RESEARCH ARTICLE

Repression of \textit{Igf1} expression by \textit{Ezh2} prevents basal cell differentiation in the developing lung

Laura A. Galvis\(^1,^*\), Aliaksei Z. Holik\(^1,2,^*\), Kieran M. Short\(^3\), Julie Pasquet\(^1\), Aaron T. L. Lun\(^2,4\), Marnie E. Blewitt\(^2,5\), Ian M. Smyth\(^3\), Matthew E. Ritchie\(^2,5,6\) and Marie-Liesse Asselin-Labat\(^1,2,^\dagger\)

ABSTRACT

Epigenetic mechanisms involved in the establishment of lung epithelial cell lineage identities during development are largely unknown. Here, we explored the role of the histone methyltransferase \textit{Ezh2} during lung lineage determination. Loss of \textit{Ezh2} in the lung epithelium leads to defective lung formation and perinatal mortality. We show that \textit{Ezh2} is crucial for airway lineage specification and alveolarization. Using optical projection tomography imaging, we found that branching morphogenesis is affected in \textit{Ezh2} conditional knockout mice and the remaining bronchioles are abnormal, lacking terminally differentiated secretory club cells. Remarkably, RNA-seq analysis revealed the upregulation of basal genes in \textit{Ezh2}-deficient epithelium. Three-dimensional imaging for keratin 5 further showed the unexpected presence of a layer of basal cells from the proximal airways to the distal bronchioles in E16.5 embryos. ChIP-seq analysis indicated the presence of \textit{Ezh2}-mediated repressive marks on the genomic loci of some but not all basal genes, suggesting an indirect mechanism of action of \textit{Ezh2}. We found that loss of \textit{Ezh2} de-represses insulin-like growth factor 1 (\textit{Igf1}) expression and that modulation of \textit{Igf1} signaling \textit{ex vivo} in wild-type lungs could induce basal cell differentiation. Altogether, our work reveals an unexpected role for \textit{Ezh2} in controlling basal cell fate determination in the embryonic lung endoderm, mediated in part by repression of \textit{Igf1} expression.

KEY WORDS: Polycomb repressive complex 2, \textit{Ezh2}, Lung development, Basal cells, \textit{IGF1}, Mouse

INTRODUCTION

In the mouse embryonic lung, an epithelial hierarchy has been proposed where multi-lineage progenitor cells give rise to the mature lung epithelial cells (Alanis et al., 2014). Airway cells including club, ciliated, neuroendocrine and goblet cells derive from early Sox9-positive precursors that acquire Sox2 expression and lose Sox9 expression (Alanis et al., 2014). From E16.5, alveolar type 1 and type 2 cells arise from bipotent alveolar progenitor cells present at the tip of the epithelium that express Sox9 and markers of the two alveolar lineages (Alanis et al., 2014; Desai et al., 2014; Rawlins et al., 2009a; Treutlein et al., 2014). Studies to identify transcription factors and signaling pathways that drive branching morphogenesis and lineage specification have shown that lung morphogenesis is orchestrated by intrinsic epithelial signaling pathways as well as crosstalk between the epithelium and the mesenchyme (Hogan et al., 2014; Rock and Hogan, 2011). However, epigenetic mechanisms that control lung development, maintenance of cell fate and lineage specification remain largely uncharacterized.

Polycystic group (PcG) proteins are important epigenetic regulators that act in synergy during development to deposit repressive marks that maintain tissue-specific gene expression into adulthood (Boyer et al., 2006). The polycomb repressive complex (PRC) 2 mediates methylation of lysine 27 on histone 3 (H3K27) via the catalytically active SET-domain-containing proteins \textit{Ezh2} and \textit{Ezh1}, whereas the other two core PRC2 members, \textit{Suz12} and \textit{Eed}, are required for complex stability (Cao and Zhang, 2004). The vast majority of research on PRC2 has been on its capacity to trimethylate H3K27 (H3K27me3), which is associated with repression of transcription. Repressive H3K27me3 deposition serves as a docking site for the recruitment of PRC2 itself, and allows recruitment of PRC1 (Morey and Helin, 2010). Mono- or divalent methylation of H3K27 (H3K27me1 and H3K27me2) has recently been described to be a function of PRC2 and to correlate with active transcription and maintenance of cell-type-specific enhancers (Ferrari et al., 2014), indicating that PRC2 may control both activation and repression of transcription.

The PcG proteins are important for stem cell maintenance and for cell fate determination during embryonic development, and disruption of epigenetic control can result in carcinogenesis (Boyer et al., 2006; Sauvageau and Sauvageau, 2010; Schwartz and Pirrotta, 2013). Loss of the PRC2 components \textit{Ezh2}, \textit{Suz12} or \textit{Eed} results in severe defects during gastrulation that are consistent with PRC2-regulating genes involved in lineage specification (Bracken and Helin, 2009). PcG complexes have been shown to target developmentally important genes, including Hox gene clusters required for tissue patterning (Boyer et al., 2006). \textit{Ezh2} also regulates proliferation through repression of the potent cell cycle inhibitors \textit{Cdkn2a} and \textit{Cdkn2b} in progenitor cells of specific tissues, including the epidermis, mammary gland, pancreas and muscle (Chen et al., 2009; Ezzhkova et al., 2009; Juan et al., 2011; Pal et al., 2013). \textit{Ezh2} is involved in maintenance of tissue specificity by repressing the expression of unrelated tissue-specific genes (Juan et al., 2011; Pal et al., 2013) or maintaining multi-potent progenitor cells to control temporal expression of differentiation genes (Ezkhova et al., 2009; Juan et al., 2011).

