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fates ahead of morphological distinction. We believe that these
analyses represent a major step in understanding the very first
mammalian embryonic symmetry-breaking process, as a result of
both chance distribution and dynamic transcriptional regulation
before morphological distinction.

RESULTS
Small biases initially rise in two-cell blastomeres following
an approximately binomial distribution pattern
When considering the source of cell-to-cell heterogeneity, there
are two major theoretical models. One is partitioning error, which
occurs when, at cell division, cellular substances are unevenly
distributed into the two daughter cells (Huh and Paulsson, 2011a).
The other is ‘stochastic transcription noise’, which is derived from
random transcriptional starts within each cell cycle (Cai et al., 2006;
Elowitz et al., 2002; Raj et al., 2006). These two models are usually
mixed-up in a real cell system, both contributing to cell-to-cell
heterogeneity, and are therefore very difficult to analyze separately
(Huh and Paulsson, 2011b). However, unlike normal mitotic cell
division during which gene transcription is always active,
mammalian zygotic transcription is mostly silent before the first
embryo cleavage (Li et al., 2013; Tadros and Lipshitz, 2009).
Therefore, the first mammalian embryo cleavage division provides a
unique system in which partitioning error comprises the dominant
source of biases between two-cell blastomeres, and its contribution
to initiation of blastomere-to-blastomere biases can be calculated
mathematically and tested by single-blastomere sequencing data.
By considering mammalian zygotes as a homogenous sphere and
the first embryonic cleavage division as a binomial distribution
system, we calculated the theoretical chance (Eqn 1 in Materials and
Methods) of a biased distribution (with 10%, 15% and 20%

differences between two daughter blastomeres) for a putative
substance with regard to their initial copy numbers, and showed that
the chance of an uneven distribution depends on their initial
quantity (Fig. 1A): the substances present in small quantities are
more likely to be differentially distributed into the two daughter
cells, whereas those present in larger quantities have a greater
chance of being equally divided (Fig. 1A). To test this binomial
model in a real mammalian embryo cleavage division, we analyzed
single-blastomere RNA-seq data from mouse and human two-cell
blastomeres (Tang et al., 2011; Yan et al., 2013). As shown in a
representative two-cell mouse embryo, the overall comparative
transcriptome profile between two-cell blastomeres showed that
highly expressed genes are usually similarly expressed, whereas
differential expression is more often observed for genes with lower
expression (Fig. 1B), which is similar to the mathematical
prediction. To test more stringently the accuracy of this binomial
model in a two-cell embryo, especially the extent of bias distribution
with regard to the copy number of a gene transcript, we next
estimated the transcript numbers in each two-cell mouse blastomere
by combining qPCR and single-cell transcriptome reads (Materials
and Methods). This estimate showed that every five transcripts
approximately equaled one RPKM (reads per kilobase
transcriptome per million reads) value in a two-cell blastomere,
which was similar to what we previously reported (Tang et al.,
2009). Then, by using the estimated transcript number for each
gene, the blastomere-to-blastomere heterogeneity at the transcript
level could be tested against the theoretical curve under binominal
partition (Materials and Methods). The statistics of transcript
partitioning at the two-cell embryo stage showed that the RNA copy
numbers detected in two-cell blastomeres were approximately
aligned with the binomial prediction (Fig. 1C,D; Fig. S1A,B),

Fig. 1. Expression biases in two-cell
blastomeres approximately follow a binomial
distribution pattern. (A) Theoretical curve of
binomial distribution from a homogenous
ancestor, with thresholds of differential
distribution of 10%, 15% and 20% of putative
molecules. (B) Scatter plot comparison analysis
of single-blastomere transcriptomes of two-cell
mouse blastomeres. R, correlation coefficient.
(C,D) Transcript counts in two-cell blastomeres
were tested against the theoretical curve (for 20%
unequal distribution) under binominal partition
and a scale of 1000 counts (C) and 100 counts
(D). Error bars indicate s.e.m., with average
values from four independent embryos.
Correlation coefficient R represents the fitness of
data to the theoretical curve.
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especially when the copy numbers were low (<100) (Fig. 1D;
Fig. S1B). This analysis demonstrated that during the first embryo
cleavage division, small biases initially arise following a binomial
distribution pattern, with the low-quantity transcripts being more
likely to be asymmetrically distributed.

Zygotic transcriptional activation and multiplied partitioning
errors elevate overall blastomere-to-blastomere biases
during embryo development

Once the initial bias is generated in two-cell blastomeres under
binomial partitioning, where will it end? It has been previously
shown that transcription noise is an important source of cell-to-cell
heterogeneity (Raj et al., 2006). Therefore, it is our hypothesis that
the increasing level of zygotic transcriptional activation after the
middle-to-late two-cell-embryo stage should increase the level
of blastomere-to-blastomere bias. To test this hypothesis, we
utilized two methods to analyze quantitatively the stage-specific
blastomere-to-blastomere heterogeneity using single-blastomere
RNA-seq datasets of two-cell mouse embryos at the early, middle
and late stages (Deng et al., 2014) (Fig. 2A).

