al., 2010; Koike et al., 2011).

In this study, we show that lpar6 is expressed in Xenopus embryos, from late blastulae through to tadpoles, and that loss of function disrupts neural development. Embryos injected with antisense morpholinos (AMO) to lpar6 had greatly reduced expression of telencephalic markers (foxg1, emx1 and nkx2-1) and

Received 15 October 2013; Accepted 25 November 2013
reduced expression of eyefield markers (raf and pax6). Midbrain (en2) and hindbrain (egr2) markers were not affected, demonstrating that defects were restricted to the developing forebrain. Foxg1 expression requires LPAR6 within the ectoderm and not the mesoderm. Remarkably, defects caused by injecting ipar6-AMO were enhanced by also inhibiting FGF signalling, with midbrain (en2) and hindbrain (egr2) markers being greatly reduced in these embryos. This suggests that LPAR6 and FGF signalling interact in anterior neural development. Finally, we show that an AMO targeting Xenopus ENPP2 causes similar defects to those of ipar6-AMO. Our study indicates that LPA signalling is required to specifying cell fates in the anterior nervous system, a role that may involve cooperation with FGF signalling.

RESULTS

Lpar6 is expressed during embryonic development

Scanning expressed sequence tag (EST) databases, we identified Xenopus cDNAs encoding a protein of 345 amino acids, sharing 78% identity with human LPAR6 and only 15-51% identity with human LPAR1-5 (supplementary material Fig. S1). The corresponding gene is nested within the largest intron of the Xenopus rb1 gene and transcribed in the opposite direction (supplementary material Fig. S2), an identical arrangement to that of human LPAR6 and RB1 (Herzog et al., 1996). Sequence conservation and genomic synteny demonstrate that we have identified Xenopus ipar6.

To determine whether ipar6 is expressed during embryonic development we performed reverse transcription polymerase chain reaction (RT-PCR) on staged Xenopus embryos (Fig. 1A). Transcripts were detected from early gastrula (stage 10) through to tadpoles (stage 40), with reduced expression in late gastrulae (stage 13). Microarrays (Branney et al., 2009) showed that ipar6 was transcribed from late blastulae (stage 9), on a similar timescale to fgf8 but preceded the FGF target genes bra and cdx4 (Fig. 1B). RT-PCR found that ipar6 expression was greatest in the marginal zone of early gastrulae, with a low level of expression in the animal hemisphere and no expression in the vegetal hemisphere (Fig. 1C). Whole-mount in situ hybridisation confirmed that ipar6 is expressed in the marginal zone of early gastrulae, with strongest expression above the dorsal blastopore lip (Fig. 2A-C). A bisected embryo shows that expression is localised to the involuting mesoderm (Fig. 2B). We also observed expression in the dorsal-animal hemisphere, the prospective neural plate, of early gastrulae (Fig. 2D). In neurulae, ipar6 is expressed in the neural plate, with strongest expression in anterior regions (Fig. 2E-H). At tailbud stages, ipar6 expression is strongest in the head, branchial arches, notochord and myotome (Fig. 2I,J).

Lpar6 is a direct target of FGF signalling

Lpar6 was previously shown to be positively regulated by FGF signalling (Branney et al., 2009), with expression levels 60-80% lower in gastrulae expressing dominant-negative FGF receptors (Fig. 3A). To confirm this, we isolated animal caps from blastulae (stage 8) and incubated them in media containing FGF4. RT-PCR showed that FGF4-induced expression of ipar6, consistent with the microarray data (Fig. 3B). Lpar6 expression was also induced by Activin (Fig. 3B), a mesoderm-inducing factor belonging to the TGF-β family (Smith et al., 1990). To determine whether ipar6 induction is an immediate-early response to FGF signalling, we incubated animal caps in media containing both FGF4 and cycloheximide (a protein synthesis inhibitor). However, cycloheximide alone induced strong expression of ipar6 in animal caps (data not shown), replicating the effect previously described for chick ipar6 in cultured spleen cells (Kaplan et al., 1993). As an alternative, we sought to determine how quickly induction of ipar6 transcription occurs in response to FGF signalling. Animal caps were incubated in media containing FGF4, then removed at different time points and analysed by RT-PCR for ipar6 transcripts. We detected weak expression of ipar6 after 30 minutes of FGF4 exposure, with stronger expression after 60 minutes (Fig. 3C). Our results show that transcription of ipar6 is an early response to FGF signalling.

