Pericytes in the myovascular niche promote post-natal myofiber growth and satellite cell quiescence

Enis Kostallari1,2, Yasmine Baba-Amer1,3, Sonia Alonso-Martin1,3, Pamela Ngoh1,4, Frederic Relaix1,3,5,6,7, Peggy Lafuste1,3,8 and Romain K. Gherardi1,3,7,*

ABSTRACT

The satellite cells, which serve as adult muscle stem cells, are both located beneath myofiber basement membranes and closely associated with capillary endothelial cells. We observed that 90% of capillaries were associated with pericytes in adult mouse and human muscle. During post-natal growth, newly formed vessels with their neuroglial 2 proteoglycan (NG2)-positive pericytes became progressively associated with the post-natal muscle stem cells, as myofibers increased in size and satellite cells entered into quiescence. In vitro, human muscle-derived pericytes promoted myogenic cell differentiation through insulin-like growth factor 1 (IGF1) and myogenic cell quiescence through angiopoietin 1 (ANGPT1). Diphtheria toxin-induced ablation of muscle pericytes observed following conditional deletion of pericyte Igf1 and Angpt1 genes, respectively. Our data therefore demonstrate that, by promoting post-natal myogenesis and stem cell quiescence, pericytes play a key role in the microvascular niche of satellite cells.

KEY WORDS: Pericytes, Post-natal development, Satellite cell differentiation, Satellite cell quiescence, Skeletal muscle, Mouse, Human

INTRODUCTION

Stem cells reside in specialized environments that regulate their behavior, called stem cell niches. Myogenic stem cells called satellite cells (mSCs) are involved in muscle growth and in regeneration following injury. During the late fetal development period, a basal lamina forms around myofibers (Bröhl et al., 2012; Rosen et al., 1992) and myogenic cells expressing PAX7 and PAX3 adopt the mSC position between the basal lamina and plasma membrane of myofibers (Relaix et al., 2005). mSCs have the potential to provide additional myonuclei to the myofiber or to enter a quiescent state. The mSC fate is tightly regulated by dynamic interplays between mSC intrinsic factors and extrinsic factors constituting the mSC niche (Yin et al., 2013). In undamaged adult muscle, mSCs are quiescent, binding the basal lamina through α7/β1 integrin and the parent fiber sarcolemma through M-cadherin (Yin et al., 2013), but mSCs or their progeny may also interplay by direct contact or paracrine signals with a variety of neighboring supportive cells, including endothelial cells (ECs) (Christov et al., 2007), resident connective tissue cell types, such as poorly defined ‘peri-endothelial’ cells (Abou-Khalil et al., 2009) and FCP4+ fibroblasts (Mathew et al., 2011; Murphy et al., 2011), and blood-borne macrophages (Arnold et al., 2007; Lescaudron et al., 1999; Lu et al., 2011; Sonnet et al., 2006).

At birth, muscle vascularization is rudimentary, with most growing myofibers being unconnected to capillaries during early post-natal development (Sallum et al., 2013), i.e. when mSCs actively proliferate to generate fusion-competent myoblasts for muscle growth (White et al., 2010). By contrast, in adult muscle, mSCs are closely associated to capillary vessels, and reside in a quiescent state in this vascular niche (Christov et al., 2007). The molecular and cellular mechanisms leading to the establishment of a functional vascular niche during development remain poorly defined. During embryonic stages, muscle patterning is governed by large vessel growth-promoting juxta-vascular connective tissue formation at the expense of muscle (Tozer et al., 2007). This progressively splits the initial bud into distinct muscle masses and explains the stereotyped organization of the muscle arterial tree with epimysial arteries feeding arcade arterioles running at the margin of each muscle fascicle (Bloch and Iberall, 1982; Gitiaux et al., 2013). Perimysial arcades produce transverse arterioles that penetrate at a right angle into the fascicle and fork four times before the terminal arteriole level, where six to eight capillaries are formed (Bloch and Iberall, 1982; Gitiaux et al., 2013).

In regenerating muscle, angiogenesis and myogenesis are spatiotemporally coordinated and appear to be regulated by common soluble factors (Christov et al., 2007) such as VEGFA (Williams and Annex, 2004), the master driver of sprouting angiogenesis (Coulats et al., 2005) that also stimulates myogenic cell growth (Chazaud et al., 2003; Christov et al., 2007). Sprouting angiogenesis takes place during late developmental stages and tissue repair (De Smet et al., 2009). In angiogenic sprouts, endothelial tip cells are the leading cells that (1) migrate in response to pro-angiogenic signals, (2) control adjacent ECs in a hierarchical manner to form stalk ECs that maintain connectivity with the parental vessel and (3) release PDGF-B to recruit PDGFRα+ pericytes to stabilize the endothelial tube (Armulik et al., 2011; De Smet et al., 2009).