We generated mice in which the catalytic domain of \textit{Ezh2} was conditionally deleted in the lung epithelium (\textit{Shh-cre;Ezh2}^{flo/flo}).

\(^1\)ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia. \(^2\)Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia. \(^3\)Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia. \(^4\)Department of Genetics, Monash University, Melbourne, Victoria 3800, Australia. \(^5\)Medical Sciences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia. \(^6\)Department of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3052, Australia.

\(^*\)These authors contributed equally to this work

\(^\dagger\)Author for correspondence (labat@wehi.edu.au)

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

Received 13 January 2015; Accepted 18 February 2015

Ablation of Ezh2 in the epithelium resulted in perinatal lethality with defective lung development and altered differentiation of multiple lung epithelial lineages. Strikingly, RNA-seq profiling of epithelial cells showed a marked increase in gene expression corresponding to basal cell gene signature after loss of Ezh2 in the epithelium. Three-dimensional optical projection tomography (OPT) imaging for keratin 5 confirmed the presence of a layer of basal cells surrounding the airways of Ezh2-depleted lung epithelium from E16.5, suggesting proximalization of the distal airways in the absence of Ezh2. ChIP-seq analysis revealed enrichment for H3K27me3 repressive marks on some basal genes in the control lung epithelium that were lost after deletion of Ezh2, but the genomic loci of other basal genes, such as Krt5 or Trp63 were not marked by H3K27me3 in control lungs, suggesting that factors activating basal cell-specific gene transcription may be activated in the absence of Ezh2. We observed that Igf1 was strongly overexpressed in Ezh2-depleted lungs and that treatment of wild-type lungs with IGF1 induced basal cell differentiation ex vivo. Overall, our results demonstrate that repression of Igf1 expression by Ezh2 contributes to the regulation of basal cell differentiation during embryonic lung lineage specification.

RESULTS

Ezh2 is required for lung development and survival at birth

We first examined the expression of Ezh2 during embryonic lung morphogenesis, after birth and in the adult. Quantitative RT-PCR results showed high levels of Ezh2 expression throughout development from E11.5 to E17.5 followed by a decrease at E18.5, reaching the lowest levels in adulthood (Fig. 1A). Confocal immunofluorescence for Ezh2 and Nkx2.1, a marker of lung epithelial cells, indicated that Ezh2 expression is predominantly nuclear and is detected in the mesenchyme and epithelium at E11.5 but becomes restricted to the airway epithelium from E18.5 (Fig. 1B; supplementary material Fig. S1A). To evaluate the role of Ezh2 in lung epithelium, we generated Shh-cre;Ezh2fl/fl mice in which Ezh2 was efficiently excised from E9.5 in the epithelium of the lung primordia. As the cre allele was knocked into the Shh locus, resulting in loss of one Shh allele, Shh-cre;Ezh2fl/+ animals were used as controls. PCR analysis of genomic DNA and cDNA from lung epithelial cells sorted based on the expression of EpCAM (McQualter et al., 2010) confirmed the excision of the SET domain of Ezh2 specifically in the epithelium of conditionally targeted mice (supplementary material Fig. S1B,C). Shh-cre;Ezh2fl/fl mice...
showed perinatal mortality with the majority of the pups dying within the first 2 days of birth. Only one animal survived to adulthood (supplementary material Table S1) and no gross lung defects were evident (data not shown). Genomic DNA analysis showed incomplete excision of the Ezh2 floxed allele in this animal, explaining the absence of a phenotype (supplementary material Fig. S1D). Histological examination of Shh-cre;Ezh2\(^{fl/fl}\) pups at birth revealed severe lung morphological abnormalities. The lungs had enlarged air sacs with areas of collapsed lung (atelectasis) and resembled an emphysema phenotype (Fig. 1C). To explore the phenotype of Shh-cre;Ezh2\(^{fl/fl}\) lungs, we performed 3D imaging of E-cadherin stained E14.5 lungs using OPT. Ezh2 conditional knockout mice had smaller lungs compared with controls, as evaluated by measuring the whole lung volume (supplementary material Fig. S1E) and individual lobe volumes (Fig. 1D). Detailed analysis of the epithelial tree in the accessory lobe using Tree Surveyor software (Combes et al., 2014; Short et al., 2013) showed differences in the lung morphology of Shh-cre;Ezh2\(^{fl/fl}\) lungs compared with controls. A significant reduction in the number of branches associated with a reduced number of terminal sacs was observed (Fig. 1E,F). The airways were shorter and their volume was reduced (Fig. 1F) but their diameters, curvature and angles did not differ significantly from those in controls (data not shown).

To further investigate the phenotype of Ezh2 conditional knockout mice, we evaluated epithelial cell numbers in E18.5 lungs. Immunostaining for Nkx2.1 showed a reduction in the number of Nkx2.1-expressing cells in Shh-cre;Ezh2\(^{fl/fl}\) lungs compared with control animals (37±3.3% and 53±5.7% of all lung cells, respectively; Fig. 2A). The decrease in epithelial cells in Shh-cre;Ezh2\(^{fl/fl}\) lungs was confirmed by analysis of EpCAM expression by flow cytometry (Fig. 2B) (3.56±0.2% and 12.1±0.7% EpCAM\(^+\) cells in Shh-cre;Ezh2\(^{fl/fl}\) and control lungs, respectively; \(P<0.02\), unpaired t-test). To determine whether the reduction in epithelial cellularity was due to increased apoptosis or to reduced proliferation, we analyzed cleaved caspase 3 and Ki67 expression. Although no changes in cleaved caspase 3 expression were observed between knockout and control mice (data not shown), loss of Ki67 expression was observed in Shh-cre;Ezh2\(^{fl/fl}\) airway cells (Fig. 2A). Detailed analysis of cell cycle stages demonstrated that loss of Ezh2 affected progression through the cell cycle with a reduction in the percentage of epithelial cells (EpCAM\(^+\)) in G2/M at E16.5 compared with control animals (Fig. 2C). These results were confirmed with an in vitro proliferation assay where a significantly reduced proliferative capacity of Shh-cre;Ezh2\(^{fl/fl}\) EpCAM\(^+\) sorted cells compared with controls was observed (Fig. 2D). These data suggest that Ezh2 is essential for normal lung branching morphogenesis and controls proliferation of lung epithelial cells.