First, we calculated the expression noise between RNA-seq
technical repeats of one oocyte/blastomere and those from two-cell
blastomeres based on a previously published formula (Swain et al.,
2002) (Eqn 2 in Materials and Methods). This calculation clearly
showed that the extent of blastomere-to-blastomere expression bias
from the early two-cell embryo was higher than that of the single-
oocyte/blastomere technical repeats (Fig. 2B). It can be assumed
that this difference represents the contribution of partitioning error
because early two-cell blastomeres have only just been formed by
cleavage division and zygotic transcription is almost silent at this
stage (Lee et al., 2014) so the contribution of transcriptional noise is
minimal. The early-to-late embryo progression showed an ever
increasing expression bias, which presumably represents the
contribution of transcriptional noise (Fig. 2B) because during this
period there are no cleavage divisions, therefore transcriptional
noise becomes the only source of increased asymmetry. These
analyses dissect the relative contribution of partitioning errors and
transcriptional noise that contribute to transcriptional asymmetry
between two-cell blastomeres in a stage-dependent manner,
supporting the hypothesis illustrated in Fig. 2A.

Our second method for representing blastomere-to-blastomere
expression asymmetry is as follows: for a gene detected in a two-cell

A sources of blastomere-to-blastomere biases

“Partition error” “Transcription noise”

Average gene
expression noise

embryo, one blastomere will show Ej;g., and the other will show
Ej,ver (Where E represents gene expression level), and the value of
Ehigher/ Erower Will Tepresent the extent of asymmetry for this gene
between the two blastomeres. When the two examined blastomeres
are more ‘identical’, the calculated Ejgpe/Ejoyer values for more
genes should be close to 1, whereas if the two blastomeres are more
‘distinct’, more genes will show increased Ej;gjer/Ejoyer values. In
this context, the numbers of genes with 1<Ejoper/Ejoyer<1.5 and
Ejigher/Elower>2 were calculated for each two-cell embryo (early,
middle and late stages) and for the technical repeats (Fig. 2C). The
results clearly showed that the number of genes with 1<Ej,;q,/
Ejpwe<1.5 was highest in the technical repeats and continually
decreased during the early-to-late embryo progression, whereas this
trend was reversed for the number of genes with Ej;gpe//Elgye>2
(Fig. 2C). These analyses confirmed the conclusion drawn from the
data in Fig. 2B, both showing that the first embryo cleavage division
generates blastomere-to-blastomere bias as a result of partitioning
error, and that during the early-to-late two-cell embryo progression,
the blastomere-to-blastomere bias continually increases owing to
zygotic transcriptional activation.

To analyze further the expression asymmetry in four-cell and
eight-cell embryos, we performed a pairwise comparison for all
blastomeres within an embryo to reveal the expression asymmetry
between each pair of blastomeres. As shown in Fig. 3A,B and
Fig. S2, the extent of blastomere-to-blastomere asymmetry showed
an overall increase from the two-cell stage to the eight-cell stage in
both mouse and human embryos, which could be due to continuous
transcriptional activities and multiplied partitioning error (Eqns 3-5
in Materials and Methods; Fig. 3A) during embryo development.

Different trends of transcriptional asymmetry during the two-
to 16-cell embryo stages represents either a monostable or
bistable pattern

In addition to the observed overall increase in gene expression
asymmetry along embryonic development (two-cell to eight-cell
stage) (Fig. 3B; Fig. S2), it is notable that during continuous
embryonic cleavage, the available amount of embryonic sample for
each RNA-seq decreases and this will cause increased technical
noise, especially for genes expressed at a low level (Streets et al.,
2014), which might partially account for the observed asymmetry
increase. Because highly expressed genes are less affected by both
technical noise and partition errors, we further selected a subgroup

Extent of blastomere-to-blastomere
gene expression asymmetry
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Fig. 2. Zygotic transcriptional activation elevates initial blastomere-to-blastomere biases. (A) lllustration of the strategy to analyze separately the two
sources of blastomere-to-blastomere heterogeneity, namely partitioning errors and transcriptional noise, in an early-to-late two-cell embryo in a stage-specific
manner. (B) Blastomere-to-blastomere expression noise calculated with a previously published formula using a single-blastomere transcriptome from an
early-to-late two-cell embryo as well as using technical repeats of RNA-seq data from early blastomeres (Eqn 2 in Materials and Methods). (C) The extent of
blastomere-to-blastomere gene expression asymmetry is represented by Ejigne/Ejower If the gene expression in the two blastomeres is more similar, the value of
Enigher Eiower Will be closer to 1. ***P<0.001; different letters indicate statistical difference, P<0.01; same letters indicate P>0.05; one-way ANOVA.
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Fig. 3. Multiplied partitioning errors and elevated overall blastomere-to-blastomere biases during the two- to 16-cell stages. (A) lllustration showing
that multiplied partitioning errors at each cleavage division drive the continuously increasing cell-to-cell bias, each time creating one daughter cell bearing a higher
quantity of a specific substance and another with a lower quantity of that substance (Eqns 3-5 in Materials and Methods). The graph shows the amplification
effect of a small bias (10% co-efficiency) during the first rounds of cleavage division; G0-3 indicates generations 0-3. (B) Single-blastomere RNA-seq and
blastomere-to-blastomere expression noise in two- to eight-cell embryos in both mouse and human. Each dot represents a comparison of two blastomeres within
one embryo. Datasets from mouse (Deng et al., 2014) and human (Yan et al., 2013) were used for the calculations. Different letters indicate statistical difference,