This stabilizing effect is mediated by angiopoietin (ANGPT) 1 acting on the TIE2 receptor to induce EC quiescence, survival and strong cell-cell contacts (Armulik et al., 2011). This key signaling pathway for vascular homeostasis (Shim et al., 2007; Thomas and Augustin, 2009; Waku et al., 2006) also applies to non-vascular cells (Valable et al., 2003). In particular, ANGPT1:TIE2 signaling regulates the hematopoietic stem cell quiescence (Arar et al., 2004).
In the same way, mSCs express the receptor TIE2 and respond to ANGPT1/TIE2 signaling, in terms of growth inhibition, pro-survival effects and self-renewal (Abou-Khalil et al., 2009). The exact sources of ANGPT1 that targets mSCs remain ill-defined.

Pericytes are mural cells embedded into the capillary basal lamina. There is no truly specific pericyte marker but pericytes typically express neuroglial 2 proteoglycan (NG2) (Ozerdem et al., 2001). They are detected at highly variable EC:pericyte ratios in different tissues, and are important for angiogenesis, microvasculature structure integrity and blood flow regulation (Armulik et al., 2011). Pericytes in skeletal muscle biology had been neglected until their recognition as mesenchymal stem cells with myogenic potential (Amos et al., 2008; Crisan et al., 2008; Dellavalle et al., 2007). Based on markers and morphology, pericytes are heterogeneous (Bondjers et al., 2006). In particular, muscle pericytes have been subtype according to the expression of nestin, with type 1 nestin 'NG2-' pericytes, which are profibrotic and adipogenic, and type 2 nestin 'NG2+' pericytes, which have myogenic potential (Birbrair et al., 2013). The stem cell properties of pericytes may have potential therapeutic applications (Dellavalle et al., 2011; Morgan and Muntoni, 2007) and physiological relevance (Dellavalle et al., 2011). Here, we have investigated the role of pericytes in the mSC niche by analyzing their spatiotemporal and functional relationships with mSCs during muscle post-natal growth.

RESULTS

Post-natal angio-myogeneration

Temporal relationships between post-natal myogenesis and angiogenesis were analyzed on cross-sections of the gastrocnemius muscle of C57BL/6J mice, using immunostaining for PAX7 (mSCs), CD31/PECAM (ECs) and the proliferation marker Ki67. The number of CD31+ capillaries increased from 8 to 100 per 100 myofibers from P1 to P31. At the same time, myofibers increased in size, their caliber growing from less than 10 µm to over 24 µm from P1-P9 to P15-P31 (Fig. 1A). Meanwhile PAX7+ mSCs dramatically decreased from 54 to 6 per 100 myofibers from P1 to P22-P31 (Fig. 1B). PAX7/Ki67 double immunostaining showed a decrease in proliferating mSCs from more than 25 PAX7+ Ki67+ cells per 100 myofibers at P1 to none at P31, demonstrating the progressive entry of mSCs into a generalized quiescent state (Fig. 1B).

To control the specificity of the NG2 marker in post-natal mouse skeletal muscle, we examined the immunohistochemical expression of NG2, laminin 1, CD34 and CD31 in adult TA and gastrocnemius muscles. NG2+ cells were almost always unequivocally identified as pericytes in capillaries and smooth muscle cells in arterioles. We never detected NG2+ expression in PAX7+ mSCs or in fibroblasts expressing CD34 and devoid of laminin 1 basement membrane. No NG2+ cells co-expressed the CD31 EC marker. During post-natal microvascular growth into the endomysium, NG2− cell coverage of capillaries remained stable, with a mean of 78 pericyte nuclei per 100 EC nuclei from P1 to P16 (Fig. 1C). The ratio increased at P22 to the adult value of 90±8 per 100, assessing concurrent microvascular vascular growth arrest and maturation (Fig. 1C,D). Triple immunostaining for PDGFRβ/CD146/NG2 compared with single NG2 immunostaining produced similar quantitative results at P1, P3, P5, P8, P16, P22 and P60 (data not shown).

Spatial relationships between pericytes and mSCs were examined using NG2/PAX7 double immunostaining. During post-natal development, pericytes were initially remote from mSCs (Fig. 1E) with only 24% of PAX7+ mSCs being at less than 5 µm from a NG2+ cell (Fig. 1F). Then pericytes progressively entered in the close vicinity of a growing proportion of mSCs (Fig. 1E), reaching a plateau at the end of muscle microvascular growth with 73% of mSCs being found at less than 5 µm from a pericyte at P22 (Fig. 1F). Strikingly, this novel microvascular organization set up correlates with the progressive establishment of mSCs quiescence (Fig. 1B), and is in line with the non-random association between capillaries and adult mSCs (Christov et al., 2007). Taken together with myofiber growth and angiogenesis kinetics (Fig. 1A), these results indicate that during post-natal days, pericytes associated with growing microvessels are initially remote from actively cycling mSCs, and, as microvessels extend and mature, progressively enter in the mSC vicinity while mSCs either fuse with growing myofibers or become mitotically quiescent.