Loss of Ezh2 results in perturbed airway lineage specification and a defect in alveoli formation

The lung phenotype of Shh-cre;Ezh2\(^{fl/fl}\) mice suggested a perturbation in epithelial cell differentiation. To assess whether
Ezh2 controlled lineage specification, we first evaluated the airway cell lineage and analyzed the expression of Sox2, a marker of airway progenitor cells in E18.5 embryos. No significant changes were observed in Sox2 expression (Fig. 3A), suggesting that airway precursor cells form normally in the remaining airways of conditional knockout mice. However, expression of the club cell-specific marker CC10 was completely abolished in Ezh2-depleted airways (Fig. 3A). To further investigate whether Ezh2 loss inhibited secretory cell specification, we assessed expression of secretoglobin 3a2 (Sgb3a2), a marker of club cell precursors (Tsao et al., 2009). No change in the expression of Sgb3a2 was observed in Ezh2-deficient lungs (supplementary material Fig. S2A,B), suggesting that cells were specified towards the secretory lineage but could not reach full maturation. Interestingly, expression of the ciliated cell markers Foxj1 (Fig. 3A,B) and acetylated tubulin (supplementary material Fig. S2B) was increased in proximal airways, suggesting that the balance between ciliated and secretory cells was deregulated in the proximal airways of Ezh2-deficient lungs. The balance between ciliated cells and secretory cells during lung morphogenesis is controlled by Notch signaling (Tsao et al., 2009). However, downregulation of the Notch1 intracellular domain was not observed in Ezh2-deficient epithelial cells (data not shown), suggesting that Ezh2 is unlikely to regulate the Notch pathway during embryonic lung development. We then assessed whether other airway lineages were perturbed in Ezh2-deficient lungs and evaluated the presence of neuroendocrine cells by immunohistochemistry and mucin-producing goblet cells by periodic acid-Schiff staining. No discernible differences were observed for these two lineages between Ezh2-deficient and control lungs (data not shown). Given the absence of club cell specification in Ezh2-depleted lungs, we investigated whether specific deletion of Ezh2 in club cells would affect the lung phenotype of these animals. Sgb1a1-creERT2 mice were crossed with Ezh2fl/fl mice and recombination induced by administration of tamoxifen in E17.5 dams. The pups survived at birth and the lungs were collected at 1 week. Histological examination did not reveal any gross abnormality, whereas immunostaining for CC10

Fig. 3. Ezh2 deletion causes abnormal bronchiolar epithelium differentiation and perturbed alveolar formation. (A) Immunohistochemical staining for an early bronchial epithelial marker (Sox2), a club cell marker (CC10) and a ciliated cell marker (Foxj1). Scale bars: 25 µm. Images are representative of 10 E18.5 animals for Foxj1 and Sox2, and 11 postnatal lungs for CC10. (B) Number of Foxj1-positive cells normalized to airway diameter in Ezh2-depleted and control lungs (n=7-10). Data represent mean±s.e.m. Unpaired t-test. (C) Representative immunohistochemical staining for early alveolar marker Sox9 in E18.5 lungs (n=8 or 9). Scale bars: 25 µm. (D) Representative GAF (Gomori’s aldehyde fuchin) staining of post-natal Shh-cre;Ezh2fl/fl and control lungs at E18.5 (n=9). Arrowheads indicate elastic tissue fibers (purple). Scale bars: 20 µm. (E) FACS analysis of PDGFRα expression in CD31−CD45−EpCAM− cells. Data represent mean±s.e.m. n>4. Unpaired t-test.
and Ki67 did not show any alterations (supplementary material Fig. S2C). These results suggest that depletion of Ezh2 in specified secretory cells at a late stage of lung morphogenesis does not affect cell specification and proliferation. However, in the early phase of development, Ezh2 controls the formation of airways and is required for the full maturation of Sox2^+ Scgb3a2^+ airway progenitor cells into club cells.

We then examined the effect of Ezh2 loss on alveoli formation. In newborn animals, Ezh2-deficient lungs displayed enlarged air sacs with areas of atelectasis, suggestive of a defect in alveolar cell differentiation and/or alveolar septation (Fig. 1C). Sox9 is an early marker of alveolar progenitor cells whose expression is completely abolished by E18.5 when alveolar cells have matured (Okubo et al., 2005). However in Ezh2-deficient lungs we observed that Sox9 remained expressed in the distal lung at E18.5 (Fig. 3C), suggesting a failure or delay in the maturation of Sox9-positive precursor cells. Nevertheless, no difference in the expression of markers of alveolar type II (pro-SP-C) and type I (T1α) cells was observed between conditional knockout and control animals (supplementary material Fig. S2D). This led us to investigate whether loss of Ezh2 in the epithelium could affect signaling to the mesenchyme and alter septa formation. Alveolar septa formation is dependent on crosstalk between the epithelium, endothelium and mesenchyme. No alteration in the number of CD31^+ endothelial cells in Shh-cre; Ezh2^fl/fl lungs was apparent (data not shown). In the mesenchyme, alveolar myofibroblasts are crucial for alveolar septation.