Inhibition of LPAR6 disrupts head development

To determine the role of LPAR6 during development we adopted a loss-of-function approach, using antisense morpholino oligonucleotides (AMO1 and AMO2) that inhibit translation of Xenopus lpar6 (Fig. 4A,B). Xenopus embryos were injected at the two-cell stage with 20 ng per blastomere of either AMO1 or AMO2 and the embryos were examined for developmental defects. Neither AMO had any effect on mesoderm formation in early gastrulae (supplementary material Fig. S3). The first defects were observed at early tailbud stages, with stage 28 embryos displaying a reduced anteroposterior axis length (3.4 mm compared with control length of 4.0 mm, t-test P<0.005) and head defects (Fig. 4C-E). Whole-
mount in situ hybridisation showed that both AMO reduced telencephalic expression of foxg1 (Fig. 4F-H). The frequency and severity of head defects were always greater with AMO2, which was used in all subsequent experiments. To demonstrate specificity, we attempted to rescue the head defect by co-injecting 40 ng of AMO2 with human LP AR6 mRNA. Translation of this mRNA is not inhibited by AMO2 (Fig. 4B). Embryos co-injected with 200 pg of LP AR6 mRNA failed to rescue the head defect and embryos injected with 600–800 pg usually died as gastrulae. In two experiments, embryos injected with 400 pg of LP AR6 mRNA survived gastrulation and formed tailbud embryos with a normal head (Fig. 4I-K). We also injected Xenopus tropicalis embryos with a species-specific AMO for lpar6 and obtained tadpoles with a smaller head and reduced foxg1 expression (supplementary material Fig. S4). Our results suggest that forebrain defects are caused by specific inhibition of LPAR6 function.

Inhibition of LPAR6 disrupts neural development

Evidence from the use of the AMO injections suggested that LPAR6 has a role in anterior neural development. We therefore injected two-cell embryos with AMO2 and used whole-mount in situ hybridisation to study neural-specific gene expression. Initially, we injected a single blastomere with 20 ng of AMO2 and observed an increase in the width of sox2 (Fig. 5A,B) and cdx4 (Fig. 5I,J) expression on the injected side of neurulae, coupled with a reduction in epidermal keratin (k81a1) expression (Fig. 5C,D). We also observed loss in expression of snai2, a neural crest marker (Fig. 5E,F), whereas myod1, a mesodermal marker, was unaffected (Fig. 5G,H). Next, we injected 20 ng of AMO2 into each blastomere at the two-cell stage and analysed gene expression in the anterior neural plate. Expression of the telencephalon marker foxg1 was greatly reduced in AMO2-injected neurulae (Fig. 5K,L), whereas the eye field markers rax and pax6 were reduced to a lesser extent (Fig. 5Q-T). The MHB marker en2 (Fig. 5O,P) and the hindbrain marker egr2 (Fig. 5M,N) were expressed at normal levels, although their expression domains appear to have shifted towards the anterior neural plate border. Telencephalon development is regulated by signals from adjacent cells, including FGF8 from the anterior neural ridge (ANR) (Wilson and Houart, 2004; Hoch et al., 2009). We therefore analysed fgf8 expression in AMO2-injected neurulae and observed that it was reduced, both in the ANR and more posteriorly at the MHB (Fig. 5U,V). There was also a reduction in diphospho-ERK (dpERK) staining in the anterior neural plate (Fig. 5W,X), demonstrating that FGF signalling was reduced in AMO2-injected embryos. Loss-of-function experiments demonstrate that LPAR6 is required for forebrain development in Xenopus embryos, perhaps by regulating FGF signalling.

To investigate forebrain development in more detail, we allowed AMO2-injected embryos to develop until tailbud stages (stage 26) and analysed them for telencephalon-specific gene expression (Fig. 6). In addition to foxg1, we also analysed expression of nks2-1, a marker for the ventral telencephalon, and enx1, a marker for the...
LPAR6 is required in the ectoderm for telencephalon development

As lpar6 is expressed in both mesoderm and ectoderm, we wished to determine its germ layer requirement for telencephalon development and initially targeted AMO injections to pairs of blastomeres (5 ng per blastomere) at the eight-cell stage (Fig. 7A). Fate maps (Dale and Slack, 1987; Moody, 1987) have shown that the nervous system is predominantly formed by dorsal-animal blastomeres, whereas the mesoderm that underlies the forebrain is formed by dorsal-vegetal blastomeres (Fig. 7A). AMO2 disrupted tadpole morphology in all four injection sets, but forebrain defects were confined to dorsal-animal injections (Fig. 7B-F). This suggests that LPAR6 is required in both dorsal and ventral regions of the Xenopus telencephalon.