Progressive reduction of the distance between pericytes and mSCs was similarly observed in humans from 2 months of age to adulthood using double immunostaining for α smooth muscle actin (αSMA), a marker of human pericytes (Ozerdem et al., 2001), and CD56/NCAM, a marker of human mSCs (Fig. 1G). Confocal microscopy allowed 3D visualization of intimate proximity of NG2+ pericytes and CD56+ mSCs, allowing paracrine signaling (Fig. 1H). Triple immunostaining for NG2, CD56 and merosin/laminin 2, a myofiber basal lamina marker, did not detect conspicuous basal lamina interruption, allowing direct cell contacts in homeostatic muscle (Fig. 1I).

Pericyte subtyping was carried out using nestin immunostaining. Both nestin− and nestin+ cells were found among NG2+ cells (Fig. 1J), but most adult PAX7+ mSCs were associated with nestin− cells (Fig. 1K). Similar proportions of NG2− (72%) and nestin− (76%) cells found in the vicinity of mSCs confirmed that pericytes in mSC niche are type 2 pericytes (Birbrair et al., 2013). On these grounds, co-cultures under conditions avoiding cell-cell contacts and possible confusion with pericyte myogenic differentiation were used to characterize the functional influence of human microvascular cells on human mSC behavior.

The dual effect of pericytes on MPC behavior

Functional interactions between either ECs or pericytes with myogenic cells were first assessed using indirect co-cultures. Human mSC-derived myogenic progenitor cells (MPCs) were conventionally extracted after pronase digestion using anti-CD56-coupled magnetic beads, and plated at normal density (3000 cells/cm²) in the lower chamber of culture wells, whereas the upper compartment, separated by a porous filter, was seeded with human umbilical vein ECs, human microvascular ECs or muscle pericytes. As previously reported (Christov et al., 2007), the two EC types induced strikingly similar increase in mSC-derived MPC growth (data not shown), and, therefore, human umbilical vein ECs were used and referred to as ECs in further experiments. Cells extracted from fresh human muscle tissue explants (Dellavalle et al., 2007), plated three or four times, and sorted as CD146+ and CD56+ using microbeads, were referred to as muscle pericytes as they expressed NG2, CD146, PDGFβ and αSMA, as reported by Crisan et al. (2008), and were negative for CD45 (haematopoietic lineage cells), CD31 (ECs), CD56 (mSCs), desmin (skeletal and smooth muscle cells) and CD34 (fibroblasts and other interstitial cells).

ECs, compared with other MPCs used as controls, showed strong stimulatory effect on MPC growth in the lower chamber (+64% after 10 days of co-culture, P<0.0001) (Fig. 2A,B). By sharp contrast, pericytes significantly decreased MPC growth (~27%, P<0.0001). ECs increased the MPC fusion index in proportion to MPC density after 10 days of co-culture. By contrast, pericytes strongly stimulated myotube formation while decreasing MPC growth, suggesting a specific pro-differentiation effect (Fig. 2A,C). This
Fig. 1. See next page for legend.
was supported by RT-qPCR, showing significant upregulation of the myogenic differentiation factors MYOD1 and myogenin (Fig. 2D). Notably, pericytes directly co-cultured with ECs in the upper chamber at a 2:3 ratio, which mimics the in vivo ratio during the post-natal period, had even stronger pro-differentiation effects on MPCs, as assessed by both the increased fusion index (Fig. 2A, C) and upregulation of MYOD1 and myogenin mRNA (Fig. 2D). Thus, indirect co-cultures suggested that ECs may induce MPC proliferation of activated mSCs, and pericytes promote the differentiation of reserve precursor cells to myogenic precursors. Vascular cell factors with the uPAR. Several of these factors have previously been shown to exert different effects on myogenic cells. Vascular cell factors with the highest cognate receptor expression by human MPCs were identified using mRNA profiling of 84 receptor genes. Pericyte-CM showed increases in 14 molecules (ANGPT1, IGF1 as pericyte effectors not significantly increased compared with UCM (Table 1).

To examine whether MPC cycle arrest was related to quiescence or to differentiation, EdU detection after 10 days was coupled with various immunostainings: EdUHigh and EdUVery high cells expressed PAX7 (82.8%) but only a small minority expressed proliferation and differentiation markers (11.6% KI67, 18.4% MYOD1 and 13.2% myogenin (MPCs)), indicating that pericyte-induced EdU-retaining cells were mostly reserve cells (Fig. 3D). In summary, in addition to promoting myotube formation, pericytes induce MPC quiescence.