Myofibroblasts (PDGFRα^hi) are thought to differentiate from lipofibroblasts (PDGFRα^lo) and are responsible for elastin deposition at the tip of developing septa with elastin deposition being required for the formation and growth of functional alveoli (Shifren et al., 2007; Wendel et al., 2000). Analysis of elastin formation in Shh-cre;Ezh2^fl/fl mice by Gomori’s aldehyde fuchsin (GAF) staining showed that the elastin fibers in Shh-cre;Ezh2^fl/fl alveoli appeared thicker, shorter and more curved than in age-matched control lungs (Fig. 3D). FACS analysis of PDGFRα in lung mesenchyme showed that the ratio between lipofibroblasts and myofibroblasts was significantly altered in the Ezh2-deleted lungs, with a lower percentage of myofibroblasts and a higher percentage of lipofibroblasts compared with control mice (Fig. 3E). This observation suggests that lipofibroblast differentiation into myofibroblasts is altered in Ezh2-deficient lungs. Given that deletion of Ezh2 in our model is restricted to the epithelium, the changes observed in the myofibroblast/lipofibroblast ratio imply that Ezh2 may control the expression of genes involved in epithelial-mesenchymal crosstalk.

Loss of Ezh2 leads to dramatic upregulation of gene expression associated with loss of the H3K27 trimethylation mark

To further examine the molecular mechanisms responsible for the abnormal phenotype of Ezh2-deficient lungs, we performed RNA-seq in sorted stromal (EpCAM^-) and epithelial (EpCAM^+) cell populations Fig. 4. Ezh2 loss induces dramatic changes in gene expression levels in the developing lung epithelium. (A) MA plot showing differentially expressed genes (upregulated in red, downregulated in blue) between Ezh2-deficient and control epithelial cells in E16.5 embryonic lung. (B) ChIP-seq analysis of H3K27 tri-methylation revealed that H3K27me3-marked genes were predominantly upregulated in Ezh2-deficient epithelium (gene set test P<0.0001). Index marks represent the genes marked by H3K27me3 in control epithelium. (C) Box plot showing RNA-seq expression values [normalized log2 counts per million (cpm), n=3, FDR<0.001] for Cdkn2a and Cdkn2b, and a genome browser view of H3K27 tri-methylation over the Cdkn2a and Cdkn2b genomic locus.
using Shh-Cre;Ezh2^{fl/fl} and Shh-Cre;Ezh2^{0/0} lungs at E16.5. We observed substantial changes in gene expression in Ezh2-deficient epithelium with 1148 upregulated genes (FDR<0.05), consistent with the known repressive function of Ezh2 (Fig. 4A; supplementary material Table S2). ChIP-seq analysis of H3K27me3 modifications in control lung epithelium compared with Ezh2-deficient epithelium confirmed a correlation between loss of H3K27me3 marks and gene upregulation in Shh-cre;Ezh2^{0/0} epithelium, suggesting that the effect of Ezh2 loss on gene expression is predominantly PRC2 dependent (Fig. 4B; supplementary material Table S3, gene set test, \(P<0.0001 \)). Downregulated genes were also observed to a lesser extent (473 genes, FDR<0.05) but displayed lower fold changes compared with upregulated genes (Fig. 4A). The genes repressed in response to Ezh2 deletion may reflect an indirect effect of Ezh2 ablation or loss of repressive marks on the locus (Fig. 4C; supplementary material Table S2). ChIP-seq analysis of H3K27me3 modifications in the known repressive function of Ezh2 (Fig. 4A; supplementary material Fig. S3A) where Ezh2 is not deleted, further suggesting that loss of Ezh2 in the epithelium results in perturbed epithelial-mesenchymal interactions.

Ezh2 regulates cell proliferation in part by depositing H3K27me3 repressive marks on the Ink4a/ARF locus (Cdkn2a, Cdkn2b) (Bracken et al., 2007; Chen et al., 2009; Ezhkova et al., 2009; Juan et al., 2011; Pal et al., 2013). We found that the cell cycle inhibitors Cdkn2a and Cdkn2b were overexpressed in Ezh2-deficient epithelium (Fig. 4C, FDR<0.0001), most likely explaining the reduced proliferation observed at E18.5 in Shh-cre; Ezh2^{0/0} animals and the reduced number of cells in G2/M (Fig. 2C). This expression coincidence with the loss of H3K27me3 repressive marks at the Cdkn2a/Cdkn2b locus in the epithelium of Shh-cre;Ezh2^{0/0} animals (Fig. 4C, FDR<0.01).

Given that PcG proteins have been implicated in the regulation of homeobox genes (Boyer et al., 2006), we investigated whether there were any changes in the Hox gene paralog groups 1 to 8 that are predominantly expressed in the lung (Mollard and Dziadek, 1997). Although Hox genes 1 to 8 were highly expressed in the lung mesenchyme and present at low levels in the epithelium of control lungs, this gene group was dramatically upregulated in Ezh2-deficient epithelium (FDR<0.01) but was not affected in the stroma (supplementary material Fig. S3B). Elevated expression was not limited to mesenchyme-specific Hox genes, but also to more posterior Hox genes (paralogs 9-13). This observation was in line with the loss of H3K27me3 marks across the entirety of each of the Hox loci in Ezh2-deficient epithelium (supplementary material Fig. S3C). To investigate whether derepression of Hox genes was responsible for the phenotype observed in Ezh2-depleted lungs, E11.5 wild-type lungs were cultured <i>ex vivo</i> in the presence of retinoic acid, an inducer of Hox genes expression (Simeone et al., 1990). However, no gross morphological defects were observed in these lungs, suggesting that derepression of Hox genes is not solely responsible for the abnormal phenotype of Shh-cre;Ezh2^{0/0} lungs (data not shown).

