DEFECTIVE KERNEL 1 promotes and maintains plant epidermal differentiation

Roberta Galletti¹,*, Kim L. Johnson², Simon Scofield³, Rita San-Bento¹, Andrea M. Watt², James A. H. Murray³ and Gwyneth C. Ingram¹,*

ABSTRACT

During plant epidermal development, many cell types are generated from protodermal cells, a process requiring complex co-ordination of cell division, growth, endoreduplication and the acquisition of differentiated cellular morphologies. Here we show that the Arabidopsis phytocaspain DEFECTIVE KERNEL 1 (DEK1) promotes the differentiated epidermal state. Plants with reduced DEK1 activity produce cotyledon epidermis with protodermal characteristics, despite showing normal growth and endoreduplication. Furthermore, in non-embryonic tissues (true leaves, sepals), DEK1 is required for epidermis differentiation maintenance. We show that the HD-ZIP IV family of epidermis-specific differentiation-promoting transcription factors are key, albeit indirect, targets of DEK1 activity. We propose a model in which DEK1 influences HD-ZIP IV gene expression, and thus epidermis differentiation, by promoting cell adhesion and communication in the epidermis.

KEY WORDS: DEK1, Epidermis, Differentiation maintenance, Arabidopsis thaliana

INTRODUCTION

The production of specific function-adapted organ morphologies in plants is achieved by the exquisitely complex spatial and temporal control of cell proliferation, expansion and differentiation. The importance of this co-ordination is well illustrated in the cotyledon epidermis of Arabidopsis thaliana. To perform its basic functions this cell layer must produce both mature pavement cells (PCs), which can be very large and have a complex morphology, and appropriately spaced pairs of stomatal guard cells, which are tiny and adapted to their role in gas exchange (Glover, 2000). Producing this complex mosaic demands that neighbouring cells co-ordinate their growth.

Epidermal specification and differentiation are linked to the activity of subfamily IV of the plant-specific homeodomain-leucine zipper (HD-ZIP) transcription factors (TFs) (Abe et al., 2003; Depege-Fargeix et al., 2011; Di Cristina et al., 1996; Horstman et al., 2015; Javelle et al., 2011a, 2010; Nakamura et al., 2006; Peterson et al., 2013; Roeder et al., 2012; San-Bento et al., 2014; Takada et al., 2013; Vernoud et al., 2009; Wu et al., 2011; Yang et al., 2011). Cell-cell communication influences both epidermal cell fate decisions and subsequent differentiation (reviewed by Javelle et al., 2011b; Schiefelbein et al., 2014; Takada and Iida, 2014). For example, several receptor-like kinases (RLKs) and ligand-like peptides control patterning of the stomatal lineage (reviewed by Richardson and Torii, 2013) and the CRINKLY4 (CR4) RLK, and its Arabidopsis homologue ACR4, are required for the control of epidermal identity in maize (Becraft et al., 1996) and the expression of HD-ZIP IV genes in Arabidopsis (San-Bento et al., 2014).

DEFECTIVE KERNEL 1 (DEK1) regulates growth coordination and epidermal characters in plants (Becraft et al., 2002; Johnson et al., 2005, 2008; Lid et al., 2002). Loss of DEK1 function causes early embryo lethality in both Arabidopsis and maize (Becraft et al., 2002; Johnson et al., 2005). In Petunia and Arabidopsis, strong downregulation of DEK1 is accompanied by proliferation of disorganised callus-like cells (Ahn et al., 2004; Lid et al., 2005). DEK1 is also required for multicellular development in the moss Physcomitrella patens (Demko et al., 2014; Liang et al., 2013; Perroud et al., 2014). DEK1 has a modular structure, with several predicted transmembrane domains, a linker domain and a cytoplasmically localised C-terminal domain comprising a sequence similar to animal calpains and a C2-like domain (Lid et al., 2002). The complete amino acid substitution in the C2-like domain, and mutant alleles of HD-ZIP IV-encoding genes HDG11 and ATML1, were recently reported to lack sepal giant cells (GCs) (Roeder et al., 2012).