ANGPT1 and IGF1 as pericyte effectors

To detect secreted factors that may mediate EC and pericyte effects on mSCs, 121 cytokines and growth factors were screened by ELISA on 48 h culture supernatants. Compared with UCM, pericyte-CM showed increases in 14 molecules (ANGPT1, TGFβ1, PI GF, IGF1, HGF, MCP1, GRO, angiogenin, MIF, SGP130, TIMP1, uPAR, VEGFA and osteoprotegerin) and EC-CM showed increases in 18 molecules (ANGPT2, PDGF-BB, TGFβ1, TGFβ2, FGF6, EGF, BMP4, MCP1, GRO, angiogenin, IL8, IL1RA/ST2, I-TAC, MIF, SGP130, sRNF RII, TRAIL R3 and uPAR). Several of these factors have previously been shown to exert different effects on myogenic cells. Vascular cell factors with the highest cognate receptor expression by human MPCs were identified using mRNA profiling of 84 receptor genes. Pericyte-CM contained only two factors with receptors highly expressed by MPCs (Table 1): IGF1, a key factor in muscle differentiation and growth (Duan et al., 2010); and ANGPT1, a factor that promotes stem cell quiescence (Abou-Khalil et al., 2009). These factors remained similarly secreted when pericytes were co-cultured with ECs at a 2:3 ratio to mimic the in vivo situation (data not shown). In EC-CM, ANGPT1 and IGF1 were, respectively, undetectable and not significantly increased compared with UCM (Table 1).

Whole-genome transcript analysis of mSCs performed after GFP-based FACs sorting from muscle of PAX7CreER-T2 mice showed that mSCs differentially express receptors of the pericyte products during post-natal development (Fig. 4A-D). Consistent with progressive post-natal mSC entry in quiescence, transcription of IGF1R and the downstream insulin signaling pathway factors involved in protein synthesis decreased progressively from post-natal P1 to P28, whereas IGF2 transcription progressively increased together with the downstream MAPK pathway molecules previously shown to mediate ANGPT1: TIE2 pro-quiescence effects on MPCs (Abou-Khalil et al., 2009).

Functional involvement of pericyte-released IGF1 and ANGPT1 was analyzed and compared with the two EC factors with the highest level of constitutive expression of cognate receptors in mSCs (Table 1), including ANGPT2, a natural ANGPT1 antagonist that
competitively binds TIE2 (Maisonpierre et al., 1997), and PDGF-BB, a mitogenic factor for cells of mesenchymal origin previously shown to stimulate MPC proliferation (Christov et al., 2007). This was achieved by adding blocking agents at saturating conditions to conditioned media added to MPC cultures every 2 days, including specific blocking antibodies against IGF1, PDGF-BB and the TIE2Fc fragment, to block pericyte-released ANGPT1 or EC-released ANGPT2 (Fig. 4E-G). After 10 days, non-significant change was observed in terms of growth, EdU retention and differentiation when human MPCs were grown at normal density in conditioned media (CM) for 21 days, showing growth effect of EC-CM (E) and differentiation effect of PC-CM (F) compared with unconditioned medium (UCM). Results are mean±s.e.m. (G) Myosin heavy chain (MHC) immunostaining with nuclear counterstaining distinctly shows increased numbers of mononucleated cells in EC-CM and increased MHC+ myotubes in PC-CM, compared with UCM. (H.I) Isolated myofibers cultured in CM for 72 h and stained for PAX7 (green) and MYOD1 (red). EC-CM increases the percentage of activated of PAX7+/MYOD1+ MPCs, whereas PC-CM increases MPC differentiation (PAX7−/MYOD1+) compared with UCM (H). Representative picture of PAX7/MYOD1 labeling (I). Results are mean±s.e.m. Arrowheads in I indicate PAX7+ (green), MYOD1+ (red) and double-stained cells (yellow) (769 mSCs analyzed on 22 myofibers in UCM, 760 on 13 in EC-CM and 865 on 18 in PC-CM. Scale bars: 10 µm in A; 20 µm in G; 5 µm in I. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.