In murine ES cells, PcG proteins repress transcriptional regulators and genes involved in morphogenesis and organogenesis (Boyer et al., 2006), suggesting that PRC2 may repress non-related tissue-specific genes in a particular organ. To identify whether loss of Ezh2 in the lung epithelium resulted in upregulation of non-lung-specific genes, we derived tissue-specific gene expression signatures from 49 solid tissues using GNF Mouse GeneAtlas V3 data (GEO accession number, GSE10246). A substantial proportion (11 to 25%) of genes upregulated in Ezh2-deficient lungs overlapped with genes specifically expressed in non-lung tissues (supplementary material Fig. S3D), suggesting that Ezh2 is involved in regulating tissue-specific gene expression in the lung. These results show that in the lung endoderm, Ezh2 regulates tissue-specific genes involved in cell proliferation and tissue patterning.

Ezh2 is required to repress basal gene expression in the lung epithelium

Most surprisingly, lung basal cell markers Krt5, Krt14 and Trp63 were among the top upregulated genes in Ezh2-deficient epithelium (Figs 4A, 5A, FDR<0.01). These data were confirmed by analysis of keratin 5 and p63 protein expression by immunostaining (Fig. 5B), demonstrating the presence of a layer of basal cells surrounding the proximal and distal airways only in Shh-cre;Ezh2^{0/0} animals at E17.5. To determine the earliest time-point at which these basal cells appeared in Ezh2-depleted lung, keratin 5 immunohistochemistry was performed at E15.5, E16.5 and E17.5, and demonstrated the appearance of basal cells from E16.5 in Shh-cre;Ezh2^{0/0} lungs (supplementary material Fig. S4A). OPT three-dimensional imaging of E16.5 lungs stained with keratin 5 further revealed the presence of keratin 5-positive cells throughout the branching network from proximal to distal airways in Ezh2-deficient embryonic lung, whereas keratin 5 staining in control lungs was largely confined to the trachea (Fig. 5C; see supplementary material Movies 1 and 2). Basal cells in Shh-cre;Ezh2^{0/0} lungs did not co-express the markers of differentiated airway lineages Sgb3a2 and Foxj1 but expressed the airway precursor cell marker Sox2 (Fig. 5B), suggesting that basal cells may arise from Sox2-positive progenitor cells.

To further explore whether Ezh2 maintains lung epithelial lineage specification through repression of basal genes, we compared the expression of differentially expressed genes in Ezh2-ablated epithelium with the gene signature of adult mouse tracheal basal cells derived from Rock et al. (2009). Gene set testing revealed a strong enrichment for basal signature genes among genes overexpressed in the absence of Ezh2 (Fig. 5D, \(P<0.0001 \)). We observed enrichment for H3K27me3 marks around promoters of some lung basal genes in the control epithelium (supplementary material Fig. S4B, gene set test, \(P<0.0001 \)) that disappeared after loss of Ezh2, demonstrating that Ezh2 plays a key role in repressing basal gene expression in the lung epithelium to maintain proximal to distal differentiation.

Increased expression of Igf1 in Ezh2-deficient lung contributes to basal cell differentiation

The transcription factor p63 is crucial for basal cell differentiation in the epidermis (Daniely et al., 2004) and overexpression of the transcriptionally active form of p63 (TAp63) ectopically in the lung has been shown to induce keratin 14 expression in distal airways (Koster et al., 2004). Surprisingly, some basal cell marker loci, including Trp63 and Krt5 did not appear to be marked by H3K27me3 (Fig. 5A; supplementary material Fig. S4B), suggesting that Ezh2 may indirectly regulate genes involved in basal cell differentiation. Overexpression of the Wnt antagonist Dickkopf homolog 1 (Dkk1) in the embryonic lung has previously been shown to induce basal cell differentiation in the distal lung (Volckaert et al., 2013). Our RNA-seq data showed that Dkk1 was overexpressed in Ezh2-deficient epithelial cells (3.5-log₂ fold increase, FDR<0.001) and that H3K27me3 marks were lost on the Dkk1 promoter of Ezh2-deficient lungs (supplementary material Fig. S5A, FDR<0.001). However, <i>ex vivo</i> treatment of E11.5 Shh-cre;Ezh2^{0/0} lungs with WAY262611, a specific inhibitor of Dkk1, did not inhibit the expression of Krt5 or Trp63, suggesting that this
pathway is not the only mediator of basal cell differentiation in Ezh2-deficient lungs (supplementary material Fig. S5B). Insulin-like growth factor 1 (Igf1) was also found to be highly upregulated in Shh-cre;Ezh2fl/fl epithelium compared with controls (Fig. 6A, 6.14-log2 fold increase, FDR<0.001). ChiPseq analysis revealed that the Igf1 locus was strongly marked with H3K27me3 marks in control animals but those marks were lost in Shh-cre;Ezh2fl/fl lungs (Fig. 6A, FDR=0.0003). Immunostaining for IGF1 showed a
dramatic upregulation of IGF1 expression in the epithelium of Ezh2-depleted lungs compared with controls (Fig. 6B). IGF1 signaling has previously been implicated in the regulation of basal cell differentiation in the epidermis (Gunschmann et al., 2013), prompting us to investigate its role in mediating basal cell differentiation in the lung. When wild-type E11.5 lungs were treated ex vivo with IGF1, we observed dilatation of the airways, similar to what is observed in Shh-cre;Ezh2fl/fl lungs cultured ex vivo (Fig. 6C,D). Strikingly, increased expression of basal cell markers Krt5 (2.4-fold), Krt14 (1.7-fold) and Trp63 (1.7-fold) was detected after treatment with IGF1 (Fig. 6E). Immunofluorescence staining further revealed the expression of keratin 5 in the upper airways of IGF1-treated lungs (Fig. 6F). FACS and western blot analysis confirmed an upregulation of keratin 5 and keratin 14 protein expression, as well as of Sna12, another marker of basal cell expression (Rock et al., 2009), after treatment with IGF1 (supplementary material Fig. S5C,D). However, treatment of E11.5 control or Shh-cre;Ezh2fl/fl lungs ex vivo with picropodophyllin (PPP), a specific inhibitor of IGF1R (Girnita et al., 2004) did not reduce Krt5 or Trp63 expression in Ezh2-depleted lungs (supplementary material Fig. S5B), indicating that inhibition of IGF1 signaling is not sufficient to prevent or reverse basal cell differentiation in the absence of Ezh2. In view of the dramatic genomic changes induced by loss of Ezh2 in the lung endoderm, a complex combination of factors is most likely involved in the regulation of basal cell differentiation after loss of Ezh2 in the endoderm. However, our results show that repression of Igf1 expression by Ezh2 in lung epithelial cells is likely to be a crucial process for maintaining a proper control of lineage specification during embryonic lung morphogenesis.