P<0.01; same letters indicate P>0.05; one-way ANOVA.

of genes from each mouse embryonic stage with both a strong
expression bias (top 20%) and high expression level (top 20%),
which we believe will more faithfully represent the level of
transcription and minimize the potential influence of technical bias
(which affects to a greater degree genes with lower expression). For
these selected genes (highly expression level with strong bias)
(Table S1), we analyzed the trends of blastomere-to-blastomere
asymmetry during the two- to 16-cell stages, and found that the
extent of asymmetry at a certain stage proceeds with two distinct
patterns: for some genes, the extent of asymmetry tends to be
minimized between blastomeres, whereas other genes become
increasingly asymmetrically distributed (Fig. 4A-C). Notably, at the
eight-cell stage, only very few genes with high asymmetry showed
decreased asymmetry onward (Fig. 4C), suggesting that, compared
with two- to four-cell embryos, the transcriptional bias between
eight-cell blastomeres has become increasingly irreversible and
deterministic. Interestingly, for those genes with strong bias
distribution at the 16-cell stage, gene ontology analysis revealed
that most of these genes are cataloged in, for example, ‘positive
regulation of cell differentiation’, ‘positive regulation of
developmental process’ (Fig. 4D), implicating their potential in
directing different cell fates. In addition to the overall analysis, the
actual asymmetry trends of three typical genes were examined
during the two-cell to 16-cell stages: a housekeeping gene (7ubb2c,
which encodes the tubulin beta-2C chain; also known as Tubb4b), a
transcription factor for self-renewal (Pou5f1, also known as Oct4),
and a lineage specifier with a defined role starting at the four-cell
stage (Carml, the histone arginine methylase). Each of these genes
exhibits a different pattern of gene expression asymmetry, which
may be described as overall-flat (Tubb2c), wave-like (Pou5f1)
or ever-increasing (Carml) (Fig. 4E), suggesting dynamic
transcriptional regulation for each gene.

The observed distinct asymmetry dynamics for different genes
are, in general, supposed to be regulated by series of molecular
chain reactions (MacArthur et al., 2012) with either negative or
positive transcriptional circuits. This could be simplified as two
distinct models involving a negative feedback-controlled
‘monostable pattern’ (Fig. 4F) or a positive feedback-controlled
‘bistable pattern’ (Fig. 4G) (Materials and Methods; Fig. S3),

with the latter (such as the pattern of Carml) being a potential
driving force for transcriptional symmetry-breaking in embryo
development.

Clues to cell fate bifurcation may be found in the ratio of
opposing lineage specifiers, which is influenced by cleavage
history and de novo transcription

In a real biological system, the divergence of lineage is usually
decided by more than one factor, and recent evidence from stem cell
research has revealed that lineage specifiers with counteracting
effects work in balance to maintain pluripotency, whereas a tilted
ratio leads to lineage differentiation (Montserrat et al., 2013; Shu
et al., 2013). Such a scenario similarly exists in the context of early
mouse embryos, in which biased lineage-driving forces are crucial
in guiding future cell fates (Bruce and Zernicka-Goetz, 2010). Here,
we proposed that the relative ratio of a pair of opposing lineage
specifiers is influenced by both partitioning error at cleavage
division, and transcriptional regulation within the cell cycle. By
supposing that two lineage specifiers have an initial ratio that
maintains the cell in an undifferentiating state (Fig. SA), we first
calculated the probability of tilting the initial ratio (to an extent of
10%) of opposing lineage specifiers based on partitioning error
(Eqn 6 in Materials and Methods), and showed that the odds of
breaking the initial ratio are inversely correlated with the level of
either one or both substances before cleavage (Fig. 5B), suggesting
that the copy number of lineage specifiers deposited in the previous
cycle can influence their distribution pattern (relative ratio with
other lineage specifiers) in the daughter cells, thus contributing to
the bifurcation of future cell fate.