LPAR6 and FGFs act together in head development

While looking at the control of lpar6 expression by FGF signalling, we observed enhanced head defects when embryos were co-injected with 40 ng of AMO2 and dominant-negative FGFR1 (dnfgfr1) mRNA (Fig. 8). Injection of AMO2 alone gave the expected forebrain defects (Fig. 8B), whereas dnfgfr1 mRNA (plus control MO) disrupted posterior development but had no discernible effect on head development (Fig. 8C). Remarkably, embryos co-injected with AMO2 and dnfgfr1 mRNA appeared to lack all head structures (Fig. 8D). This is a more severe phenotype than expected from the individual defects, indicating that LPA and FGF signalling might interact during the development of the anterior nervous system. We repeated this experiment using SU5402, a chemical inhibitor of FGF receptors (Mohammadi et al., 1997). Embryos injected with 40 ng of AMO2 were incubated in 10 μM SU5402, from late blastulae through early tailbud stages. This concentration of SU5402 alone gave an almost identical phenotype to injecting dnfgfr1 mRNA. We also noted that it did not affect expression of lpar6 (data not shown), which we attribute to the late application of the reagent. Embryos were analysed by RT-PCR for expression of the neural plate markers.
foxg1, otx2, rax, en2, egr2 and sox2, and the muscle marker myod1 (Fig. 8E). SU5402 alone had no effect on the expression of any of the neural plate markers tested but greatly reduced expression of myod1, a gene known to be regulated by FGF signalling (Standley et al., 2001; Fisher et al., 2002). AMO2 alone only reduced expression of foxg1 and otx2, the most anteriorly expressed genes tested. By contrast, AMO2-injected embryos treated with SU5402 displayed reduced expression of all five anterior neural plate markers (foxg1, otx2, rax, en2 and egr2), but not the general neural plate marker sox2. Our results indicate that signalling pathways activated by LPAR6 and FGF interact in a redundant fashion to pattern the anterior nervous system.

Inhibition of ENPP2 disrupts forebrain development
To further test the role of LPA in forebrain development we turned to loss-of-function experiments for ENPP2, a secreted phospholipase...
that synthesises extracellular LPA (Tokumura et al., 2002; Umezu-Goto et al., 2002). *Xenopus enpp2* is expressed throughout development and transcripts are enriched in the nervous system of neurulae (Massé et al., 2010b). An AMO targeting the translational start site of both *enpp2a* and *enpp2b* was designed (Fig. 9A) and injected into *Xenopus* embryos with *enpp2a* mRNA. Western blot analysis showed that this AMO efficiently inhibited translation of co-injected mRNA (Fig. 9B). Next, we injected 10 ng of *enpp2* AMO into each blastomere at the two-cell stage and the first defects were detected at the end of neurulation, when AMO-injected embryos were found to be shorter than controls (Fig. 9C,D). The average anteroposterior axis length of AMO-injected embryos was only 72% of that of control embryos (2.9 mm compared to 4.0 mm, t-test, P<0.005). It was also clear that the anterior neural plate had failed to close in most AMO-injected embryos (74%, n=105), consistent with loss-of-function studies in mice (van Meeteren et al., 2006; Fotopoulou et al., 2010; Koike et al., 2011). To determine whether ENPP2 is required for forebrain development, we used whole-mount in situ hybridisation to analyse expression of anterior neural plate markers. Expression of the telencephalic markers *foxg1* (Fig. 9E,F), *nkx2-1* (Fig. 9G,H) and *emx1* (Fig. 9I,J) were greatly reduced in AMO-injected neurulae, whereas expression of the eyefield marker *rax* (Fig. 9K,L) was unaffected. Expression of the midbrain-hindbrain marker *en2* was normal in most embryos but reduced in a small number (Fig. 9M,N). We also observed a reduction in expression of *fgf8* in the ANR and MHB (Fig. 9O,P),