DISCUSSION

Epigenetic control of gene expression is essential for normal tissue morphogenesis. Here, we explore the role of the PRC2 histone methyltransferase Ezh2 in lung endoderm lineage specification. Ezh2-deficient lungs are abnormal and display impaired branching morphogenesis associated with perturbed epithelial lineage specification. Ezh2-deficient lungs are abnormal and display impaired branching morphogenesis associated with perturbed epithelial lineage specification, lacking club cells but presenting Sox2-positive basal cells throughout the branching tree. We found that IGF1, a growth factor that is highly upregulated in Ezh2-depleted lung, induces basal cell differentiation ex vivo in wild-type lungs. The expression of over 1600 genes is affected by Ezh2 loss in the lung endoderm, indicating that many factors are likely responsible for the lung phenotype of Shh-cre;Ezh2fl/fl animals. The expression of the cell cycle inhibitor genes Cdkn2a/2b is controlled by PRC2 and loss of Ezh2 in the epidermis leads to upregulation of Cdkn2a/Cdkn2b expression and reduced cell proliferation (Ezhkova et al., 2009). Similarly in the embryonic lung, we observed reduced proliferation of epithelial cells in Shh-cre;Ezh2fl/fl mice associated with an upregulation of Cdkn2a/Cdkn2b expression. Homebox
genes are known targets of PRC2 and are crucial for tissue patterning (Pearson et al., 2005). In the lung, Hox genes are predominantly expressed in the mesenchyme (Mollard and Dziadek, 1997) and *Hoxb5a* and *Hoxb5b* have been shown to be crucial for patterning of the airway lineages (Boucherat et al., 2013). The upregulation of mesenchymal Hox genes in the epithelium of *Shh-cre;Ezh2* mice may be involved in the perturbed crosstalk between the endodermal and the mesenchymal compartments leading to altered myofibroblast differentiation; however, upregulation of Hox gene by treatment of wild-type E11.5 lungs with retinoic acid *ex vivo* was not enough to alter the phenotype of the lung, suggesting that other factors are likely to be involved. The mesenchymal niche plays a key role in the regulation of lung epithelial progenitor cell function where mesenchymal factors such as Wnt1 and Fgf10 promote epithelial differentiation (Hogan et al., 2014; Kumar et al., 2014; Volckaert et al., 2013). Further studies are required to explore the molecular changes that occur in the mesenchyme after loss of Ezh2 in the lung endoderm. Specific deletion of Ezh2 in the mesenchyme would also provide novel insights into its specific role in this compartment.

Lineage specification of the lung endoderm occurs through different waves of proliferation and differentiation. Sox9-positive progenitor cells drive the expansion of the branching tree before losing Sox9 expression and acquiring Sox2 expression (Alanis et al., 2014). Lineage-tracing experiments have shown that Sox9-positive or Id2-positive progenitor cells present at the tip of the epithelial tree before E15 behave as multipotent progenitor cells and drive branching morphogenesis (Alanis et al., 2014; Rawlins et al., 2009a). In *Shh-cre;Ezh2* mice, initial branching of the lung primordia occurs normally with the formation of all pulmonary lobes. However, tertiary branching is affected by the loss of Ezh2, leading to reduction in size and number of branches as early as E14.5. This suggests that control of gene expression by Ezh2 is crucial for the regulation of progenitor cells present at the tip of the growing epithelial tree. Conditional deletion of Sox9 in the epithelium from E12 results in reduced lobe size and number of branches (Chang et al., 2013), a phenotype similar to Ezh2 conditional knockout mice, further implying that Ezh2 is required to control early multipotent progenitor cells.

From E16.5, perturbed airway lineage specification is observed in Ezh2-deficient epithelial cells with the absence of club cell differentiation and the appearance of basal cells, suggesting that Ezh2 also plays a role in the second wave of lung morphogenesis where differentiation of the conducting airway is driven by Sox2-positive progenitor cells. Sox2+ precursors generate airway lineage cells, including neuroendocrine, secretory and ciliated cells. In *Shh-cre;Ezh2* mice, we observed an increase in ciliated cell numbers over secretory cells, similar to what has been described in mice where Notch signaling was abrogated in the lung epithelium (*Pofut1* and *Rbpj*/*RbpjK149E*) (Tao et al., 2009). However, in contrast to our observation, Scgb3a2-expressing cells were also absent in the airways of *Pofut1* null mice (Tao et al., 2009). This suggests that Ezh2 controls terminal differentiation of secretory cells after Notch-mediated commitment towards secretory or ciliated cell lineages has occurred.

