β-catenin-dependent transcription is central to Bmp-mediated formation of venous vessels

Takeru Kashiwada1,2, Shigetomo Fukuhara1,*, Kenta Terai3, Toru Tanaka1,2, Yuki Wakayama1, Koji Ando1, Hiroyuki Nakajima1, Hajime Fukui1, Shinya Yuge1, Yoshinobu Saito2, Akihiko Gemma2 and Naoki Mochizuki1,4,*

ABSTRACT

β-catenin regulates the transcription of genes involved in diverse biological processes, including embryogenesis, tissue homeostasis and regeneration. Endothelial cell (EC)-specific gene-targeting analyses in mice have revealed that β-catenin is required for vascular development. However, the precise function of β-catenin-mediated gene regulation in vascular development is not well understood, since β-catenin regulates not only gene expression but also the formation of cell-cell junctions. To address this question, we have developed a novel transgenic zebrafish line that allows the visualization of β-catenin transcriptional activity specifically in ECs and discovered that β-catenin-dependent transcription is central to the bone morphogenetic protein (Bmp)-mediated formation of venous vessels. During caudal vein (CV) formation, Bmp induces the expression of aggf1, a putative causative gene for Klippel–Trenaunay syndrome, which is characterized by venous malformation and hypertrophy of bones and soft tissues. Subsequently, Aggf1 potentiates β-catenin transcriptional activity by acting as a transcriptional co-factor, suggesting that Bmp evokes β-catenin-mediated gene expression through Aggf1 expression. Bmp-mediated activation of β-catenin induces the expression of Nr2f2 (also known as Coup-TFII), a member of the nuclear receptor superfamily, to promote the differentiation of venous ECs, thereby contributing to CV formation. Furthermore, β-catenin stimulated by Bmp promotes the survival of venous ECs, but not that of arterial ECs. Collectively, these results indicate that Bmp-induced activation of β-catenin through Aggf1 regulates CV development by promoting the Nr2f2-dependent differentiation of venous ECs and their survival. This study demonstrates, for the first time, a crucial role of β-catenin-mediated gene expression in the development of venous vessels.

KEY WORDS: β-catenin, Venous vessel development, Bmp, Aggf1, Nr2f2, Zebrafish

INTRODUCTION

β-catenin is a transcriptional regulator that mainly acts downstream of Wnt signaling and mediates diverse cellular functions including proliferation, survival and fate determination during embryogenesis, tissue homeostasis and regeneration (Angers and Moon, 2009; Clevers, 2006; Logan and Nusse, 2004; MacDonald et al., 2009). In the absence of Wnt signaling, cytosolic β-catenin is phosphorylated by a destruction complex composed of axin, adenomatous polyposis coli and glycogen synthase kinase 3β, which leads to degradation of β-catenin via the ubiquitin-proteasome pathway. Wnt inhibits the activity of this destruction complex, resulting in the stabilization and nuclear translocation of β-catenin. In the nucleus, β-catenin associates with the T-cell factor (Tcf)/lymphoid enhancer factor family of transcription factors, thereby inducing the transcription of target genes. In addition, β-catenin regulates cell-cell adhesions by linking cadherin molecules to the actin cytoskeleton via α-catenin (Dejana et al., 2008).

β-catenin has been implicated in many aspects of vascular development and maintenance. Mice deficient in β-catenin in endothelial cells (ECs) exhibit embryonic lethality due to defective vascular patterning, increased vascular fragility and impaired cardiac valve formation (Cattelino et al., 2003; Liebner et al., 2004). The phenotypes caused by EC β-catenin deficiency are thought to be attributable to not only the impairment of EC junctions but also the loss of the Wnt/β-catenin pathway. Therefore, it is important to explore the involvement of β-catenin-dependent transcriptional regulation in vascular development by clearly distinguishing the role of β-catenin in gene regulation from that in cell-cell adhesion.

The Wnt/β-catenin pathway promotes sprouting angiogenesis in the central nervous system and controls blood-brain barrier development (Daneman et al., 2009; Liebner et al., 2008; Stenman et al., 2008). Wnt/β-catenin signaling also cooperates with the Notch pathway in vascular development. Notch-regulated ankyrin repeat protein acts as a molecular link between the Notch and Wnt/β-catenin pathways in ECs (Phng et al., 2009). Furthermore, the Wnt/β-catenin pathway potentiates Notch signaling by inducing the expression of Dll4, which modulates vascular remodeling and arterial EC specification during early development (Corada et al., 2010; Yamamizu et al., 2010; Zhang et al., 2011). However, a recent report indicated that Dll4 expression in ECs and subsequent arterial specification are not mediated by the Wnt/β-catenin pathway in vivo (Wythe et al., 2013). Therefore, the role of β-catenin-dependent transcription in vascular development has yet to be elucidated.

It is widely accepted that the optimal way to analyze the role of β-catenin-dependent transcription in ECs during vascular development is to directly visualize its activity exclusively in ECs in vivo. To date, several transgenic (Tg) murine models have been developed to detect the in vivo transcriptional activity of β-catenin (DasGupta and Fuchs, 1999; Maretto et al., 2003). However, these reporter mice do not faithfully reproduce endogenous β-catenin transcriptional activity (Ahrens et al., 2011; Al Alam et al., 2011). In addition, several zebrafish reporter lines that express fluorescent proteins under the control of a β-catenin/Tcf-responsive promoter have been generated (Dorsky et al., 2002; Moro et al., 2012;
Shimizu et al., 2012). However, they might not be suitable for studying β-catenin-dependent transcription in ECs, since the reporter gene expression is not restricted to the vasculature.

We have developed a novel Tg zebrafish line that allows us to visualize the β-catenin transcriptional activity in ECs, revealing β-catenin-mediated transcription in specific parts of the vasculature, including the caudal veins (CVs), in developing embryos. During CV formation, bone morphogenetic protein (Bmp) induces the expression of Angiogenic factor with G patch and FHA domains 1 (Aggf1), which in turn stimulates β-catenin transcriptional activity. Subsequently, activated β-catenin mediates CV formation by promoting venous EC differentiation through the expression of Nuclear receptor subfamily 2, group F, member 2 (Nr2f2, also known as Coup-TFII) and by maintaining their survival.