Fig. 2. Opposing in vitro effects of pericytes and ECs on MPCs. (A-D) MPCs co-cultured in transwells with other MPCs, ECs, pericytes (PCs) or ECs+PCs for 10 days. (A) MPCs in lower wells show increased growth in the presence of upper insert ECs and increased myotube formation in presence of upper insert PCs or PCs+ECs. (B) MPC growth curves. (C) Fusion index curves. (D) RT-qPCR on lower well MPCs after 10 days of co-culture, showing upregulation of PAX7 in the presence of ECs, and of PAX7, MYOD1 and myogenin in presence of PCs or PCs+ECs. Results are mean±s.e.m. (E,F) MPCs cultured at low density in conditioned media (CM) for 21 days, showing growth effect of EC-CM (E) and differentiation effect of PC-CM (F) compared with unconditioned medium (UCM). Results are mean±s.e.m. (G) Myosin heavy chain (MHC) immunostaining with nuclear counterstaining distinctly shows increased numbers of mononucleated cells in EC-CM and increased MHC+ myotubes in PC-CM, compared with UCM. (H,I) Isolated myofibers cultured in CM for 72 h and stained for PAX7 (green) and MYOD1 (red). EC-CM increases the percentage of activated of PAX7+/MYOD1+ MPCs, whereas PC-CM increases MPC differentiation (PAX7−/MYOD1+) compared with UCM (H). Representative picture of PAX7/MYOD1 labeling (I). Results are mean±s.e.m. Arrowheads in I indicate PAX7+ (green), MYOD1+ (red) and double-stained cells (yellow) (769 mSCs analyzed on 22 myofibers in UCM, 760 on 13 in EC-CM and 865 on 18 in PC-CM. Scale bars: 10 µm in A; 20 µm in G; 5 µm in I. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
the presence of UCM incubated with the blocking agents, polyclonal IgG or non-specific antibody. By contrast, addition of anti-IGF1 antibody markedly reversed the differentiating effects of pericyte-CM (Fig. 4E); anti-PDGF-BB antibody added to EC-CM significantly decreased MPC growth (Fig. 4F), as previously reported (Christov et al., 2007). TIE2Fc treatment significantly reduced pericyte-induced MPC EdU retention (Fig. 4G). As PC-CM contained tenfold more ANGPT1 than ANGPT2, and no effect was observed in UCM conditions despite similar amounts of ANGPT2, it is likely that the TIE2Fc effect in PC-CM reflected blockade of ANGPT1-induced MPC quiescence. By contrast, EC-CM contained high levels of ANGPT2. As expected from blockade of the ANGPT2 antagonistic action on MPC autocrine ANGPT1:TIE2 signaling (Abou-Khalil et al., 2009), TIE2Fc reduced EC-induced MPC EdU dilution, notably restoring the EdU Very high MPC pool to control values (Fig. 4G). Consistent with this, MPC growth increased upon blockade of ANGPT1 in pericyte-CM and decreased upon blockade of ANGPT2 prominently detected in EC-CM.

Post-natal ablation of muscle pericytes

The relevance of these elementary findings to post-natal muscle growth was assessed by lineage tracing and specific cell ablation using a pericyte-specific Cre/LoxP system. As NG2 is exclusively expressed by mural cells during vascular morphogenesis (Ozerdem et al., 2001), we first used a NG2-Cre mouse \[^{B6;FVB-Tg(Cspg4-cre)1Akik/J}\]. Cre efficiency was assessed by crossing NG2-Cre with R26-Flox-STOP-lacZ reporter (\[^{R26R}\]) mice. In TA muscle of adult Tg:NG2Cre/+::R26RlacZ mice, 14% of NG2+ cells strongly expressed β-gal in their cytoplasm (Fig. 5A). Only 0.7% of myofibers expressed β-gal, which was inconsistent with NG2 transcription in muscle cells during development. mSCs were examined on isolated myofibers immediately (\(n=233\), three mice) or after 72 h of culture in high-activation medium (\(n=132\), three mice). At t0, 972 mSCs were counted, of which 2.44% expressed β-gal. After 3 days in high-activation medium, 1584 clusters of mSC daughter cells were found, including 9.38±3.52 cells per cluster: 3% of clusters were entirely β-gal+; only 1.7% showed mixture of β-gal+ and β-gal− cells; and 95.3% were totally β-gal−, ruling out significant reporter gene expression inherent to myoblast activation. Thus, the very small

Table 1. Candidate effectors released by pericytes and ECs, and MPC expression of cognate receptors

<table>
<thead>
<tr>
<th>Name</th>
<th>UCM Mean intensity</th>
<th>PC-CM Mean intensity</th>
<th>EC-CM Mean intensity</th>
<th>UCM Intensity (>100)</th>
<th>PC-CM Intensity (>100)</th>
<th>EC-CM Intensity (>100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGF1</td>
<td>691</td>
<td>978**</td>
<td>838</td>
<td>189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANGPT1</td>
<td>0</td>
<td>800****</td>
<td>0</td>
<td>TIE2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANGPT2</td>
<td>571</td>
<td>669</td>
<td>8014****</td>
<td>PDGFRb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDGF-BB</td>
<td>140</td>
<td>226</td>
<td>11,028***</td>
<td>PDGFRa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGFβ1</td>
<td>306</td>
<td>381*</td>
<td>475**</td>
<td>TGFβR3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGFβ2</td>
<td>76</td>
<td>89</td>
<td>112*</td>
<td>FGFR1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FGFR6</td>
<td>249</td>
<td>288</td>
<td>326*</td>
<td>FGFR1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*P<0.05, **P<0.01, ****P<0.0001.