The most striking observation in *Shh-cre;Ezh2* lungs is the proximalization of the distal Airways with the presence of basal cells throughout the branching tree after loss of Ezh2 in the endoderm. These cells express Sox2, suggesting that they are derived from Sox2-positive progenitor cells. Ezh2 may act directly to prevent basal cell differentiation by depositing H3K27me3 repressive marks on basal gene loci but could also act indirectly by repressing genes that regulate basal cell differentiation. Indeed, although a large number of basal genes are enriched for H3K27me3 marks in the E16.5 lung endoderm, other basal cell-specific genes, such as *Trp63* and *Krt5* are not marked. We evaluated the role of Dkk1 and IGF1 in mediating basal cell differentiation after loss of Ezh2. These two factors have both previously been implicated in basal cell differentiation in the developing lung and in the epidermis, respectively (Gunschmann et al., 2013; Volckaert et al., 2013). Overexpression of Dkk1 in the embryonic lung leads to an increase in basal cell and secretory cell marker expression (Volckaert et al., 2013), in contrast to Ezh2-depleted lungs where basal cells are present exclusively surrounding the airways but secretory club cells are absent. Inhibition of Dkk1 activity *ex vivo* was not sufficient to inhibit the expression of basal cell-specific markers in Ezh2-depleted lung. Similarly, specific inhibition of IGF1 did not alter the expression of basal cell markers *ex vivo* in *Shh-cre;Ezh2* lungs. However, *ex vivo* treatment of wild-type lungs with IGF1 induced basal cell marker expression in the upper airways. In the epidermis, loss of insulin/IGF1 signaling results in nuclear localization of FoxO proteins that trap p63 and prevent its binding to its target genes, inhibiting basal cell differentiation (Gunschmann et al., 2013). It is possible that a similar mechanism exists in *Shh-cre;Ezh2* lung and that derepression of IGF1 expression in the absence of Ezh2 induces basal cell differentiation by phosphorylating FoxO proteins, resulting in its cytoplasmic translocation, freeing up p63 that can then transactivate basal genes. Altogether, it is likely that, in the absence of Ezh2, derepression of H3K27me3-marked basal genes, combined with perturbed IGF1 signaling, Dkk1 expression and other factors, are responsible for the proximalization of the distal Airways. Snitow et al. recently described proximalization of the Airways in *Shh-cre;Ezh2* mice and suggested a role for Pax9 in inducing basal cell differentiation (Snitow et al., 2015). IGF1 was not identified in their gene expression analysis as a candidate gene upregulated after loss of Ezh2. Their microarray study was performed at E14.5 on whole embryonic lung, whereas our RNA-seq gene expression analysis was carried out at a later time point (E16.5) using sorted epithelial cells. This enabled us to enrich for epithelial-specific gene changes resulting in the identification of IGF1, among others, as a key target gene involved in basal cell differentiation.

In adult distal lung, basal cells are rare and expand in the context of flu-mediated lung injury, where they are thought to act as stem cells necessary for epithelial repair (Kumar et al., 2011; Rock et al., 2009; Zuo et al., 2015). It remains to be explored whether Ezh2 plays a role in the regulation of these progenitor cells in adult injured lung. Although a little controversial, Ezh2 appears important for fetal haematopoietic stem cell activity, whereas Ezh1, homolog of Ezh2, complements Ezh2 function to maintain haematopoietic stem cell (Mochizuki-Kashio et al., 2011; Xie et al., 2014). Similarly, Ezh1 and Ezh2 play redundant roles in hair follicle stem cells and a deletion of both is required to affect progenitor cell proliferation in the bulge (Ezhkova et al., 2011). It is therefore possible that, although Ezh2 is crucial for embryonic lung development, Ezh1 and Ezh2 can both regulate progenitor cell function in the adult lung. As distal basal cells are proposed to contribute to repair of the damaged lung, it is crucial to identify factors that regulate differentiation towards this lineage. Our observation that perturbed IGF1 signaling results in basal cell differentiation in the embryonic lung suggests that this pathway may also be important in the regulation of adult distal lung basal cells. Interestingly, immunostaining for IGF1 and its receptor in lung tissue from individuals with acute respiratory distress syndrome showed increased expression of IGF1 and IGF1R (Andonegui et al., 2014; Krein et al., 2003). It remains to be
investigated whether increased secretion of IGF1 in adult injured lungs is crucial for basal cell expansion observed after epithelial cell damage.

Conclusions

Our results demonstrate that Ezh2 is crucial for embryonic lung development and further reveal that Ezh2 tightly regulates epithelial cell lineage determination in the developing lung, consistent with its role in maintaining tissue specificity in other organs. Our data show that Ezh2 represses basal cell specification corroborating the recent findings by Snitow et al. (2015). We provide mechanistic insights into potential processes that mediate basal cell differentiation driven by the loss of Ezh2 in the developing lung epithelium. In particular, gene expression profiling and ChIP-seq studies enabled us to demonstrate that Ezh2 plays a novel role in maintaining epithelial cell lineage specification by depositing H3K27me3 repressive marks at the promoters of basal genes in the epithelium. We also show that repression of IGF1 signaling is an important mechanism for keeping basal cell specification genes transcriptionally silenced throughout lung development.

MATERIALS AND METHODS

Mouse strains

Shh-Cre mice (Harfe et al., 2004) were purchased from The Jackson Laboratory. Ezh2fl/fl mice were obtained from Prof. Tarakhovsky (The Rockefeller University, NY, USA) (Su et al., 2002) and Scgb1a1-creERT2 mice from Prof. Hogan (Duke University, NC, USA) (Rawlins et al., 2009b). All animal experiments were conducted according to the Walter and Eliza Hall Institute of Medical Research Animal Ethics Committee guidelines (AEC 2010.017).