RESULTS

Development of an EC-specific β-catenin reporter zebrafish line

To monitor the transcriptional activity of β-catenin, we constructed a plasmid encoding a β-catenin-dependent Gal4 driver (Gal4db-TΔC) that contains the β-catenin-binding domain of Tcf4 fused to the DNA-binding domain of Gal4. To ascertain whether this driver can be stimulated by β-catenin, HEK 293T cells were transfected with plasmid encoding Gal4db-TΔC and an upstream activation signal (UAS)-luciferase reporter together with a β-catenin-expressing plasmid. β-catenin overexpression induced luciferase expression in the cells expressing Gal4db-TΔC, but not in those expressing the mutant form Gal4db-TΔC (D16A), which lacks β-catenin binding capacity (supplementary material Fig. S1A). Treatment with BIO, a glycogen synthase kinase 3 inhibitor, potentiated the Gal4db-TΔC-driven reporter gene expression (supplementary material Fig. S1B). These results indicate that reporter gene expression driven by the β-catenin-dependent Gal4 driver reflects the transcriptional activity of β-catenin.

To visualize β-catenin transcriptional activity in ECs, we developed a Tg zebrafish line that expresses a fusion protein containing Gal4db-TΔC, 2A peptide and mCherry (Gal4db-TΔC-2A-mC) under the control of the flI1 promoter. Then, we crossed it with UAS:GFP reporter fish to generate the Tg(flI1:Gal4db-TΔC-2A-mC);(UAS:GFP) line, which we refer to as EC-specific β-catenin reporter fish (Fig. 1A). In EC-specific β-catenin reporter fish with the Tg(flI1:Myr-mC) background, GFP was observed in particular regions of ECs together with mCherry fluorescence (Fig. 1B). However, most of the mCherry-marked blood vessels emitted GFP fluorescence upon heat shock promoter-mediated overexpression of Wnt3a, an activator of canonical β-catenin signaling (Fig. 1B). Furthermore, in BIO-treated embryos most of the ECs exhibited GFP, whereas GFP expression was significantly suppressed by treatment with IWR-1, which promotes β-catenin degradation by stabilizing axin (Chen et al., 2009) (Fig. 1C,D; supplementary material Fig. S1C). These results indicate that the GFP in our EC-specific β-catenin reporter fish line reflects the transcriptional activity of β-catenin in ECs.

Visualization of β-catenin transcriptional activity in ECs during vascular development

We investigated how β-catenin-mediated transcription in ECs is spatiotemporally controlled during vascular development by analyzing our EC-specific β-catenin reporter fish. The GFP signal was first detected in the cranial vessels at 24 h post-fertilization (hpf), and reached a maximum at 36 hpf (Fig. 1E). Consistent with the role of endocardial Wnt/β-catenin signaling in cardiac valve formation (Hurlstone et al., 2003), the GFP signal was detected in endocardial ECs at 48 hpf (Fig. 1E). The ECs in the common cardinal veins also expressed GFP at 36 hpf (Fig. 1E). Furthermore, GFP was observed in the caudal vessels starting at 26 hpf, but this fluorescence was confined to the CV at 48 hpf (Fig. 1E). These observations imply that β-catenin plays a significant role in vascular development.

Crucial role of β-catenin-dependent transcription in CV formation

CV formation involves venous fate specification/differentiation, venous sprouting and remodeling, making it suitable for studying venous vessel formation (Choi et al., 2011; Kim et al., 2012; Wiley et al., 2011). To address the role of β-catenin in CV formation, we first analyzed CV formation during development (supplementary material Fig. S2). The CV primordia initially formed just beneath the caudal artery (CA) at 24 hpf, as previously reported (Choi et al., 2011). Then, the ECs sprouted from the CV primordia to migrate ventrally at 28 hpf, and formed a CV plexus (CVP) at 36 hpf. At 48 hpf, the ECs in the ventral region of the plexus underwent remodeling to establish the CV, while some ECs in the dorsal part of the plexus migrated dorsally to form secondary sprouts. During the next few days of development, the CV plexus relocated ventrally and fused to the CV, while some ECs in the plexus regressed during this process.

To investigate when and where β-catenin-dependent transcription occurs during CV formation, we performed time-lapse imaging of EC-specific β-catenin reporter fish embryos. GFP expression was dramatically induced in the ECs that had just sprouted from the CV primordia (Fig. 2A; supplementary material Movie 1). These GFP-positive ECs migrated ventrally, became located in the ventral part of the CVP, and finally formed the CV (Fig. 2A,B; supplementary material Movie 1). However, GFP fluorescence gradually decreased once the CV had formed, suggesting a transient role of β-catenin-mediated gene expression in CV formation.

To address this hypothesis, we analyzed Tg(flI1:Gal4FF);(flI1:Myr-mC) embryos injected with a UAS:axin,NLS-GFP Tol2 plasmid, which drives the expression of axin and NLS-GFP simultaneously in ECs, and found that axin-overexpressing ECs, in which β-catenin degradation was facilitated, failed to contribute to CV formation (supplementary material Fig. S2B,C). Furthermore, we inhibited β-catenin/Tcf-dependent transcription in ECs by generating Tg(flI1:Gal4FF);(UAS:RFP);(UAS:TΔN-GFP) fish embryos. Expression of dominant-negative Tcf (TΔN-GFP) in these ECs resulted in impairment of CV formation, but did not affect CA formation (Fig. 2C,D). These results indicate the essential role of β-catenin-dependent transcription in CV development but not in CA formation. During CV formation, nuclear fragmentation occurred in the TΔN-GFP-expressing ECs, but not in those expressing NLS-GFP (Fig. 2E,F; supplementary material Movie 2). Among the TΔN-GFP-expressing ECs, most of the cells undergoing nuclear fragmentation were found in the CVP, although a small number of the ECs in the CA also underwent nuclear fragmentation (Fig. 2E,F; supplementary material Movie 2). In addition, TUNEL analyses revealed that TΔN-GFP expression induced EC apoptosis in the CVP, but not in the CA (Fig. 2G,H).