\(^{3}\) Three primary cultures per condition analyzed in duplicate.
proportion of β-gal+ myofibers illustrated in Fig. 5A likely corresponds to the marginal contribution made by pericytes to post-natal myogenesis [estimated at 0.4-0.6% of myofibers in TA muscle by Dellavalle et al. (2011)]. The negligible proportion of non-vascular cells expressing NG2-Cre in TA muscle led us to cross the NG2-Cre mouse with the Cre-inducible Flox-STOP-diphtheria toxin \((\text{DT})\) receptor \((\text{iDTR})\) mouse, to obtain a model for selective DT-induced depletion of NG2+ pericytes and vascular smooth muscle cells. After 48 h of DT injection in TA muscle, adult Tg:NG2Cre/+::R26RiDTR mice showed a similarly low number of necrotic myofibers (<2.7%) compared with littermate controls, conspicuous pericyte loss [31 versus 57 (−46%) NG2+ cells per 100 myofibers] and mSC increase (4.3 versus 3 PAX7+ cells per 100 myofibers). DT was injected into the growing TA muscle of Tg:NG2Cre/+::R26RiDTR mice at P13 (Fig. 5B). Eight days later, the injected muscle appeared reduced in size compared with the contralateral TA muscle (Fig. 5C). Compared with littermate controls injected with DT, Tg:NG2Cre+/::R26RiDTR mice showed a conspicuous decrease of NG2+ pericytes (−29.5%) (Fig. 5D). The small number of myofibers with internal nuclei (due to post-injury regeneration) (0.55-2.20% in Tg:NG2Cre+/::R26RiDTR mice versus 0.51-1.48% in littermates) were excluded from morphometric evaluation. Pericyte depletion was associated with significant myofiber hypotrophy (16.3±0.6 versus 18.3±0.6 µm, \(P<0.05\)) (Fig. 5E), with a mild increase in total of PAX7+ mSCs (16.7%) and marked increase of cycling PAX7+Ki67+ mSCs (+202%) (Fig. 5F). Of note, the amount of pericyte ablation in Tg:NG2Cre+/::R26RiDTR mice was higher than predicted by lacZ reporter gene expression, and, in addition, it differed in adult and pup experiments. The non-linear relationship between X-gal staining intensity and the level of recombination has been previously documented in different muscle areas, and attributed to differences in activity of the ROSA26 promoter or to the stability of β-gal protein across different muscle areas (McCarthy et al., 2012). Minor iDTR expression at the cell surface may be sufficient to confer sensitivity to DT, whereas minute amounts of β-gal diluted into the cytosol may not be detectable microscopically. The somewhat lower extent of pericyte ablation observed after 8 days in the context of post-natal angiogenesis, compared with adult muscle examined 2 days after DT injection, was likely due to replenishment of emptied pericyte niches by novel cells expressing NG2, as previously reported (Rajantie et al., 2004). Our results therefore show that in vivo ablation of pericytes leads to mSC relief from quiescence.

Selective suppression of pericyte factors

We next used tissue-specific mouse mutants to characterize the role of the previously identified candidate pericyte effectors. We first crossed NG2-Cre mice with Flox-IGF1 mice to selectively suppress...
pericyte IGF1 production. At postnatal day P21 (Fig. 6A), mice with Igf1 gene deletion in pericytes compared with their littermates showed a decrease in total body weight (7.8%), TA muscle size, myofiber size (33.08±0.7 µm, P<0.0002) and number of myonuclei per myofiber (1.48±0.09 versus 2.14±0.9, P<0.0001) (Fig. 6D), supporting decreased mSC behavior.

DISCUSSION

We show that post-natal angiogenesis is spatio-temporally coordinated with myofiber growth and with mSC entry in quiescence. During angiogenesis, pericytes control EC proliferation and survival (Franco et al., 2011), and basement membrane assembly (Stratman et al., 2009). In addition, pericytes, which are present in the niche of 70-80% of adult mSCs, significantly influenced myogenic cell behavior, through differentiation/growth-promoting effects of IGF1 and quiescence-promoting effects of ANGPT1. Notably, the high pericyte:EC ratio found in adult muscle by far exceeds classical quiescence-promoting factors, and suggests fine-tuning of mSC behavior control by pericyte ANGPT1.
Tg:TNAPCreERT2/+ mouse model. Interestingly, lineage studies based on the same mouse model previously showed that TNAP+ pericytes have myogenic potential (Dellavalle et al., 2011), and, consistently, type 2 NG2+nestin+ pericytes detected in the mSC microvascular niche were previously characterized as mesenchymal stem cells with prominent myogenic potential (Birbrair et al., 2013). Taken together, these data strongly suggest that ‘stem cells support other stem cells’ in skeletal muscle (Leatherman, 2013). In at least three different adult stem cell niches – the Drosophila testis, the hair follicle and the bone marrow stem cell niches – two separate populations of stem cells have been identified, with one cell type producing factors that contribute to the maintenance of the other one (Leatherman, 2013; Méndez-Ferrer et al., 2010). Consistent with our study, supportive cells in the hematopoietic stem cell niche have been characterized as NG2+nestin+ smooth muscle vascular cells (Kunisaki et al., 2013).