![Fig. 7. LPAR6 is required in the ectoderm.](image)

(A) Schematic diagrams of an eight-cell *Xenopus* embryo, indicating injected blastomere pairs and their normal fate. (B-F) Stage 40 embryos, lateral view (head to left), injected with 5 ng per blastomere of AMO2. (B) Uninjected control embryo (n=50). (C) DA injected embryo with head defect (86%, n=69). (D) DV injected embryo with dorsal defect but a normal head (61%, n=54). (E) VA injected embryo with tail defect but a normal head (76%, n=66). (F) VV injected embryo with defect in the posterior endoderm (arrowhead) but a normal head (60%, n=60). All defects are statistically significant (Fisher’s exact test, P<0.001). (G) Schematic diagram of animal pole (AP) and dorsal marginal zone grafts. (H) RT-PCR analysis for *foxg1*, *sox2* and *odc* expression in AP:DMZ grafts. Grafts were made between uninjected (U) and AMO2-injected (M) fragments. Scale bars: 500 μm. –RT, minus reverse transcriptase control, uninjected stage 19 embryos; AP, animal pole; DA, dorsal-animal; DV, dorsal-vegetal; Ep, epidermis; He, heart; M:M, AMO2-injected AP and AMO2-injected DMZ; M:U, AMO2-injected AP and uninjected DMZ; No, notochord; NP, neural plate; U:M, uninjected AP and AMO2-injected DMZ; U:U, uninjected AP and uninjected DMZ; VA, ventral-animal; VV, ventral-vegetal; WE, stage 19 embryo.

![Fig. 8. LPAR6 and FGF co-regulate neural development.](image)

(A-D) stage 32, lateral view (head to left), injected with 40 ng per blastomere of MO plus or minus 1 ng of dominant-negative FGFR1 (*dnfgfr1*) mRNA. (A) Normal embryo injected with control MO (100%, n=27). (B) AMO2-injected embryo with head defect (81%, n=37). (C) Control MO plus *dnfgfr1*-injected embryo with posterior defect but normal head (92%, n=25). (D) AMO2 plus *dnfgfr1*-injected embryo with both head and posterior defects (100%, n=28). Note that the head defect is more severe than with AMO alone. All defects are statistically significant (Fisher’s exact test, P<0.001). (E) RT-PCR analysis of MO-injected embryos incubated with or without 10 μM SU5402, from stage 9 to stage 16. Embryos were analysed for expression of the *foxg1* and *otx2* (forebrain), *rax* (eyefield), *en2* (MHB), *egr2* (hindbrain), *sox2* (neural plate), *myod1* (skeletal muscle) and *odc* (control). Scale bars: 500 μm. –RT, control-morpholino-injected embryos.
as well as a reduction in dpERK staining in the anterior neural plate (Fig. 9Q,R). Our results demonstrate a role for ENPP2 in anterior neural plate development. These defects are similar to those caused by LPAR6 loss of function (above), confirming a role for LPA signalling in forebrain development.

DISCUSSION

Xenopus LPAR6

In this study we describe *Xenopus* LPAR6, a GPCR for the bioactive lipid LPA (Choi et al., 2010; Chun et al., 2010). We have shown that it is transcribed from late blastulae and enriched in the mesoderm of early gastrulae, with transcription regulated by FGF signalling. The distribution of *lpar6* transcripts in early gastrulae is very similar to that of *fgf4* and *fgf8* (Isaacs et al., 1995; Christen and Slack, 1997; Lea et al., 2009), and to FGF-dependent Extracellular-signal-related kinase (ERK) activity (Christen and Slack, 1999). Transcription is rapidly induced (30 minutes to 1 hour) by FGF4 in blastula stage animal caps and inhibited in early gastrulae by dominant-negative FGF receptors. We also find that *lpar6* is one of the first FGF responsive genes to be transcribed in late blastulae, suggesting that it is transcribed as an immediate-early response to FGF signalling. Inhibition of FGF signalling causes specific defects in posterior mesoderm formation (Amaya et al., 1991; Isaacs et al., 1998) and similar defects have been observed following inhibition of a number of FGF target genes, including *bra* and *cdx4* (Conlon et al., 1996; Isaacs et al., 1998). Surprisingly, we were unable to detect any effect of inhibiting LPAR6 function on mesoderm formation. Either LPAR6 is not an effector of FGF signalling in these processes, or different LPA receptor subtypes can compensate for defective LPAR6 signalling. Transcripts for *lpar1*, *lpar2*, *lpar4* and *lpar5* have been detected in *Xenopus* embryos (Lloyd et al., 2005; Massé et al., 2010a). As different LPA receptor subtypes have been shown to activate similar intracellular signalling pathways within a single cell (Dubin et al., 2010), it is possible that one or more of these *Xenopus* receptors could compensate for defective LPAR6 function at this stage.