Collectively, these findings indicate that β-catenin-dependent transcription regulates CV formation by promoting the survival of venous ECs, whereas it is not necessary for the survival of arterial ECs.

Activation of β-catenin-dependent transcription by Bmp during CV formation

We next sought to identify the upstream signaling molecules that stimulate β-catenin transcriptional activity during CV formation,
starting with Wnt as the canonical stimulator of β-catenin activity. To inhibit Wnt signaling, we ubiquitously expressed the Wnt antagonist Dickkopf 1 (Dkk1) in the Tg(hsp70l:dkk1-FLAG) and Tg(hsp70l:dkk1-GFP) lines by activating the hsp70l heat shock promoter. When heat shocked at 12 hpf, these Tg embryos displayed a short body axis phenotype (supplementary material Fig. S3A-E), as previously reported (Caneparo et al., 2007). Embryos heat shocked at 24 hpf exhibited caudal fin defects, indicating that Wnt signaling can be functionally inhibited by heat shock promoter-driven expression of Dkk1. However, Dkk1

Fig. 1. Generation of an endothelial cell-specific β-catenin reporter zebrafish line. (A) Schematic representation of the endothelial cell (EC)-specific β-catenin reporter system. (Top) The constructs used to generate the EC-specific β-catenin reporter zebrafish line; (bottom) how the system works. In the absence of upstream signaling, β-catenin undergoes proteasomal degradation in the cytoplasm. Upon induction of the signaling that promotes β-catenin stabilization, β-catenin translocates to the nucleus and binds Gal4db-TΔC, thereby inducing GFP expression. Thus, this fluorescence reflects the transcriptional activity of β-catenin in ECs. Gal4db, DNA-binding domain of Gal4; TΔC, β-catenin-binding domain of Tcf4; 2A, 2A peptide sequence; mC, mCherry; pA, polyadenylation signal; UAS, upstream activation sequence. (B) 3D-rendered confocal stack fluorescence images of 32 hpf Tg(fli1:Gal4db-TΔC-2A-mC);(UAS:GFP);(fli1:Myr-mC) embryos injected without (control) or with hsp70l:wnt3a-FLAG plasmid and heat shocked at 22 hpf for 1 h. (Top) GFP images (β-catenin activity); (bottom) merged images (GFP/Myr-mC) of GFP (green) and mCherry (red). The boxed areas are enlarged in the insets. All confocal fluorescence images are lateral views with anterior to the left unless otherwise described. Myr-mC, myristoylation signal-tagged mCherry. (C) Confocal images of embryos treated with vehicle (control) or IWR-1, an axin-stabilizing compound, from 15-36 hpf, as in B. The boxed areas are enlarged to the right. (D) Fluorescence intensity of GFP in the caudal vein plexus (CVP), as observed in C, relative to that observed in vehicle-treated embryos. Data are means±s.e.m. Control, n=7; IWR-1, n=11. ***P<0.001. (E) Merged fluorescence images (GFP/Myr-mC) of GFP (green) and mCherry (red) in Tg(fli1:Gal4db-TΔC-2A-mC);(UAS:GFP);(fli1:Myr-mC) embryos at 26, 30, 36 and 48 hpf. The boxed areas labeled 1-4 are enlarged to the right, showing (top) GFP images (β-catenin activity) and (bottom) merge of GFP (green) and mCherry (red) (GFP/Myr-mC). Note that green signal that does not overlap with mCherry fluorescence is background autofluorescence of the zebrafish embryos. Panels B, C and E are composites of two or three images, since it was not possible to capture the whole animal at sufficiently high resolution in a single field of view. Scale bars: 100 µm.
Fig. 2. β-catenin-dependent gene expression is required for CV formation. (A) Confocal fluorescence images of a Tg(fli1:Gal4db-TΔC-2A-mC);(UAS:GFP);(fli1:Myr-mC) embryo at 28 hpf and subsequent time-lapse images at the indicated time points. (Left) GFP images (β-catenin activity); (right) merge (GFP/Myr-mC) of GFP (green) and mCherry (red). The boxed areas are enlarged beneath. Arrows indicate β-catenin-dependent transcriptionally active ECs that sprout from the CV primordia. (B) Confocal images of the embryo at 48 hpf, as in Fig. 1B. The boxed areas are enlarged in the center; transverse sections at the arrows are shown to the right. (C) Confocal stack RFP fluorescence images of 48 hpf Tg(UAS:NLS-GFP) and Tg(UAS:TΔN-GFP) embryos with the Tg(fli1:Gal4FF);(UAS:RFP) background. The boxed areas are enlarged (center) and single scanned (right). Note that expression of dominant-negative Tcf, TΔN-GFP, in ECs caused a variety of impairments in CV formation. Embryos with the mild phenotype exhibited no blood circulation in the CV (middle row), whereas those with the severe phenotype lacked the CV (bottom row). Gal4FF, Gal4 DNA-binding domain fused to a duplicated portion of the VP16 transcriptional activation domain; NLS-GFP, nuclear localization signal-tagged GFP. (D) Quantification of the CV phenotypes observed in C, showing the percentage of normal embryos and those with mild and severe phenotypes. The number of embryos analyzed is indicated at the top. (E) Time-lapse confocal imaging of a Tg(fli1:Gal4FF);(UAS:RFP);(UAS:TΔN-GFP) embryo from 30-38 hpf. The merged GFP (green) and RFP (red) images at 30, 34 and 38 hpf are shown in the left column. In the right column, the boxed area in the 34 hpf image is enlarged and subsequent time-lapse images are shown. Arrows indicate ECs undergoing nuclear fragmentation. (F) Percentage of NLS-GFP-expressing and TΔN-GFP-expressing ECs that undergo nuclear fragmentation in the CA and CVP between 30 and 38 hpf. Data are expressed as a percentage of the total number of NLS-GFP-expressing and TΔN-GFP-expressing ECs, and shown as means±s.e.m. NLS-GFP, n=5; TΔN-GFP, n=6. (G) Confocal stack fluorescence images of the 32 hpf Tg(fli1:Gal4FF);(UAS:NLS-GFP) (left) and Tg(fli1:Gal4FF);(UAS:TΔN-GFP) (right) embryos with TUNEL staining. Arrows indicate TUNEL-positive ECs that express TΔN-GFP. (H) Percentage of TUNEL-positive cells among the NLS-GFP- or TΔN-GFP-expressing ECs in the CA and CVP at 32 hpf. Data are means±s.e.m. NLS-GFP, n=10; TΔN-GFP, n=9. CA, caudal artery; CV, caudal vein; CVP, caudal vein plexus. (F,H) ***P<0.01; n.s., not significant. Scale bars: 50 μm.
expression affected neither CV formation nor β-catenin transcriptional activity in the CV (Fig. 3A,B), suggesting that Wnt is not involved in β-catenin activation during CV formation.