Transcriptional regulation is another important contributor that
can tilt the ratio of lineage specifiers. For example, Cdx2 and Carm1
are a known pair of lineage specifiers, which guide different cell
fates in mouse early embryo. The expression of Cdx2 at the two- to
four-cell stages is very low (mostly inherited from maternal storage),
but its expression increases drastically in the eight-cell embryo
(Fig. 5C); thus, de novo transcription at this stage becomes the
dominant factor affecting the ratio of Cdx2 to Carm1. Whereas for
Carml, transcription of which increases only mildly at the eight-cell
stage (Fig. 5C), the Carml to Cdx2 ratio is affected by both
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Fig. 4. Trends of transcriptional asymmetry during the two- to 16-cell embryo stages reveals monostable and bistable patterns. (A-D) The trends of
blastomere-to-blastomere asymmetry for genes with high expression level (top 20%) and strong bias (top 20%) at the two-cell (A), four-cell (B), eight-cell

(C) and 16-cell (D) stages. (E) The expression asymmetries of Tubb2c, Carm1 and Pou5f1 were analyzed using single-blastomere expression profiles from two-
cell to 16-cell embryo stages in mouse. The average expression level of each gene in each embryo is normalized to 1, and the relative expression level of each
gene in each blastomere is shown using different shapes/colors, as illustrated. The dispersion degree along the y-axis can be directly visualized in each embryo
and represents the overall extent of expression asymmetry between different blastomeres. Each dot represents the relative value of each blastomere to the
average RPKM of all blastomeres within one embryo. (F,G) Dynamics of single gene expression systems with negative/positive feedback regulation. The change
of protein X over time (dX/dt) can be described by a differential equation which is synthesis rate S* minus degradation rate S™. The top two panels are the plot of
the functions S™ and S~ within the same graph. The lower two panels illustrate the corresponding potential function of the system. From these graphs, there are
one (F) or three (G) intersection points, indicating the steady states in which dX/dt is equal to 0. The directions of the arrows indicate the movement towards
equilibrium. If two arrows move away from each other, this represents an unstable steady state. Therefore, a single gene expression system with negative
feedback regulation (F) has only one stable steady states and a single gene expression system with positive feedback regulation (G) has two stable steady states:
one in which the level of X is low and one in which the level of X is high; the system could shift into either of these two states from the unstable point.

transcripts inherited from previous divisions and those newly wane’ phenomenon regarding the relative ratio of Carml and Cdx2.

transcribed in the current cell cycle.

As Carml and Cdx2 have been reported to direct distinct cell
fates (Jedrusik et al., 2008; Torres-Padilla et al., 2007), it is our
hypothesis that their relative ratio within an eight-cell blastomere
provides clues for the future lineage specification. We therefore
analyzed the relative expression levels of both CarmlI and Cdx2 in
each blastomere from eight-cell mouse and human embryos, and
showed that different eight-cell blastomeres indeed have a ‘wax and
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As shown in Fig. 5D-G, most blastomeres are either dominated by
Carml or Cdx2, suggesting that a predisposed lineage strength has
been formed in these blastomeres. It is notable that some blastomeres
showed a similar expression level of both Carmi and Cdx2, thus
representing an undecided, bi-potent state as suggested previously
(Bruce and Zernicka-Goetz, 2010). According to our analysis, when
these bi-potent blastomeres proceed into next cell cycle, the relative
ratio of Carm1 and Cdx2 could be further tilted as a result of both
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Fig. 5. Cleavage history and de novo transcription contribute to the relative ratio of opposing lineage specifiers. (A) lllustration of the tilted ratio of two
substances as a result of partitioning error. (B) Colors indicate the probability of tilting an initial ratio (10% threshold) of a pair of lineage specifiers with counteracting
functions (Eqn 6 in Materials and Methods). (C) The stage-specific expression level (RPKM value) of Carm1 and Cdx2 during the one- to eight-cell embryo stages.
n=3 for each column. Data used to generate these columns are derived from a previous publication (Xie et al., 2010). (D,E) The RPKM values of Carm? and Cdx2
in each eight-cell blastomere examined from mouse (D) and human (E) embryos. (F,G) The relative ratios of Carm1 and Cdx2 in different eight-cell blastomeres
form distinct lineage strengths in both mouse (F) and human (G) embryos. The graphs in F and G were generated from the raw numbers in D and E,
respectively. Previously published mouse (Deng et al., 2014) and human (Yan et al., 2013) datasets were used to generate the table and figure.

partitioning error and transcriptional regulation, eventually creating a
situation in which one side wins out on the other.

Moreover, we have further provided additional lists of genes
showing the ‘wax and wane’ phenomenon with regard to Carm1 and
Cdx2 in eight-cell blastomeres (Table S2). These genes could be
potential lineage specifiers and their function warrants further
investigations.

Finally, based on our single-blastomere transcriptome data
analysis, a scenario of early transcriptional symmetry-breaking
and lineage specification is summarized in Fig. 6. In this model, a
static view before the final lineage destination will give an
impression of an undecided lineage combat (Fig. 6), showing
a heterogeneous level of opposing transcription factors (i.e. a
‘stochastic appearance’) that could be either inherited from a
previous division or produced by de novo transcription, i.e. also
having a ‘traceable origin’.