LPA is required for anterior neural development

Xenopus *lpar6* is expressed in the neural ectoderm of both early gastrulae and neurulae, and it is in the ectoderm of neurulae that we observed the first defects in loss-of-function experiments. We found that the width of the neural plate was increased throughout its length, as demonstrated by *sox2* and *cdx4* expression. This may be caused by defects in convergent-extension, coordinated cell intercalation that both narrows and extends the neural plate (Elul and Keller, 2000). Further studies will be required to confirm this, but we observed a reduced anteroposterior axis length in *lpar6*-AMO-injected embryos, expected of embryos with defective convergent-extension. However, we note that the neural tube of *lpar6*-AMO-injected embryos is fully closed, whereas neural tube defects are common in embryos with disrupted convergent-extension movements (Wallingford andHarland, 2002). A reduction in the size of the forebrain was also observed in *lpar6*-AMO-injected embryos, as demonstrated by reduced expression of the telencephalic marker *foxg1*. Both dorsal (*emx1* expression) and ventral (*nkx2-1* expression) regions of the telencephalon were affected. We also observed reduced *fgf8* expression and ERK activity (in the ANR and MHB), as well as reduced *rax* and *pax6* expression (in the eyefield). More posterior regions of the brain (*en2* and *egr2* expression) were not affected. Reduced *foxg1* expression was dependent upon...
inhibiting LPAR6 within the ectoderm, indicating that the role of LPAR6 is intrinsic to the developing forebrain. Our results suggest that LPA signalling through LPAR6 is required in the anterior neural ectoderm for telencephalic development.

We observed similar defects in embryos injected with an AMO for ENPP2, a secreted enzyme that synthetises extracellular LPA (Tokumura et al., 2002; Umezu-Goto et al., 2002). *Enpp2* is expressed throughout *Xenopus* development and enriched in the neural plate of neurulae, then the anterior nervous system and neural crest following the completion of neurulation (Massé et al., 2010b). The most obvious defect that we observed following AMO injection was truncation of the anteroposterior axis, which was often accompanied by defects in anterior neural tube closure. Both defects are consistent with a role for ENPP2 in regulating convergent-extension in the neural plate. Further studies will be required to confirm this. We also observed reduced expression of the telencephalic markers *foxg1*, *emx1* and *nkx2-1* in neurulae, indicating that both dorsal and ventral regions of the telencephalon were affected. Both *fgf8* expression and ERK activity was reduced in the anterior neural plate of AMO-injected embryos. In contrast to lpar6-AMO-injected embryos, we did not observe reduced expression of the eyefield marker *rnx*. Our results are consistent with studies on mice homozygous for mutations in *Enpp2*. E8.5 homozygous mutant embryos display defects in the anterior nervous system, both neural tube defects and reduced expression of anterior neural markers (van Meeteren et al., 2006; Fotopoulou et al., 2010). Reduced expression was described for *Otx2*, *Six3*, *Tcf4* and *Fgfr8*, indicating defects in forebrain development (Koike et al., 2011). In contrast to our results in *Xenopus*, expression of the ventral telencephalic marker *Nkx2-1* was not reduced in *Enpp2−/−* mice (Koike et al., 2011). However, we note that reduced expression of *nkx2-1* (but not *foxl1* or *emx1*) in *enpp2*-AMO-injected *Xenopus* embryos was only transient, with expression restored by early tailbud stages (supplementary material Fig. S6). The similarities between the results of loss-of-function studies in *Xenopus* and the mouse suggest a key role for LPA in regulating telencephalon development. Moreover, they suggest that *Xenopus* is an ideal organism for studying these defects. *Xenopus* embryos are accessible at all stages of development and can survive with the vascular defects that kill *Enpp2−/−* mouse embryos by embryonic day (E) 9.5-10.5 (van Meeteren et al., 2006; Fotopoulou et al., 2010).