We next focused on Bmp signaling, as Bmp regulates sprouting angiogenesis in CV development (Wiley et al., 2011). To investigate the role of Bmp in β-catenin-mediated CV formation, EC-specific β-catenin reporter fish embryos were injected with hsp70l:noggin3 plasmid at the one-cell stage and heat shocked at 24 hpf. Overexpression of the Bmp antagonist Noggin 3 suppressed the transcriptional activity of β-catenin in the CV primordia and the ECs that had just sprouted from the CV primordia at 28 hpf (supplementary material Fig. S3F,G). At 36 hpf, Noggin 3-overexpressing embryos exhibited impaired CVP formation and decreased transcriptional activity of β-catenin in the defective CVP (Fig. 3C,D). By contrast, heat shock promoter-mediated overexpression of Bmp2b resulted in ectopic sprouting of venous ECs from the CVP (Fig. 3C). Importantly, β-catenin-dependent transcriptional activity was clearly observed in these ectopic vessels (Fig. 3C). Furthermore, the number of apoptotic ECs in the CVP was significantly increased by Noggin 3 (Fig. 3E,F). These findings reveal that Bmp stimulates β-catenin activity to regulate CV formation by promoting the survival of venous ECs.

Fig. 3. Bmp stimulates β-catenin transcriptional activity in ECs to regulate CV formation. (A) Confocal fluorescence images of 48 hpf control (no additional Tg) and Tg(hsp70l:dkk1-FLAG) embryos with the Tg(fli1:Gal4dr-TΔC-2A-mC);(UAS:GFP);(fli1:Myr-mC) background heat shocked at 24 hpf for 1 h. (B) Fluorescence intensity of GFP in the CV and CVP, as observed in A, relative to that in control embryos. Data are mean±s.e.m. Control, n=7; Tg(hsp70l:dkk1-FLAG), n=9. (C) Confocal stack fluorescence images of 36 hpf embryos injected without (control) or with hsp70l:noggin3-FLAG or hsp70l:bmp2b-FLAG plasmid and heat shocked at 24 hpf for 1 h, as in A. Transverse sections at the arrows are shown to the right. Arrowheads indicate ectopic venous vessels originating from the CVP. Asterisks indicate CA. (D) Fluorescence intensities of GFP in the CVP of control and hsp70l:noggin3-FLAG-injected embryos, as observed in C, relative to that in control embryos. Data are mean±s.e.m. Control, n=6; hsp70l:noggin3-FLAG, n=8. (E) Confocal images of 32 hpf Tg(fli1:Gal4FF);(UAS:NLs-GFP) embryos injected without (control) or with hsp70l:noggin3-FLAG plasmid, heat shocked at 24 hpf and subjected to TUNEL staining, as in Fig. 2G. (F) Percentage of TUNEL-positive cells among NLs-GFP-expressing ECs in the CVP of the control and hsp70l:noggin3-FLAG-injected embryos as observed in E. Data are mean±s.e.m. Control, n=15; hsp70l:noggin3-FLAG, n=15. (B,D,F) **P<0.01, ***P<0.001; n.s., not significant. Scale bars: 50 μm.
Vascular endothelial growth factor A (Vegfa) stimulates sprouting angiogenesis from the CA (Wiley et al., 2011). Thus, we hypothesized that Vegfa might promote EC survival in the CA. Treatment with Ki 8457 (Kwon et al., 2013), a Vegfa receptor inhibitor, induced nuclear fragmentation of ECs in the CA and intersegmental vessels (ISVs), but not in the CVP (supplementary material Fig. S4). These results indicate that distinct signaling pathways regulate EC survival in the CVP and CA; Bmp promotes EC survival in the CVP through β-catenin, whereas Vegfa maintains EC survival in the CA.

Involvement of Aggf1 in Bmp-induced CV formation

To address how Bmp stimulates β-catenin transcriptional activity and to identify the β-catenin target genes responsible for CV formation, we performed RNA-seq analyses. To identify the genes that are upregulated and downregulated in the ECs with high β-catenin transcriptional activity, GFP-positive and mCherry-positive [β-catenin (+)] ECs and GFP-negative and mCherry-positive [β-catenin (−)] ECs were isolated from the caudal parts of Tg(fli1:Gal4db-TAC-2A-mC);(UAS:GFP);(fli1:Myr-mC) embryos and subjected to RNA-seq analyses (supplementary material Fig. S5). As expected, the β-catenin (+) ECs expressed high levels of β-catenin/Tcf target genes, such as axin2, ccdn2a, ccdn2b, ctnnb1 and tcf7 (Bandapalli et al., 2009; Kioussi et al., 2002; Lustig et al., 2002; Roose et al., 1999) (Table 1). In addition, some of the Bmp signal-responsive genes, such as id1, id2a, id2b, smad6a and smad6b, were highly expressed in the β-catenin (+) ECs (Hollnagel et al., 1999; Ishida et al., 2000) (Table 1), suggesting that β-catenin activity is stimulated by Bmp during CV development. Moreover, venous markers, including dab2, ephb4a, ephb4b, flt4, nrp2a and nr2f2, were highly expressed in the β-catenin (+) ECs (Covassin et al., 2006; Herzog et al., 2001; Sprague et al., 2006; Swift and Weinstein, 2009) (Table 1), suggesting that β-catenin plays a role in venous vessel development.