DISCUSSION

The mechanisms of early mammalian cell fate determination remain
debatable as it has not yet been established whether the first
bifurcation of cell fate in mammalian embryo emerges randomly at
the morula stage (Dietrich and Hiiragi, 2007, Wennekamp and
Hiiragi, 2012) or if the molecular clues of differentiation emerge
before morphological distinction (Plachta et al., 2011; Tabansky

etal., 2013; Torres-Padilla et al., 2007; Zernicka-Goetz, 2013). In the
present study, our single-blastomere transcriptome analysis of early
embryo development have showed that the earliest blastomere-to-
blastomere biases emerge with the first cleavage division, owing to
random segregation, but subsequent zygotic transcriptional
activation triggers transcriptional regulation that fine-tunes these
small biases in a more defined manner, minimizing or amplifying the
initial biases with negative or positive feedback mechanisms. We
believe that only those transcriptional biases that finally develop into
a bistable pattern (strongly asymmetric between blastomeres), bear
the potential to guide lineage fates. Moreover, our analysis supports a
scenario in which opposing lineage specifiers within an early
blastomere constantly compete with each other based on their relative
ratio, pushing the blastomere onto a predisposed, yet flexible, linecage
track before morphological distinction. These analyses revealed
mammalian early embryo symmetry-breaking as a continuous
process rather than a sudden emergence, with the driving force
involving both chance separation and transcriptional circuits.

As shown in our analysis, at the first cleavage division, small
biases will inevitably arise in a binomial distribution pattern, with
lower-quantity substances bearing a greater chance of being
asymmetrically distributed (Fig. 1A-D). Such quantity-dependent
asymmetric distribution in two-cell blastomeres, in our opinion, is
an important step in resolving the dilemma of how two-cell-stage

3473

DEVELOPMENT


http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.123950/-/DC1

RESEARCH ARTICLE

Development (2015) 142, 3468-3477 doi:10.1242/dev.123950

ICM

A snapshot view
of undecided
lineage combat

ratio-based competition

Inclined
“lineage strength”

> - )
Initial trajectory

>
~ Changed trajectory

-»

Fig. 6. A symmetry-breaking and lineage-competition model involving both random segregation and transcriptional regulation. The partitioning error at each
cleavage division and the transcriptional circuits along embryo development are two major sources for initial generation and subsequent fine-tuning of blastomere-to-
blastomere heterogeneity. These two factors also change the initial ratio of opposing lineage specifiers in mother or daughter blastomeres, thus changing the initial
trajectory of lineage fate. The changes in color density represent the gradually reinforced lineage strength of either side. Note that an undecided impression could be
observed at a static time point, representing a snapshot of the continuous lineage competition. Clues to cell fate bifurcation have been developed by the ratios of
opposing lineage specifiers, with the wax and wane of either side (illustrated by different colors in each sphere) finally leading to the dichotomy of cell fate.

blastomeres can be both ‘identical’ (in totipotency) and ‘different’
(in guiding future lineages) (Zernicka-Goetz, 2006). In a real
biological system such as a zygote, the substance found in greater
quantity is usually required for maintaining basic cell properties,
whereas those present in small amounts are usually elements with
fine-tuning regulatory functions (transcriptional factor, non-coding
RNAs, etc.). Therefore, these regulatory factors tend to be
unequally distributed in two-cell blastomeres as a result of
partitioning errors, which may trigger downstream events that
influence future cell fate. Moreover, apart from the biased
transcript  distribution, it could be repeatedly observed that,
among the two-cell blastomeres (which are generated at the same
time), one cell always divides before the other (Fig. S4),
supporting the idea that at the late two-cell stage, the two-cell
blastomeres already bear slight biological differences regarding
their intrinsic properties.

Recently, it is notable that two groups also used single-
blastomere transcriptome analysis to study the early symmetry-
breaking process. One report showed that as early as the two-cell
embryo stage, some genes have already become strongly
asymmetrically expressed in different blastomeres and it has been
suggested that these genes may be involved in directing future
lineages (Biase et al., 2014). The other report further showed that the
blastomeres have become strikingly variable at eight-cell stage
owing to the amplification effect of transcriptional activities (Piras
et al., 2014). These conclusions are in general in accordance to our
analysis, as we showed an overall increase in blastomere-to-
blastomere biases driven by both zygotic transcriptional activation
and multiplied partitioning errors during ongoing embryonic
cleavage (Fig. 2B,C and Fig. 3A,B). However, when we
performed more stringent analysis by filtering out genes with low
expression, which in large ruled out the influence of technical
biases, we found a more dynamic framework of transcriptional
regulation during the two- to 16-cell stages, showing two distinct
patterns of progression: for some genes, the extent of blastomere-to-
blastomere asymmetry tends to be minimized, displaying a
monostable pattern [in general, the single stable equilibrium in
gene expression dynamics is a result of negative feedback regulation
(Alon, 2007)], whereas for other genes, the extent of asymmetry
becomes increasingly larger, displaying a bistable pattern, as a
result of positive feedback regulation as previously pointed out
(Smits et al., 2006).
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These analyses revealed that although strong biases of transcripts
could be observed in early blastomeres as early as the two- to four-
cell stages, it is not a guarantee that these early observed biases will
be kept at the later embryo stages; alternatively, only those crucial
molecules (mRNA, protein or non-coding RNA) with the ability to
trigger self-reinforcement or gene regulatory feedbacks (Davidson,
2010) bear the ability to drive initial small biases to produce tangible
biological differences.