Functional cooperation between LPAR6 and FGF signalling

The telencephalon is the most anterior region of the vertebrate forebrain and will eventually form the cerebrum, including cerebral hemispheres, olfactory system and basal ganglia. Its development is regulated by numerous signals from organising centres in adjacent regions of the embryo, including the ANR (Hébert and Fishell, 2008; Hoch et al., 2009b). This region is a source for a number of FGF signals, including FGF8, and FGF will induce ectopic *foxg1* expression in the anterior neural plate (Shimamura and Rubenstein, 1997; Eagleson and Dempewolf, 2002). Furthermore, *fgf8* mutant zebrafish and mouse embryos display telencephalic defects (Meyers et al., 1998; Shamugalingam et al., 2000; Walshe and Mason, 2003). In addition, progressively more severe telencephalic defects have been described in mouse embryos with single, double and triple mutations for *Fgfr1*, *Fgfr2* and *Fgfr3* (Paek et al., 2009). These results highlight the importance of FGF signalling for telencephalon development. We note that AMO for both lpar6 and enpp2 reduce *fgf8* expression in the ANR of *Xenopus* neurulae and dPEK activity in the anterior neural plate, demonstrating reduced FGF signalling in the presumptive telencephalon. This suggests an explanation for our results in which LPA signalling is required for *fgf8* expression in the ANR, with reduced expression of *fgf8* being responsible for defects in telencephalic development. However, *fgf8−/-* AMO injection experiments in *Xenopus* have failed to detect a role for FGF8 in forebrain development (Fletcher et al., 2006). This might reflect redundant functions among different FGFs, as both *fgf3* and *fgf8* are required for telencephalon development in zebrafish (Walshe and Mason, 2003).

A link between LPAR6 and FGF signalling in anterior neural development was also demonstrated in experiments in which we inhibited both pathways. *dnFGFR1* disrupts the development of the trunk and tail of *Xenopus* embryos but has very little effect on the head (Amaya et al., 1991; Isaacs et al., 1998). Yet, when combined with inhibition of LPAR6 we observed a dramatic reduction in head development, far greater than the forebrain defects observed by inhibiting LPAR6 alone. We observed the same effect when FGF signalling was inhibited by SU5402, a small molecule inhibitor of FGF receptors (Mohammadi et al., 1997). Phenotypic enhancement, as observed here, is usually an indicator of genetic interaction and probably reflects a degree of functional redundancy. We suggest that LPAR6 and FGF signalling are required throughout the developing brain but only the telencephalon is sensitive to reductions in signalling by LPAR6 alone. Only by inhibiting both pathways is a broader role in brain development revealed. Further studies are required to determine the level at which these signalling pathways interact, but ERK1/2 is a potential candidate. ERK1/2 is a key component of the canonical FGF signalling pathway (Dorey and Amaya, 2010; Pownall and Isaacs, 2010) and also a target of LPAR6 signalling (Lee et al., 2009). Although activation of ERK1/2 in early *Xenopus* embryos is predominantly FGF dependent (LaBonie and Whitman, 1997; Christen and Slack, 1999) a degree of LPAR6 dependency cannot be excluded. How LPA signalling regulates ERK activity in *Xenopus* embryos needs to be explored but it might involve the G protein Ga, as LPA-induced ERK activation in hBRIE 308i cells was blocked by the Ga inhibitor pertussis toxin (Lee et al., 2009). An alternative mechanism is suggested by a study on hair follicle development in mice, which showed that LPAR6 acts through Ga13 to stimulate TNFα converting enzyme (TACE)-mediated ectodomain shedding of TGFα (Inoue et al., 2011). TGFα stimulates ERK activity via the Epidermal growth factor (EGF) receptor. It is of interest that AMO for the EGF-like receptor ERBB4 generates posterior defects similar to those caused by *dnFGFR1*, defects rescued by increasing ERK activity (Nie and Chang, 2007).