Analyzing the RNA-seq data revealed that the level of aggf1 expression is higher in β-catenin (+) ECs than in β-catenin (−) ECs (Table 1). AGGF1 was first described as a gene encoding an angiogenic factor and has been implicated as a causative gene for

<table>
<thead>
<tr>
<th>ENSDARG ID</th>
<th>Gene</th>
<th>Description</th>
<th>Reads*</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000014147</td>
<td>axin2</td>
<td>axin 2 (conductin, axil)</td>
<td>35.90 13.61 2.64</td>
</tr>
<tr>
<td>00000035750</td>
<td>ccdn1</td>
<td>cyclin D1</td>
<td>7.26 39.96 0.18</td>
</tr>
<tr>
<td>00000051748</td>
<td>ccdn2a</td>
<td>cyclin D2, a</td>
<td>103.38 34.73 2.98</td>
</tr>
<tr>
<td>00000070408</td>
<td>ccdn2b</td>
<td>cyclin D2, b</td>
<td>5.58 0.48 11.74</td>
</tr>
<tr>
<td>00000014571</td>
<td>ctnnb1</td>
<td>catenin (cadherin-associated protein), beta 1</td>
<td>211.49 90.53 2.34</td>
</tr>
<tr>
<td>00000038672</td>
<td>tcf7</td>
<td>transcription factor 7 (T-cell specific, HMG-box)</td>
<td>15.62 0.41 37.74</td>
</tr>
</tbody>
</table>

Bmp target genes

<table>
<thead>
<tr>
<th>ENSDARG ID</th>
<th>Gene</th>
<th>Description</th>
<th>Reads*</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000040764</td>
<td>id1</td>
<td>inhibitor of DNA binding 1</td>
<td>300.78 133.97 2.25</td>
</tr>
<tr>
<td>00000055283</td>
<td>id2a</td>
<td>inhibitor of DNA binding 2, dominant negative helix-loop-helix protein, a</td>
<td>50.27 35.72 1.41</td>
</tr>
<tr>
<td>00000029544</td>
<td>id2b</td>
<td>inhibitor of DNA binding 2, dominant negative helix-loop-helix protein, b</td>
<td>13.39 1.46 9.15</td>
</tr>
<tr>
<td>00000053209</td>
<td>smad6a</td>
<td>SMAD family member 6a</td>
<td>38.19 5.22 7.32</td>
</tr>
<tr>
<td>00000031763</td>
<td>smad6b</td>
<td>SMAD family member 6b</td>
<td>47.06 12.60 3.73</td>
</tr>
</tbody>
</table>

Venous markers

<table>
<thead>
<tr>
<th>ENSDARG ID</th>
<th>Gene</th>
<th>Description</th>
<th>Reads*</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000031761</td>
<td>dab2</td>
<td>disabled homolog 2 (Drosophila)</td>
<td>665.81 151.85 4.38</td>
</tr>
<tr>
<td>00000040346</td>
<td>ephb4a</td>
<td>eph receptor B4a</td>
<td>33.73 17.40 1.94</td>
</tr>
<tr>
<td>00000027112</td>
<td>ephb4b</td>
<td>eph receptor B4b</td>
<td>21.06 10.44 2.02</td>
</tr>
<tr>
<td>00000015177</td>
<td>flt4</td>
<td>fms-related tyrosine kinase 4</td>
<td>219.98 65.56 3.36</td>
</tr>
<tr>
<td>00000031622</td>
<td>npp2a</td>
<td>neuropilin 2a</td>
<td>88.58 7.02 12.63</td>
</tr>
<tr>
<td>00000040926</td>
<td>nr2f2</td>
<td>nuclear receptor subfamily 2, group F, member 2</td>
<td>115.28 8.94 12.89</td>
</tr>
</tbody>
</table>

Arterial markers

<table>
<thead>
<tr>
<th>ENSDARG ID</th>
<th>Gene</th>
<th>Description</th>
<th>Reads*</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000020164</td>
<td>efnb2a</td>
<td>ephrin B2a</td>
<td>4.82 17.12 0.28</td>
</tr>
<tr>
<td>00000074050</td>
<td>efnb2b</td>
<td>ephrin B2b</td>
<td>1.91 24.94 0.08</td>
</tr>
<tr>
<td>00000017321</td>
<td>kdr</td>
<td>kinase insert domain receptor (a type III receptor tyrosine kinase)</td>
<td>8.30 8.27 1.00</td>
</tr>
<tr>
<td>00000015815</td>
<td>kdrl</td>
<td>kinase insert domain receptor like</td>
<td>102.00 107.25 0.95</td>
</tr>
</tbody>
</table>

EC markers

<table>
<thead>
<tr>
<th>ENSDARG ID</th>
<th>Gene</th>
<th>Description</th>
<th>Reads*</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000075549</td>
<td>cdh5</td>
<td>cadherin 5</td>
<td>78.02 48.07 1.62</td>
</tr>
<tr>
<td>00000054632</td>
<td>fli1a</td>
<td>friend leukemia integration 1a</td>
<td>342.49 189.36 1.81</td>
</tr>
<tr>
<td>00000019371</td>
<td>flt1</td>
<td>fms-related tyrosine kinase 1</td>
<td>4.14 10.56 0.39</td>
</tr>
<tr>
<td>00000028663</td>
<td>tie2 (tek)</td>
<td>endothelium-specific receptor tyrosine kinase 2</td>
<td>145.26 57.03 2.55</td>
</tr>
</tbody>
</table>