Despite the observed dynamic transcriptional symmetry-
breaking during early embryo development, we would like to
emphasize that even if a lineage specifier is asymmetrically
distributed between early blastomeres, they could only ‘guide’,
but not ‘decide’ the lineage track until other more definitive clues
such as inner-outer position, cell polarity, cell-cell contacts
(Lorthongpanich et al,, 2012) emerge. However, once a
blastomere has acquired dominant lineage specifiers (for example,
Carml) at the four-cell stage, the chance of keeping the dominant
position in its daughter generation will be higher than those
blastomeres with low level expression. This is, in principle,
consistent with the biological observations that these Carml-
dominant blastomeres showed a biased cell fate as previously
published (Tabansky et al., 2013; Torres-Padilla et al., 2007). Also,
previous experiments have shown that if the transcript of a lineage
specifier is exogenously injected in a subset of blastomeres, it will
guide the lineage direction in a more definite manner (Cockburn
et al., 2013; Jedrusik et al., 2008; Torres-Padilla et al., 2007), most
probably because the injection of exogenous transcripts secured
its dominant expression level, which overwhelms the fluctuations
caused by other factors (such as partitioning error and transcription
regulation) in its daughter cells.

Regarding the lineage competition by opposing lineage specifiers
in the early embryo, it remains unclear at what time the competition
first begins and by what mechanisms the winner steadily establishes
its cell lineage. In the present study, we revealed an interesting
phenomenon that the relative ratio of Carml and Cdx2 (which
guide ICM or TE specifications, respectively) in each eight-cell
blastomere is different, suggesting that inclined lineage strengths
might have been formed in these eight-cell blastomeres. However,
the lineage track in these blastomeres have not been fully decided,
because in the next round of division, the ratio of Carm1 to Cdx2
could be reversed as a result of both random segregation and
transcriptional regulation. Nonetheless, such a ratio-dependent
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lineage battle will continue, until one side finally becomes strong
enough to consolidate its dominant position and define the lineage
fate (Fig. 6) by introducing other more definitive clues, such as
inner-outer position, cell polarity, etc. Similar lineage competition
and wax and wane of opposing lineage specifiers (Fig. 6) may also
exist in the second wave of cell specification of the ICM into the
epiblast and primitive endoderm (Ohnishi et al., 2014), which
would involve both a traceable cell origin from their lineage
ancestors (Morris et al., 2010) and the plasticity to change cell fates
before the final differentiation (Yamanaka et al., 2010).

In summary, our single-blastomere transcriptome analysis
revealed a dynamic transcriptional symmetry-breaking process
occurring far earlier than morphological distinction, contributed to
by both random segregations at each embryo cleavage division and
transcriptional regulatory feedbacks. In the future, more detailed
verification of our analysis with regard to lineage specification will
depend on our improved ability to examine precisely the quantity of
molecules (proteins, RNAs) in an amplification-free manner, such
as by single-molecule fluorescent in situ hybridization detection of
selected genes at single-cell resolution (Itzkovitz et al., 2012) with
time-lapse observation, as well as functional examination of
candidate genes regarding their roles in lineage specification.

MATERIALS AND METHODS

Single-blastomere RNA-seq data of human and mouse
pre-implantation embryos

We analyzed single-blastomere RNA-seq datasets from pre-implantation
human embryos (Yan et al.,, 2013; data available in Gene Expression
Omnibus under accession number GSE36552). Single-blastomere RNA-seq
data from mouse pre-implantation embryos have been previously published
(Tang et al., 2011; Deng et al., 2014; data available in Gene Expression
Omnibus under accession numbers GSE22182 and GSE45719,
respectively). Gene expression was calculated as RPKM (reads per
kilobase transcriptome per million reads; Audic and Claverie, 1997,
Mortazavi et al., 2008).

Mouse embryo collection and in vitro culture under time-lapse
recording

Eight- to ten-week-old C57BL/6 female mice were stimulated to
superovulate by standard methods (Wan et al., 2013) and then mated with
DBA2 male mice. The animal-use protocols in the present study were
approved by the Animal Research Committee of the Institute of Zoology,
Chinese Academy of Sciences. Two-cell embryos were collected and
cultured in vitro in M2 medium under mineral oil, and their progression to
four-cell stage was video recorded by time-lapse microscopy (UltraVIEW
VoX 3D Live-Cell Imaging System). The time lag between the three-cell
and four-cell stages of each embryo was recorded and analyzed.