Our results may be of practical interest as mesenchymal stem cells are increasingly used for therapeutic purposes and most functional benefits of these therapies have been linked to ill-defined trophic effects on existing tissue cells rather than to the expected differentiation of the grafted cells. We showed that pericyte-secreted IGF1 and ANGPT1, acting on adjacent muscle stem cells, may exert tight regulation of their post-natal fate, but the signals that may orient pericytes towards myogenic cell differentiation or a purely supportive action are unknown. To what extent pericytes may be instrumental in adaptive responses to disruption of local homeostasis, systemic signals and aging also remains to be delineated (Rojas-Ríos and González-Reyes, 2014).

MATERIALS AND METHODS

Patients

Normal deltoid muscle samples from 18- to 60-year-old patients were used to obtain human mSCs or pericytes. Normal deltoid muscle biopsies from patients aged from 2 months to 21 years were used to establish post-natal evolution of the spatial relationships between pericytes and mSCs. In accordance with the Henri Mondor hospital research ethics committee, all adult patients or the parents of patients under 18 years of age gave written informed consent for participation in the study.

Mice

B6;FVB-Tg(Cspg4-cre)1Akik/J (Zhu et al., 2008), C57BL/6-Gt(ROSA)26Sortm1(HBEGF)Awai/J (Buch et al., 2005), B6.129(FVB)Igf1tm1Dlr/J (Liu et al., 1998), B6.129S4-Gt(ROSA)26Sortm1Sor/J (Soriano, 1999) (Jax Mice), Angpt1tm1.1Seq (Jeansson et al., 2011) (a gift from Susan E. Quaggin, Northwestern University, Evanston, IL, USA), Tg(Alpl-cre/ERT2)12Gcos (Dellavalle et al., 2011) (a gift from G. Cossu, UCL, London, UK and A. Dellavalle, InScientiaFides, San Marino Republic) and C57BL/6J were bred and crossed in our facilities. The Tg:NG2Cre/+::IGF1del/+ and Tg:NG2Cre/+::R26RlacZ mice were generated by crossing NG2-Cre either with R26RDTRloxP/loxP or R26RlacZstoploxP/stoploxP animals, with PCR assessment of both transgenes. The Tg:TNAPCreERT2/+::Angpt1del/+ was generated by crossing TNAP-CreERT2 with Angpt1loxP/loxP animals with PCR assessment of both transgenes. The French Ethical Committee approved animal experiments (license number 11-00010).

In vivo procedures

For pericyte depletion, adult or P13 mice were injected in the TA muscle with DT (D0564; Sigma-Aldrich) diluted in physiological serum at 1 ng/g
body weight in adult mice (10 μl/TA) and at 5 ng/g in young mice (2 μl/TA). Contralateral muscle was injected with an equal volume of serum. Mice were sacrificed 8, 24 and 48 h after injection (adult mice), and at P21 (young mice). For Angpt1 gene deletion, young mice were injected subcutaneously (50 μl) with 0.25 mg tamoxifen (TS648-1G; Sigma-Aldrich) diluted in corn oil (C8267; Sigma-Aldrich) at P9, P10 and P11, and sacrificed at P18 and P28.

Human cell cultures

All cell types were cultured at 37°C with 5% CO2. To obtain MPCs, human mSCs were extracted from deltoid muscle samples after digestion by Pronase E (P5147; Sigma-Aldrich) at 1.5 mg/ml. After a few days of amplification, MPCs were purified using NCAM/CD56 microbeads according to the kit protocol (130-050-401; Miltenyi Biotec) and then amplified in HAM F-12 medium (31765027; Life Technologies).

ECs were cultivated with control MPCs (67,000 cells/cm2), pericytes (67,000 cells/cm2), and P28.

Immunohistochemistry and immunocytochemistry

Frozen sections (7-10 μm) and cultured cells were fixed with 4% PFA at room temperature for 5 min, permeabilized with 0.5% Triton X-100 for 5 min and blocked with 10% BSA for 30 min. Samples were incubated with primary antibody overnight at 4°C followed by secondary antibodies for 45 min at 37°C, then fluorochrome-conjugated streptavidin for 45 min at 37°C when necessary, and finally mounted with Vectashield Mounting Medium with DAPI and observed through epifluorescence or confocal Zeiss microscope.