Others

<table>
<thead>
<tr>
<th>ENSDARG ID</th>
<th>Gene</th>
<th>Description</th>
<th>Reads*</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000037746</td>
<td>actb</td>
<td>actin, beta 1</td>
<td>4958.56 4414.23 1.12</td>
</tr>
<tr>
<td>00000060109</td>
<td>aggf1</td>
<td>angiogenic factor with G patch and FHA domains 1</td>
<td>29.11 7.65 3.80</td>
</tr>
<tr>
<td>00000011941</td>
<td>bmp2a</td>
<td>bone morphogenetic protein receptor, type II a (serine/threonine kinase)</td>
<td>24.60 2.73 9.01</td>
</tr>
<tr>
<td>00000019728</td>
<td>bmp2aa</td>
<td>bone morphogenetic protein receptor, type 1aa</td>
<td>2.20 2.30 0.96</td>
</tr>
</tbody>
</table>

*Reads per kilobase of exon per million mapped reads.
Klippel–Trenaunay syndrome (KTS), a disorder characterized by venous malformation and hypertrophy of bones and soft tissues (Tian et al., 2004). It was recently reported that Aggf1 mediates the specification of venous EC identity in zebrafish embryos (Chen et al., 2013). Importantly, Major et al. also characterized AGGF1 as a nuclear chromatin-associated protein that participates in β-catenin-mediated transcription in human colon cancer cells (Major et al., 2008). Therefore, we hypothesized that Aggf1 acts downstream of Bmp to stimulate β-catenin transcriptional activity during CV development. To address this possibility, we examined the expression pattern of *aggf1* mRNA in zebrafish embryos. At 24, 30 and 36 hpf, *aggf1* mRNA was predominantly expressed in the

Fig. 4. Aggf1 is involved in Bmp-mediated CV formation. (A) Expression patterns of *aggf1* mRNA in zebrafish embryos at 24, 30 and 36 hpf, as detected by whole-mount *in situ* hybridization. Sense probe was used to confirm the specificity of the hybridization reaction. Regions from the yolk tube to the tail are enlarged beneath. (B) Expression of *aggf1* mRNA in 36 hpf embryos injected without (control) or with hsp70l:noggin3-FLAG or hsp70l:bmp2b-FLAG plasmid and heat shocked at 24 hpf. The caudal regions are enlarged to the right. (C) Confocal stack GFP images of the caudal region of 48 hpf *Tg(fli1:GFP)* embryos injected with control morpholino oligonucleotide (MO) or two independent MOs against *aggf1* (MO1 and MO2). Single-scan confocal images of these embryos are shown to the right. (D) The CV phenotypes observed in C were quantified as in Fig. 2D. (E) Confocal stack fluorescence images of 32 hpf *Tg(fli1:Gal4FF); (UAS:NLS-GFP)* embryos injected with control MO or *aggf1* MO1 and subjected to TUNEL staining, as in Fig. 2G. (H) Percentage of TUNEL-positive ECs among the NLS-GFP-expressing ECs in the CVP of embryos injected with either control MO or *aggf1* MO1 as observed in G. Data are mean±s.e.m. Control MO, n=16; *aggf1* MO1, n=16. (F,H) *P*<0.05, ***P*<0.001; n.s., not significant. Scale bars: 50 μm.
head region (Fig. 4A), as previously reported (Chen et al., 2013). Additionally, its expression was weakly but broadly detected in the trunk region at 24 hpf, and had become more restricted to the vasculature by 30 hpf (Fig. 4A). At 36 hpf, aggf1 expression was confined to the CVP, where β-catenin-mediated transcription actively occurred (Fig. 2A, Fig. 4A). Importantly, aggf1 expression in the CVP was suppressed by Noggin 3, whereas its expression domain was expanded in Bmp2b-overexpressing embryos (Fig. 4B). These results indicate that Bmp induces aggf1 expression in the CVP.

We next investigated whether Aggf1 is responsible for CV formation. Depletion of Aggf1 by two independent morpholino oligonucleotides (MOs) resulted in CV absence and defective CVP formation (Fig. 4C,D). Co-depletion of p53 (also known as Tp53) did not alleviate the CV defects caused by Aggf1 deficiency, although it partially rescued the defective formation of the CVP (supplementary material Fig. S6A,B), indicating that the phenotypes of aggf1 morphants are not due to any MO off-target effects. By contrast, CA formation was unaffected by knockdown of Aggf1 (Fig. 4C; supplementary material Fig. S6A). Although the aggf1 morphants showed some ISV defects, more than 80% of defective ISVs were venous vessels that sprouted from the CVP (venous ISVs, 83.3%; arterial ISVs, 16.7%; n=30) (supplementary material Fig. S6C), suggesting a role of Aggf1 in venous vessel development. Consistent with this, the ectopic formation of venous vessels induced by overexpression of Bmp2b was suppressed by the depletion of Aggf1 (Fig. 4E,F). Furthermore, aggf1 morphants exhibited an increase in EC apoptosis in the CVP as compared with control MO-injected embryos (Fig. 4G,H). Collectively, these results indicate that Bmp induces Aggf1 expression to maintain the survival of venous ECs during CV formation.

The role of Aggf1 in Bmp-induced activation of β-catenin-dependent transcription

To investigate the role of Aggf1 in Bmp-induced activation of β-catenin transcriptional activity, we performed the luciferase assay using a Tcf-responsive reporter construct (TOPflash). Although Aggf1 alone did not stimulate the TOPflash reporter, it synergized with β-catenin to induce reporter gene expression (Fig. 5A). We also tested the effect of Aggf1 on the transcriptional activity of Gal4-β-catenin to explore whether Tcf is required for Aggf1-induced activation of β-catenin. Aggf1 potently increased the transcriptional activity of Gal4-β-catenin, but did not affect that of Gal4-VP16 (Fig. 5B). These results suggest that Bmp induces Aggf1 expression to maintain the survival of venous ECs during CV formation.