Here we aim to understand the role of DEK1 in epidermis differentiation, and particularly to clarify its relationship with the HD-ZIP IV TFs.

RESULTS AND DISCUSSION

dek1-4 shows protodermal characteristics in cotyledon epidermis but no significant defects in cell expansion, ploidy or cell cycle-related gene expression

We found that the PCs in the adaxial epidermis of dek1-4 were less complex and more homogeneous than in wild-type (WT; Col-0) controls (Fig. 1). Three-day-old Col-0 cotyledon PCs included small cells with almost no lobes, intermediate cells with few lobes and larger, fully interdigitated cells (Fig. 1A). At the same stage, dek1-4 PCs ranged from showing no lobes (polygonal shape) to showing some interdigitation, although less than in Col-0 (Fig. 1B,C). We noted an abnormally high frequency of four-way, or near four-way, junctions (usually found in meristematic cells) in dek1-4 (Fig. 1B,C).

In the dek1-4 mutant, intermediate size and large cells were rounder than WT cells of similar size (Fig. 1D). Despite their shape differences, the average final cell size of PCs in dek1-4 and WT was similar (Fig. 1E). Thus, PCs in dek1-4 have, on average, less complex shapes. This cellular phenotype persisted in fully expanded cotyledons (Fig. 1H,1). Neighbouring PCs in dek1-4 frequently had shared...
straight walls (Fig. 1I) suggesting that they had undergone late divisions (observed in 100% of mutant seedlings, but only twice in 40 WT seedlings analysed). No defect in blade expansion was observed (Fig. 1J), but cotyledons were frequently epinastically curled (Fig. 1G).

Leaf blade curling was described in CYCLIN D3;1 (CYCD3;1)-overexpressing plants, where it was associated with dramatic changes in ploidy distribution (Scofield et al., 2013). However, no significant differences in ploidy distribution were detected between WT and dek1-4 cotyledons (Fig. 1K). Consistent with this, no differences in the expression of CYCD3;1, or other cell cycle-related genes such as LOSS OF GIANT CELLS FROM ORGANS (LGO), SIAMESE (SIM), KIP-RELATED PROTEIN 6 (KRP6), HOBBIT (HBT) or DEL1, which encodes an endocycle inhibiting E2F-like protein, were observed between Col-0 and dek1-4 seedlings (supplementary material Fig. S1). Therefore, the phenotypes observed are not associated with ploidy defects.

DEK1 controls epidermal differentiation via a pathway involving multiple HD-ZIP IV-encoding genes

dek1-4 leaves showed a significantly higher proportion of trichomes with more than three branches than WT controls (Wilcoxon rank sum test, \(P=1.7 \times 10^{-20} \)) (Fig. 2A-C). A similar phenotype was described for hdg11 and hdg12 hdg11 mutants (Nakamura et al., 2006). We analysed the expression of HDG11, HDG12 and of additional HD-ZIP IV genes (ATML1, PDF2, HDG2) in the dek1-4 mutant and found that all genes tested were reproducibly downregulated (Fig. 2D). We then assessed the genetic relationship between DEK1, HDG11 and HDG12. hdg12-2 dek1-4 double mutants showed highly branched trichomes, as seen in the dek1-4 parental
the severity of PC phenotypes (Fig. 3B) and trichome branching defects (Wilcoxon rank sum test: $P=4.24^{-23}$ for line C, $P=3.03^{-23}$ for line L) (Fig. 3C). Aborted trichomes were observed (Fig. 3D) but not included in the statistical analysis.

To study the effects of overexpressing the active form of DEK1 (the CALPAIN domain) on the expression of HD-ZIP IV genes, we used transgenic seedlings harbouring a $pRPS5A::CALPAIN-6XHIS$ construct ($OEX\ [WT]$). Endogenous levels of DEK1 were similar to that of WT plants, but $CALPAIN$ transcript levels (transgene+ endogenous) were several times higher than in Col-0 seedlings (supplementary material Fig. S5). No consistent changes in the expression of HD-ZIP IV genes were observed in these lines compared with WT seedlings (supplementary material Fig. S5), suggesting that HD-ZIP IV gene regulation by DEK1 is either indirect or requires additional factors.