The immunofluorescence staining was carried out with primary antibodies recognizing NG2 (AB5320; Chemicon Millipore; 1:200), CD31 (ab5694; Abcam; 1:100), PDGFβR (α3169; Cell Signaling; 1:100), CD146 (ab75769; Abcam; 1:100), CD31 (ab7388; Abcam; 1:50 or M0823; Dako; 1:50), CD34 (14-0341-82; eBioscience; 1 µg/100 µl), CD45 (550539; BD Pharmingen; 1:50), NCAM/CD56 (1213C; Monosan; 1:50), PAX7 (DSHB; 1:50), MYOD1 (M3512; Dako; 1:50), myogenin (M3559; Dako; 1:50), MHC (MAB4470; R&D Systems; 1:20), KI67 (ab16667; Abcam; 1:500), nestin (ab81755; Abcam; 1:500), desmin (ab8592; Abcam; 1:100), laminin α1 (ab14055; Abcam; 1:500) and merosin/laminin α2 (MAB1922; Chemicon Millipore; 1:200). PAX7 immunostaining of mSCs was performed according to the M.O.M. Kit (BMK-2202; Vector). Visualization was carried out using the following secondary antibodies: Cy3-conjugated anti-mouse (715-166-150; Jackson), FITC-conjugated anti-rabbit (711-166-152; Jackson), Alexa Fluor 647 anti-chicken (A21449; Life Technologies) and biotinylated anti-rat (BA9401; Vector) coupled to Cy3-conjugated streptavidin (016-160-064; Jackson), a DAB detection Kit (SK-4100; Vector) or a Red Alkaline Phosphatase substrate kit (SK-5100; Vector).

Quantitative real-time PCR

Total RNAs were extracted from human cells by RNeasy Micro Kit (74004; Qiagen) and converted into double-strand complementary DNA using SuperScript III RT (18080-093; Life Technologies), according to the manufacturer’s instructions. Real-time quantitative PCR was carried out on cDNA using 7900HT Fast Real-Time PCR System (Applied Biosystems). Each cDNA sample was amplified in triplicate by using the Platinum SYBR Green qPCR SuperMix-UDG (11730-038; Life Technologies). Analysis was carried out with the following primers: human β-actin (forward, TCTGGACACATGGGAAAAA; reverse, AAAGAAGGCTGGAGAGTGTTG), human PAX7 (forward, CACCCTGCTCAACCCCA; reverse, TCGAAACACGGGTCGTCATA) and a Red Alkaline Phosphatase

Protein array

One hundred and twenty cytokines were analyzed by protein array on 48 h-conditioned media from EC, pericytes and pericytes+EC cultures (triplicate for each medium and cytokine), according to the manufacturer’s instructions accompanying the RayBio Human Cytokine Antibody Array (AAH-CYT-G1000; RayBiotech). ANGPT1 and ANGPT2 were analyzed by ELISA (DANG10 and DANG20, respectively; R&D Systems). ANGPT1 was also analyzed by the RayBio protein array and ANGPT1 levels could be converted into RayBio arbitrary units using a rule of 3.

RNA profiling

RNA profiling was carried out on human MPC using cDNA Array (R&D Systems) of 397 genes (Christov et al., 2007) and on post-natal Pax3GFPPossitive mSCs using Affymetrix Mouse Genome 430 2.0 Arrays. The data are available at GEO under accession GSE65927. To analyze the pathway enrichment, Gene Ontology (http://www.geneontology.org) and the murine KEGG pathways (www.genome.jh.edu/kegg) were used.

Statistical analyses

The number of biological and technical replicates per point was always n=3 or more when indicated. All data are expressed as mean±s.e.m. Depending
on the experiments, unpaired Student’s t-test and ANOVA tests were used. P<0.05 was considered significant.

Acknowledgements
We thank Barbara Gayraud-Morel, Pierre Rocheteau and Fabrice Chéretin (Pasteur Institute, France) for useful advice.

Competing interests
The authors declare no competing or financial interests.

Author contributions
E.K. carried out most of the experiments and analyses. Y.B.-A. purified human pericytes and MPCs. S.A.-M. performed RNA profiling. P.N. helped with in vivo experiments. F.R. provided expert advice on experiments. P.L. was responsible for animal reproduction, helped with in vivo experiments, performed single myofiber cultures, carried out analyses and designed figures. R.K.G. conceived the work and wrote the paper with E.K.

Funding
This study was supported by Association Française contre les Myopathies [15499, 15665 and 16803] and by Société Française de Myologie (awarded to E.K). in 2010. The transcriptome work was supported by funding to F.R. by Agence Nationale pour la Recherche (ANR) grant Epmuscle [#11 BSV2 017 02] and Labex Revive. S.A.-M. received support from Association Institut de Myologie (AIM).

References