Fig. 5. Aggf1 functions downstream from Bmp to stimulate β-catenin transcriptional activity during CV formation. (A) Relative TOPflash/FOPflash activity in HEK 293 cells transfected with empty vector (control) or plasmid encoding either wild-type (WT) or constitutively active (CA) β-catenin together with the empty plasmid (control) or that expressing Aggf1. Data are shown relative to that in the empty vector-transfected cells, as the mean±s.e.m. of three independent experiments. (B) Relative luciferase activity in HEK 293 cells transfected with UAS-luciferase reporter and plasmid encoding either Gal4-β-catenin or Gal4-VP16 to explore whether Tcf is required for Aggf1-induced activation of β-catenin. Aggf1 data are relative to that observed in the empty vector-transfected cells that express Gal4-β-catenin or Gal4-VP16, as the mean±s.e.m. of three independent experiments. (C,D) Confocal images of caudal regions of 36 hpf Tg(fli1:Gal4db-TΔC-2A-mC);(UAS:GFP);(fli1:Myr-mC) embryos injected with control MO or aggf1 MO1, as in Fig. 1B. (E) Fluorescence intensity of GFP in the CVP, as observed in C, relative to that observed in control MO-injected embryos. Data are mean±s.e.m. Control MO, n=11; aggf1 MO1, n=12. (A,B,D,F) *P<0.05, **P<0.01, ***P<0.001; n.s., not significant. Scale bars: 50 μm.
findings suggest that Aggf1 stimulates the transcriptional activity of β-catenin by acting as a transcriptional co-factor.

We ascertained whether Aggf1 enhances β-catenin-mediated transcription in vivo by injecting aggf1-mCherry mRNA into EC-specific β-catenin reporter fish embryos. Overexpression of Aggf1-mCherry resulted in a significant increase in GFP in the CVP, although it did not induce ectopic GFP expression in other parts of the vasculature, indicating that Aggf1 enhances β-catenin transcription specifically in the CVP (Fig. 5C,D). We also found that depletion of Aggf1 suppressed β-catenin transcriptional activity in the defective CVP (Fig. 5E,F; supplementary material Fig. S6D,E). These findings suggest that Aggf1 acts downstream of Bmp to stimulate β-catenin transcriptional activity in the CVP.

DISCUSSION

Analyses of EC-specific β-catenin knockout mice have confirmed the crucial role of β-catenin in vascular development. However, the precise function of β-catenin-mediated gene regulation in vascular development has not been clearly understood, since β-catenin regulates not only gene expression but also the formation of cell-cell junctions. Here, we have demonstrated a novel role of β-catenin in venous vessel development by generating a Tg zebrafish line that allows us to visualize EC-specific β-catenin transcriptional activity.

To date, several Tg animals have been developed to trace the transcriptional activity of β-catenin in ECs. It is noteworthy that this fluorescence is observed in venous ECs. However, this Tg line might not completely reproduce endogenous β-catenin activity in ECs. Although a previous report suggested that Wnt/β-catenin signaling promotes the proliferation of stalk cells during sprouting angiogenesis (Phng et al., 2009), we did not detect GFP signals in endothelial stalk cells. Therefore, the sensitivity of the EC-specific β-catenin reporter fish might not be high enough to detect weak transcriptional activity of β-catenin. However, at a minimum, the β-catenin-dependent transcription that we detected in this study reveals an essential role for β-catenin in CV formation.

Bmp signaling, but not Wnt, stimulates β-catenin transcriptional activity through Aggf1 to regulate CV development. Although Aggf1 was originally identified as a secreted angiogenic growth factor (Tian et al., 2004), it also functions in the nucleus to stimulate β-catenin-dependent gene regulation in vascular tissues. Indeed, Bmp2 induces Aggf1 expression only in the CVP, but not in the other vascular areas. These results suggest that Aggf1 might act as a chromatin remodeling transcriptional co-factor for β-catenin. In addition to inducing the expression of Aggf1, Bmp might stabilize β-catenin and thereby lead to the induction of β-catenin-dependent transcription, since overexpression of Aggf1 enhanced β-catenin transcriptional activity and induced n2f2 expression only in the CVP, but not in the other vascular structures. Indeed, Bmp2 induces β-catenin accumulation in pulmonary artery ECs in vivo (de Jesus Perez et al., 2009). Further studies are needed to confirm these hypotheses.

Consistent with the role of Aggf1 in venous vessel formation, AGGF1 is known to be mutated in KTS, a complex congenital disease characterized by varicosities and venous malformations of the lower limbs (Tian et al., 2004). Moreover, KTS patients develop hypertrophy of bones and soft tissues in addition to the venous abnormalities. It would be interesting to investigate whether AGGF1-mediated activation of β-catenin by Bmp is involved in the development of KTS.