Fine-tuned silencing of DEK1 expression leads to the appearance of dividing GC-like structures in sepals

Two independent homozygous lines in which $amiRDEK1$ expression was triggered only upon DEX application were selected. Induction of $amiRDEK1$ expression lowered DEK1 mRNA levels to about half those detected in control plants (supplementary material Fig. S4). Upon flowering, control sepals showed a classic epidermal structure with GCs surrounded by smaller cells (Fig. 4A). In DEX-grown plants, we observed sepals with few or no GCs, as well as GC-like structures that had undergone late divisions after the onset of differentiation (Fig. 4B-D). Thus, reduced levels of DEK1 affect the maintenance of GC differentiation.

Cell shape defects in dek1-4 are not caused by changes in microtubule behaviour

PC shape is affected in mutants with altered cortical microtubule (CMT) dynamics (Ivakov and Persson, 2013). The $dek1-4$ allele was introgressed into a line harbouring a GFP-TUA6 expression construct (Ueda et al., 1999) and the resulting plants analysed. In WT seedlings, small polygonal PCs have highly oriented CMTs arranged transversely with respect to their long axis, while in more lobed PCs CMTs usually orient more randomly and bundle densely in neck regions. In $dek1-4$, CMTs are mainly oriented perpendicularly to the long axis of the cell (supplementary material Fig. S6B,C). Quantification confirmed that CMTs in mutant PCs are more highly oriented than in WT PCs (supplementary material Fig. S6D).

To test whether their abnormal arrangement in the mutant was due to an inability of CMTs to rearrange their distribution, or was a consequence of cell shape defects, we studied CMT reorganisation upon ablation in cotyledons (Sampathkumar et al., 2014). CMTs in both mutant and WT cotyledons reoriented in cell files surrounding the ablation site (supplementary material Fig. S6E-H), suggesting that CMT dynamics are not disrupted in $dek1-4$. This observation supports the hypothesis that the CMT arrangement in the mutant is a consequence of altered cell shape.

DEK1 activity may define epidermal cell-cell contact zones

A recent study has provided strong evidence that the expression of HD-ZIP IV-encoding genes is maintained by intercellular signalling mediated by ACR4 (San-Bento et al., 2014). We measured the height of epidermal cell contact zones and found that they are less uniform in height in $dek1-4$ than in WT seedlings (supplementary material Fig. S7). Consistent with a defect in epidermal cell adhesion (Singh et al., 2005), we also observed examples of cell separation in the cotyledons of $35S::amiRDEK1$ lines and the abnormal accumulation of callose at epidermal cell boundaries in line, but did not exhibit additional defects. In $dek1-4\cdot hdg11-2$-2 plants we observed no significant additivity of the trichome phenotypes of the two mutants (supplementary material Fig. S2). The sepals of $hdg12-2\cdot dek1-4$ and of $dek1-4\cdot hdg11-2$ mutants resembled those of $dek1-4$ mutants (supplementary material Fig. S3). Together, our results are consistent with multiple HD-ZIP IV proteins acting downstream of DEK1 to regulate epidermal differentiation.

To confirm whether the phenotype of the $dek1-4$ allele is caused by reduced DEK1 activity, we expressed an artificial microRNA (Ossowski et al., 2008) targeted to the DEK1 coding sequence ($amiRDEK1$) under the CaMV 35S promoter and under adexamethasone (DEX)-inducible promoter (Craft et al., 2005; Samalova et al., 2005). T1 35S::amiRDEK1 plants showed similar phenotypes to those reported for $AtDEK1RNAi$ lines (Johnson et al., 2005) and the $deki-4$ mutant (Roeder et al., 2012). Some seedlings had fused cotyledons, discontinuous epidermis and died. Surviving seedlings had PCs with shallow lobes, true leaves with multi-branched trichomes, twisted rosette leaves with elongated petioles and sepals devoid of GCs (supplementary material Fig. S4). Three independent homozygous lines showing reduced expression levels of DEK1 (Fig. 3A) were analysed. The expression levels of all HD-ZIP IV genes previously analysed were not only reduced, but also correlated tightly with the levels of DEK1 transcript (Fig. 3A) and with the severity of PC phenotypes (Fig. 3B) and trichome branching defects (Wilcoxon rank sum test: $P=4.24^{-23}$ for line C, $P=3.03^{-23}$ for line L) (Fig. 3C). Aborted trichomes were observed (Fig. 3D) but not included in the statistical analysis.