Clustering of gene noise pattern

Genes with both high noise (top 20%) and relative high expression level (top
20%) at each embryonic stage were selected, and the pattern of these genes’
noise during the progression from two-cell to 16-cell stages was clustered by
Genesis (Sturn et al., 2002), using a hierarchical clustering method, with
‘Complete linkage clustering’ agglomeration parameter in the software.

Gene Ontology (GO) analysis

GO enrichment was analyzed using DAVID (http:/david.abcc.nciferf.gov/).
A hypergeometric test was performed using the default parameters to adjust
the P value.

Model construction and data analysis

Calculating the real counts of mRNAs in one two-cell blastomere

The real count of Hprt in one MII mouse oocyte is ~4829.2, according to a
previous report (Steuerwald et al., 2000), and the relative gene expression of
Hprt between an MII oocyte and a two-cell-stage blastomere was obtained by

real-time PCR. The timing of oocyte and two-cell embryo retrieval was the
same as we previously described (Tang et al., 2011). The calculation showed
that 1 RPKM that corresponded to 4.465 counts for one two-cell blastomere.

Testing the theoretical pattern using experimental data

To test the probability of asymmetrical distribution upon an equal cleavage
division from a homogenous ancestor, we built an integral equation to
approximate the probability (P) of a specific substance with a quantity N to
show the same distribution in the daughter cells as in the mother cell. The
coefficient 6 represents the extent of asymmetry between the two daughter
cells. Eqn (1) is shown below, based on previous publications (Berg, 1978;
Rigney, 1979).

A
(m

In the present equation, we set 6 and all N values as non-negative real
parameters. N, and Nj represent the quantities in daughter cell A and
daughter cell B, respectively. Different values of 6 (10%, 15% and 20%)
were used to simulate the probability curves corresponding to different
quantities of N. (Fig. 1A). Then, we counted the frequency of gene numbers
between two-cell blastomeres under the given threshold 6, with one count
resolution of the real counts of the mRNAs. For Fig. 1C,D and Fig. S1, each
dot represents the average value of four independent embryos.

Ny — N

((14+6)/2)N 1
= ) _ NN /02N gy

(1/2)7N
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Measuring noise between technical repeats and different blastomeres
To measure the noise between technical repeats or two blastomeres, we used
Eqn (2) adapted from a previous publication (Swain et al., 2002):

n 2
g = lz 1/2(NZ + Nj) = [1/2(Nis + Nig)] '

nés [1/2(Nyy + Nig))? @

In this equation, 7,,, represents the average noise of each expressed gene in
two blastomeres, and n is the number of expressed genes. N, and Ng
represent the quantities in cell A and cell B, respectively. i is a positive
integer number. In Fig. 2, The RNA-seq datasets used for analyzing
technical replicates were five mouse oocytes and two four-cell blastomeres
(previously published; Tang et al., 2009); datasets for analyzing single two-
to eight-cell embryo blastomeres were previously published (Deng et al.,
2014). In Fig. 3B and Fig. S2, each dot represents one pair of blastomeres in
a two- to eight-cell embryo. For example, if four blastomeres were
sequenced in a four-cell embryo, this could generate six pairs of
comparisons [C(4,2)=6], thus six dots on the chart.

Multiplied partition error during ongoing cleavage division

Because each cleavage division will generate small biases in a quantity-
dependent manner, as demonstrated in Eqn (1) and Fig. 1A, under constant
cleavage after n times, it will spontaneously generate one daughter cell with
the highest content of a specific substance and another daughter cell with the
lowest content of that substance N. The Njgnes and Ny, in @ daughter cell
after n cleavages can be calculated using Eqns (3) and (4), as shown below.

Nughoot = N - <%> IT0+6) 3)

=1

n

Nowes =N (3) TT(1 - 0. @)

When supposing that each cleavage has the same, unequal coefficient, the
relative levels of a specific substance in each blastomere can be calculated
with Eqn (5):

(I+6)*1—-6""
(1+6) '

The  and n are non-negative integers, and e € [0, n]. When calculating the
substance content for each blastomere after n cleavage divisions, the number

content% =

(5)
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of blastomeres in an embryo after n cleavage divisions is 2”. Under these
conditions, @ should be used C’, (i € [0, n]) times to obtain the content value
for each blastomere. When 6=10%, the relative levels of each blastomere
from two-, four- and eight-cell embryos are determined as demonstrated in
Fig. 3A.

A double integral model to simulate ratio change between two molecules
To test the probability of breaking an initial ratio of a pair of counteracting
lineage specifiers, we built a double integral model in which N and M
represent the two putative lineage specifiers. The probability (P) of N and M
maintaining the initial ratio [with an asymmetry permission coefficient of 6
in the daughter cells (A and B)] after an embryo cleavage division can be
calculated using Eqn (6):

g

e~ Wi/ /172N gy

M, M|~

N
N, N<0> / 1

- ! 1/2)7N
(20NN )
We—wrumm DM s, (6)

(1-(6/2)) (M /N)N,

The method of calculation is the same for daughter cell B. When 6=10%, the
probability density is as shown in Fig. 5B.