Bmp promotes the survival of venous ECs through β-catenin-mediated gene expression during CV formation. A previous report...
Fig. 6. Bmp regulates CV formation by inducing Nr2f2 expression via β-catenin. (A-E) Expression patterns of nr2f2 mRNA in the caudal regions of 48 hpf embryos. (A) Embryos injected without (control) or with hsp70l:noggin3-FLAG plasmid were heat shocked at 24 hpf. (B) Embryos injected without (control) or with hsp70l:bmp2b-FLAG plasmid were heat shocked at 24 hpf. (C) Tg(fli1:Gal4FF);(UAS:NLS-GFP) and Tg(fli1:Gal4FF);(UAS:TΔN-GFP) embryos. (D) Embryos injected with control MO or aggf1 MO. (E) Control embryos (top left) were injected with aggf1-mCherry mRNA, or incubated with BIO (a glycogen synthase kinase 3 inhibitor), or injected with aggf1-mCherry mRNA and then treated with BIO. (F-H) Confocal stack images of the caudal regions of Tg(fli1:GFP) embryos injected with control MO or nr2f2 E111 MO at 28 (F), 34 (G) and 48 (H) hpf. The boxed areas are enlarged to the right. Note that knockdown of Nr2f2 caused a variety of impairments in CV formation. Embryos with the mild phenotype lacked the CV, but developed the CVP (middle row in H), whereas those with severe phenotypes lacked the CV and exhibited defective CVP (bottom row in H). (I) CV phenotypes observed in F were quantified, as in Fig. 2D. (J,K) Expression patterns of flt4 (J) and fli1a (K) mRNAs in 36 hpf embryos injected with control MO or nr2f2 E111 MO. Regions from the yolk tube to the tail are enlarged beneath. Scale bars: 100 µm.
reported that Bmp suppresses the expression of Prox1, a key regulator of lymphatic development, thereby preventing differentiation of lymphatic ECs (Dunworth et al., 2014). As such, Bmp might regulate venous vessel formation by inducing the differentiation of venous ECs through expression of Nr2f2 and by suppressing the differentiation of lymphatic ECs through downregulation of Prox1. However, the requirement of Nr2f2 for Prox1 expression in embryonic veins has also been reported (Srinivasan et al., 2010; Swift et al., 2014). Thus, further studies are needed to delineate the mechanisms by which Bmp regulates venous and lymphatic development.

In summary, we have successfully visualized the EC-specific transcriptional activity of β-catenin in living animals, and have uncovered a novel role for β-catenin in vascular development (Fig. 7). During CV formation, Bmp induces the expression of Aggf1 in ECs, which leads to the activation of β-catenin-mediated transcription. Activated β-catenin regulates CV formation by promoting the Nr2f2-dependent differentiation of venous ECs and by maintaining their survival.

MATERIALS AND METHODS

Zebrafish husbandry

Zebrafish (Danio rerio) were maintained and bred under standard conditions. Embryos were staged by hpf at 28°C (Kimmel et al., 1995). Animal experiments were approved by the animal committee of the National Cerebral and Cardiovascular Center and performed according to the regulations of the National Cerebral and Cardiovascular Center. Heat shock, MO and mRNA injections and chemical treatments of embryos were undertaken as described in the supplementary Materials and Methods.

Plasmid constructs

Expression constructs were generated as described in detail in the supplementary Materials and Methods.

Transgenic zebrafish lines

Tg(fli1:Gal4UAS-TGCAC2A-mC), Tg(fli1:Myr-mC), Tg(UAS:TAN-GFP), Tg(UAS:NLS-GFP), Tg(fli1:MYC), Tg(hsp70l:dkk1-FLAG) and Tg(fli1:mC) zebrafish lines were generated according to the protocol described previously (Kwon et al., 2013). Other Tg lines were obtained as described in the supplementary Materials and Methods. Genotyping of the Tg lines was by genomic PCR as described in the supplementary Materials and Methods.

Image acquisition, processing and quantification

Embryos were mounted in 1% low-melting agarose pour onto a 35-mm diameter glass-based dish (Asahi Techno Glass) as previously described (Fukuhara et al., 2014) (see supplementary Materials and Methods).

Confocal images were taken with a Fluoview FV1000 confocal upright microscope system (Olympus) equipped with water-immersion 10× (LUMPlanFL, 0.30 NA) and 20× (XLUMPlanFL, 1.0 NA) lenses. The 473 nm and 559 nm laser lines were employed. For confocal time-lapse imaging, images were collected every 10-20 min for 5-12 h. To avoid cross-detection of green and red signals, images were acquired sequentially at 473 nm and 559 nm. Z-stack images were 3D volume rendered with fluorescence mode employing Volocity 3D imaging analysis software (PerkinElmer).

Quantitative analyses of fluorescence intensity, CV defects and ectopic vessel formation were performed as described in the supplementary Materials and Methods.

FACS and RNA-seq analyses

Tg(fli1:Gal4dsb-TGCAC2A-mC);(UAS:GFP);(fli1:Myr-mC) fish embryos were cut along the dorsoventral axis as described in supplementary material Fig. S4. Caudal parts of the embryos were collected, incubated in 0.25% trypsin in phosphate-buffered saline at 28°C for 15 min, and dissociated by gentle pipetting. The dissociated cells were sorted using a FACS Aria III cell sorter (BD Biosciences) and grouped into GFP-positive
mCherry-positive [β-catenin (+)] and GFP-negative mCherry-positive [β-catenin (−)] EC populations.

Total RNA was purified from β-catenin (+) ECs and β-catenin (−) ECs using a NucleoSpin RNA XS kit (Macherey-Nagel) following the manufacturer’s instructions, and subjected to RNA-seq analyses as described in the supplementary Materials and Methods. The RNA-seq data have been deposited at the Sequence Read Archive (SRA) database (NCBI) under accession number SRP051129.

Whole-mount in situ hybridization

Whole-mount in situ hybridization of zebrafish embryos was performed as described previously (Fukuhara et al., 2014).

TUNEL and luciferase reporter assays

EC apoptosis was quantified by TUNEL assay as described in the supplementary Materials and Methods. TOPflash reporter assays were carried out in HEK 293 cells as described in the supplementary Materials and Methods.

Statistical analysis

Data were analyzed using GraphPad Prism software. Data are expressed as the mean±s.e.m., as described in the figure legends. Statistical significance for paired samples and for multiple comparisons was determined by Student’s t-test and by one-way analysis of variance with Tukey’s test, respectively. Data were considered statistically significant at P<0.05.

Acknowledgements

We thank N. Lawson for the fltl promoter and Tg(fli1:GFP) fish; K. Kawakami for the Tol2 system and Tg(ucas:GFP) and Tg(ucas:RFP) fish lines; M. Affolter for Tg(fli1:Gal4FF) fish; M. Hisi for the UAS-GFP reporter and the Gal4FF plasmid; D. Ahrens, M. J., Romereim, S. and Dudley, A. T. provided the Supplementary material available online at http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.115576/-/DC1

Supplementary material

Supplementary material available online at http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.115576/-/DC1

References