To study the effects of overexpressing the active form of DEK1 (the CALPAIN domain) on the expression of HD-ZIP IV genes, we used transgenic seedlings harbouring a $pRPS5A::CALPAIN-6XHIS$ construct ($OEX\ [WT]$). Endogenous levels of DEK1 were similar to that of WT plants, but $CALPAIN$ transcript levels (transgene+ endogenous) were several times higher than in Col-0 seedlings (supplementary material Fig. S5). No consistent changes in the expression of HD-ZIP IV genes were observed in these lines compared with WT seedlings (supplementary material Fig. S5), suggesting that HD-ZIP IV gene regulation by DEK1 is either indirect or requires additional factors.

Fine-tuned silencing of DEK1 expression leads to the appearance of dividing GC-like structures in sepals

Two independent homozygous lines in which $amiRDEK1$ expression was triggered only upon DEX application were selected. Induction of $amiRDEK1$ expression lowered DEK1 mRNA levels to about half those detected in control plants (supplementary material Fig. S4). Upon flowering, control sepals showed a classic epidermal structure with GCs surrounded by smaller cells (Fig. 4A). In DEX-grown plants, we observed sepals with few or no GCs, as well as GC-like structures that had undergone late divisions after the onset of differentiation (Fig. 4B-D). Thus, reduced levels of DEK1 affect the maintenance of GC differentiation.

Cell shape defects in dek1-4 are not caused by changes in microtubule behaviour

PC shape is affected in mutants with altered cortical microtubule (CMT) dynamics (Ivakov and Persson, 2013). The $dek1-4$ allele was introgressed into a line harbouring a GFP-TUA6 expression construct (Ueda et al., 1999) and the resulting plants analysed. In WT seedlings, small polygonal PCs have highly oriented CMTs arranged transversely with respect to their long axis, while in more lobed PCs CMTs usually orient more randomly and bundle densely in neck regions. In $dek1-4$, CMTs are mainly oriented perpendicularly to the long axis of the cell (supplementary material Fig. S6B,C). Quantification confirmed that CMTs in mutant PCs are more highly oriented than in WT PCs (supplementary material Fig. S6D).

To test whether their abnormal arrangement in the mutant was due to an inability of CMTs to rearrange their distribution, or was a consequence of cell shape defects, we studied CMT reorganisation upon ablation in cotyledons (Sampathkumar et al., 2014). CMTs in both mutant and WT cotyledons reoriented in cell files surrounding the ablation site (supplementary material Fig. S6E-H), suggesting that CMT dynamics are not disrupted in $dek1-4$. This observation supports the hypothesis that the CMT arrangement in the mutant is a consequence of altered cell shape.

DEK1 activity may define epidermal cell-cell contact zones

A recent study has provided strong evidence that the expression of HD-ZIP IV-encoding genes is maintained by intercellular signalling mediated by ACR4 (San-Bento et al., 2014). We measured the height of epidermal cell contact zones and found that they are less uniform in height in $dek1-4$ than in WT seedlings (supplementary material Fig. S7). Consistent with a defect in epidermal cell adhesion (Singh et al., 2005), we also observed examples of cell separation in the cotyledons of $35S::amiRDEK1$ lines and the abnormal accumulation of callose at epidermal cell boundaries in
Unlike animal calpains, which exist in many isoforms, DEK1 is a single-copy gene unique to land plants (Liang et al., 2013; Lid et al., 2002). Here we show that defects in DEK1 perturb epidermal cell differentiation via a mechanism affecting the transcription of genes encoding HD-ZIP IV family TFs. The ancestral HD-ZIP IV protein, like DEK1, is thought to have arisen in the common algal ancestor of land plants, where it might have been crucial in the evolution of a specialised outer cell layer with the characteristics necessary for life on land, such as cuticle formation and stomatal development (Zalewski et al., 2013). Apoplastic signalling mediated by ACR4, like DEK1 function, is necessary for the maintenance of HD-ZIP IV gene expression (San-Bento et al., 2014). However, genetic analysis carried out in Arabidopsis and maize (Becraft et al., 2002; Roeder et al., 2012) suggests that DEK1 and ACR4 act in parallel.