Monostable and bistable models

The effect of negative feedback regulation is keeping the expression level
around one stable state (monostable), whereas an auto-activating positive-
feedback loop is able to exhibit bistable states, which may have three fixed
points, including two local stable states (one high and one low) and one
unstable state.

We simulated the monostable and bistable process based on the following

assumptions:

1. The whole process is divided into two parts: determinate dynamics
behavior during the cell cycle and mock process during the cell
division period (Fig. S3). Fluctuations from gene expression are
neglected, i.e. the process of gene expression is considered to be
determinate as is its ordinary differential equation (ODE) dynamics.

2. Duration (or period) of cell cycle T'is long enough that the system state
can reach the corresponding local stable state in each cell cycle. In
mathematical terms, that is y, I'<T.

3. Production of gene expression, i.e. protein and mRNA, are both
considered.

4. The total volumes of the embryo are unchanged in the first six cell
divisions (from one cell to 32 cells). Only this cell period is
considered.

Determinate gene expression process during the cell cycle

An absolutely open loop of gene expression (without any feedback
regulation) is impossible in a real biological system (Smits et al., 2006;
Sprinzak and Elowitz, 2005). According to the regulation effect, genetic
regulation can be divided into two types: positive and negative regulations.
The regulation can be auto-feedback regulation (directed regulation), but
also can be indirect regulation by production of other genes. For simplicity,
we only consider single auto-feedback regulation of the gene expression
network, i.e.:

dm

2 = Fp)—om

dp , (7)
P _ km—1

ar TP

where m and p are mRNA concentration and protein concentration,
respectively, and y and I” are their respective degradation rates; F( p) is the
mRNA transcription rate, which is defined as a function of p; and X is the
translation rate per mRNA. For the mRNA transcription rate F( p), the sign
of dF(p)/dp determines positive or negative feedback regulation; here, we
take it as a Hill-type function F(p)=(k,./(kitp™")tko or F(p)=(kyup"/
(Kitp™))t+k, for the case of negative or positive regulation, respectively.
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Here, k,,,, 1s the maximum transcription rate, n the Hill coefficient, k;; the
Hill constant, and k, the basal transcription rate with ky<<k, .-

The parameter values we selected in simulation were: K=30/4"",
ko=0.1h7", Y=30 h=', I'=1 A", k=10 (Vilar et al., 2002; Zheng et al.,
2011).

Stochastic partitioning at cell division

We only consider the case in which segregation is independent, which
means that each molecule has an independent probability (50%) of being in
either daughter cell. For independent segregation, the partitioning error is
already known to be binomial and could be postulated directly. In stochastic
simulation, we specify a simple dynamic process (Markov process) in which
fluctuations in the stationary state generate binomial partitioning error. The
detailed Markov processes used here are merely mock processes:
partitioning errors for independent partitioning could be calculated from
the irreversible process

(L) = (y—1, L+1)

N (8)

(va) - (y_ 17 L)7
where the process starts with y=x and the partitioning error is calculated at
the end of the process, y=0. The rates have y multiplied to a constant, which
sets a natural boundary such that when y=0, the process spontaneously
terminates, rather than imposing boundary conditions externally. The time
of'the process does not necessarily correspond to any physical interpretation.
By solving the stationary fluctuation-dissipation relations (FDRs), then we
get the statistical partitioning error Q,?=1/(x) (Huh and Paulsson, 2011b).
The simulation result is shown in Fig. S3A-C.

Candidate gene selection with a similar ratio pattern between Carm1 and
Cdx2

We select genes that show an inverse expression relationship with Cdx2
(similar to Carm1), and those showing inverse expression relationship with
Carm]1 (similar to Cdx2) (Table S2) based on the correlation coefficient R of
each gene in three eight-cell embryos. Genes were selected following the
rules below:

exp(candidate gene),
4; = - .
exp(candidate gene); + exp(reference gene a);

9
3 exp(reference gene b); ©)
e exp(reference gene b); + exp(reference gene a);

Array A, lists the percentages between candidate gene and reference gene a
of each blastomere in order number i embryo. j represents the order number
of blastomeres.

Array B; contains the percentages between reference gene b and reference
gene a of each blastomere in order number i embryo. In the present
manuscript, genes a and b can be Carm1(Cdx2) and Cdx2(Carml). The
genes with correlation coefficient R between array 4; and B; >0.7 in every
embryo were selected, deemed as highly correlated with the expression
pattern of reference gene b.

Statistical analysis

Statistical analysis was conducted using GraphPad Prism 6.0 software. One-
way ANOVA was used for statistical analysis. For all statistical analyses, a
value of P<0.05 was considered statistically significant.
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