Conclusions

Our results show that LPA signalling, acting through the LPAR6 receptor, is required in the initial specification and/or maintenance of the telencephalon, the most anterior region of the vertebrate brain. This is only the second LPAR receptor, after LPAR1 (Estivill-Torrús et al., 2008), that has been shown to have a role in early neural development, even though multiple receptor subtypes are expressed in the developing nervous system (Ohuchi et al., 2008; Massé et al., 2010a). The cellular and molecular basis of this role will require further studies, as will identifying the source of the LPA signals. Previous studies have shown that LPAR6 is required for hair growth in humans, but no evidence for a role in brain function was obtained. Either LPAR6 has evolved different roles in amphibians and mammals, or functional redundancy among the different LPA receptor subtypes masks the role of LPAR6 in mammalian forebrain development.
MATERIALS AND METHODS

Embryo methods

Xenopus laevis embryos were injected at either the two, four or eight-cell stage and incubated at 14-18°C. Animal caps were isolated at stage 8 and cultured in 50% Normal Amphibian Medium containing either 10 μM of *Xenopus* FGF4 (Isaacs et al., 1992) or 10 ng/ml human Activin A (Sigma). Stage 10.5 DMZ and animal cap explants were grafted together and cultured until stage 18. Embryos were incubated in 10 μM SU5402 (Calbiochem) from stage 9 to stage 16. Whole-mount in situ hybridisation was performed using digoxigenin-labelled antisense probes (Sive et al., 2000). Immunostaining was performed using anti-diphospho-ERK (Sigma) (Christen and Slack, 1999). Animal procedures were performed under license, as required by the Animals (Scientific Procedures) Act 1986 (UK).

Sequences and AMO

EST for *Xenopus laevis lpar6* (IMAGE:3420557; Accession number BG552112) and enpp2 (IMAGE:557060; Accession number BQ376035) were purchased from Geneservice (Cambridge, UK) and sequenced. The Accession number for *lpar6* is HF558446, and enpp2 is identical to NM_001087507. *Lpar6* was inserted into pC26 and enpp2 into pC26 myc. AMO for *lpar6* (AMO1, 5′-TACCATTGCTTGATATGCTTAA-3′), AMO2, 5′-CTGCAGATCGTTTCTATTGTAGCTAG-3′, enpp2 (5′-CTGAAATCGTGTGAATCGCCATAG-3′) and standard control (5′-CTGAAATCGTGTGAATCGCCATAG-3′) were purchased from Gene Tools. *Lpar6* AMO were tested by adding 1 μg to an SP6 TNT coupled reticulocyte lysate cell free translation system (Promega), loaded with 1 μg of *lpar6* cDNA and 35S-methionine (GE Healthcare). Products were separated on NuPage 4-12% bis-Tris gels (Invitrogen) and exposed to autoradiographic film (GE Healthcare). Enpp2 AMO was tested by co-injecting Xenopus embryos with 40 ng of AMO and 1 μg of enpp2 myc mRNA. Proteins were isolated at stage 9 and ENPP2 detected by western blot using 9E10 monoclonal antibody (Santa Cruz Biotechnology) (Geach and Dale, 2008). Capped mRNA for human LRPA4 (Janssens et al., 1997), ENPP2 myc, dniFGFR1 (Amaya et al., 1991) and dniFGFR4 (Hongo et al., 1999) were transcribed using the SP6 mMessage mMachine kit (Ambion).

RT-PCR

Total RNA was purified using RNeasy columns (Qiagen) and cDNA synthesised using InvPrm II reverse transcriptase and random primers (Promega). PCR was performed with Taq polymerase (New England Biolabs), using 0.5 μl of cDNA in a final volume of 25 μl for 26-28 cycles. Primers (5′-3′) were used: eg2 (CGGGCCCATCTCAGACCCAGAAA and CGCCCACGGCTGTGGCAGATTGGA and CCGCCTGTGTTGCCAGATTGGA, cttn2 (ATGAGCCGAAATAACAGGAGAGTTGGA and CCTGGCCAGGCATGCTCTCGTGTGGT, fosx1 (AAAGTGGACGGCAAGAGGGCTTG and CCGCCACGGCTGTGGCAGATTGGA, mdo1 (AGGTCCAACTGCTCCGACGGCATGA and AGAGAGGAACTCCATGTGTGGGAAACCA, odc (CACTTGCCTGTGTTGGTGTG and CAACATGTGAAACACTACACCAC, ox2 (GGATGAGTTTGTGCAACCAGTC and CACTCTGGACGCTCTCACCTTC), rax (AGACTGTTGGCTATGGAG and ATACCTGCAACCTGACT), sox2 (GAGGATGGAACCTTACGATGCCCAAC and GCACATGGCTGATTGGAGCA).