A key requirement of the epidermis is that it should be continuous, implying the maintenance of a highly regulated zone of circumferential contact between neighbouring cells. A common feature of phenotypes associated with loss of DEK1 activity is epidermal cell separation, suggesting that DEK1 might regulate this zone of cell-cell contact (Ahn et al., 2004; Johnson et al., 2005; Lid et al., 2005). Here we show that although dek1-4 mutants produce a continuous epidermis, the zone of cell-cell contact between epidermal cells is perturbed, further supporting this hypothesis. We propose that DEK1 influences HD-ZIP IV gene expression, and thus epidermal differentiation, by regulating epidermal cell adhesion, a function that might have been crucial in the successful move of plants onto dry land.

Fig. 3. DEK1 transcript levels correlate with HD-ZIP IV gene expression and with epidermal phenotypes. (A) Gene expression levels in the aerial parts of 6-day-old Col-0 and 3SS:amiRDEK1 seedlings were quantified by qRT-PCR and normalised using the expression of EIF4A. Shown is the average of three independent biological replicates ± s.d. (B) Confocal images of the adaxial side of 4-day-old cotyledons stained with PI. Scale bars: 50 μm. (C) Distribution of branch point numbers in the first and second true leaves of 15-day-old plants. Number of trichomes: n = 507 for Col-0, n = 515 for line E, n = 498 for line C and n = 143 for line L. Red bar, aborted trichomes. (D) Scanning electron micrographs of true leaves from 15-day-old plants. Scale bars: 50 μm.
For tissue imprints, we used an agarose-based method (Mathur and Koncz, 1997). Light micrographs were taken with an Axio Imager.M2 microscope (Carl Zeiss) using DIC optics.

RNA extraction and quantitative gene expression analysis

Seeds were grown vertically for 6 days on square plates and aerial parts harvested. Three independent biological replicates of 15-20 seedlings were used. RNA extraction, DNase treatment and qPCR analysis were carried out as described previously (Xing et al., 2013). Expression levels of each gene, relative to ERF4A, were determined as previously described (Ferrari et al., 2006). Primers used for qRT-PCR analysis are shown in supplementary material Table S1.

Ploidy analysis

Cotyledons were harvested with forceps, chopped with a razor blade in nuclear lysis buffer (Devitte et al., 2007), filtered and stained with DAPI. The nuclei-containing solution was analysed with a Partec ploidy analyser. Three biological replicates (20 cotyledons from ten independent plants for each replicate) were performed.

Competing interests

The authors declare no competing or financial interests.

Author contributions

R.G. and G.C.I. designed the experiments and wrote the paper; R.G., G.C.I., S.S. and A.M.W. performed the experiments; K.L.J. and R.S.-B. generated materials; J.A.H.M. contributed analytic tools.

Funding

R.G. was supported by an Agence Nationale de la Recherche (France) Chaire Excellence [ANR-10-CHEX-0011 - 01 to G.C.I.], R.S.-B. by the Marie Curie ITN SIREN, and A.M.W. by a Victorian Government postdoctoral training fellowship.

Supplementary material

Supplementary material available online at http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.122325/-/DC1

References

Dewitte, W., Scofield, S., Alcasasas, A. A., Maughan, S. C., Menges, M., Braun, N., Collins, C., Nieuwland, J., Prinsen, E., Sundaresan, V. et al. (2007). Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and...