Histology and immunostaining

For histological examination, lungs were fixed in 4% paraformaldehyde in phosphate-buffered saline (PBS), embedded in paraffin, sectioned and stained with Haematoxylin and Eosin. For immunohistochemistry, sections were blocked in 10% serum prior to incubation with specific antibodies (see methods in the supplementary material) followed by a biotin-conjugated secondary antibody. For mouse primary antibodies, the Mouse on Mouse (M.O.M.) kit and the Biotin Blocking System were used according to the manufacturer’s instructions (Vector). Signal was amplified using Vectastain Elite ABC Reagent (Vector) for 30 min followed by 3, 3'-diaminobenzidine (DAB). Sections were counterstained with Haematoxylin. Quantification of Nkx2.1 and Foxj1 staining was automated through custom-written ImageJ Macros (using the Fiji distribution package). Segmentation was performed using the color deconvolution plug-in, combined with auto-threshold and size filtering. Cell quantifications were performed automatically, while diameter of the airway for Foxj1 quantification was manually defined.

For immunofluorescence staining, sections were blocked in 10% serum, incubated with appropriate antibodies overnight at 4°C followed by fluorophore-conjugated antibodies. Imaging was performed using a DeltaVision Elite microscope (Applied Precision). For Gomori’s aldehyde fuchsin (GAF) staining, see methods in the supplementary material.

RNA total RNA was extracted from embryonic lungs using either the Total RNA Purification Kit (Norgen) or miRNAasy Mini Kit (Qiagen). DNase treatment was performed on-column using RNase-free DNase I Kit (Norgen). CDNA was generated using SuperScript III (Invitrogen) from 500 ng of total RNA. qPCR was performed using the Sensimix SYBR Hi-Rox kit (Bioline) and primers described in the methods in the supplementary material. PCR was carried out in the Rotorgene RG-6000 and expression levels were normalized to Hprt. TaqMan probes were used for Krt5, Krt14 and Trp63 qPCR (see methods in the supplementary material) using Fast Advanced TaqMan mastermix.

Fluorescence-activated cells sorting (FACS)

For FACS analysis of E18.5 lungs, individual lungs were digested in 500 μl of collagenase mix (1 mg collagenase/lung in DPBS+0.2 g glucose/liter) at 37°C for 30 min while shaking at 165 rpm, followed by red blood cell lysis with 0.64% ammonium chloride at 37°C for 3 min. Cells were resuspended in blocking solution (anti-FcR and Rat IgG) and incubated on ice for 10 min. Antibody staining was performed as described in the methods in the supplementary material. Cells were then washed and resuspended in PI solution. For cell cycle analysis, fixed and permeabilized cells (Fixe-Perm, BD) were stained with DAPI. Cells were analyzed using Fortessa and FortessaX20 or sorted using ARIA sorter (Beckton Dickinson). FACS data was analyzed using FlowJo6.2.2. Data represent mean±s.e.m. P-values were calculated using unpaired t-test assuming equal variance.

In vitro proliferation assay

EpCAM+ sorted cells were plated on a 96-well low attachment plate in 100 μl media [DMEM:F12 with Glutamax, 100 μM penicillin, 100 μg/ml streptomycin, ITS, B27 (Gibco), 10 μg/ml EGF (Sigma), 20 μg/ml bFGF (R&D)]. After 3 days in culture, 10 μl of CellTiter 96 AQueous One Solution Reagent (Promega) was added to each well and incubated at 37°C for at least 1.5 h. Absorbance was measured at 490 nm.

Ex vivo lung culture

E11.5 lungs were dissected and cultured at air-liquid interface on 8 μm membrane placed on 1 ml of media DMEM:F12 with Glutamax (Gibco) with 100 μM penicillin and 100 μg/ml streptomycin. Lungs were treated for 3-4 days with DMSO, PBS, pircpodophyllin (PPP) (150 nM, Santa Cruz Biotech), WAY266211 (500 nM, Millipore) or IGF1 (1 μg/ml, GroPep).

Lung whole-mount staining and OPT imaging

Embryonic lungs were stained according to protocols described previously (Chang et al., 2013; Metzger et al., 2008). Briefly, E14.5 lungs and younger were fixed in 4% PFA at 4°C for 1 h while E15.5 and older lungs were fixed in DMSO:methanol (1:4) overnight at 4°C. Lungs were blocked in PBS with 5% serum and 0.5% Triton X-100, stained with keratin 5 or E-cadherin (see methods in the supplementary material) for 2-3 days and washed before adding the secondary antibody for 2 days. Lungs were imaged with optical projection tomography (OPT) to visualize the E-cadherin or keratin 5-positive structures of the lung. Lungs were quantified using two methods. Tree Surveyor software (Combes et al., 2014; Short et al., 2013) was used to quantify all aspects of accessory lobe branching from the E-cadherin OPT datasets (tertiary branches number, terminal sac number, lengths, volumes, diameters, curvature, angles). Imaris software (Bitplane, Oxford Instruments) was used to calculate whole lobe volumes using the Surfaces contouring tool. Statistical tests used were unpaired two-tailed t-tests for assessing lung and lobe volumes, and 2-tailed t-tests with Welch’s correction for potential unequal variances for the accessory lobe statistical tests (terminal sac number, main branch number, airway length/volume).

RNA-seq and ChIP-seq analysis

Reads were aligned to the mouse reference genome (mm10) using the Rsu bred package (version 1.14.2) (Liao et al., 2013). For RNA-seq data, reads were summarized at the gene level using the featureCounts function in a strand-specific manner. The voom method (Law et al., 2014) was applied to transform the data and derive observational-level weights that were used in the fitting of gene-wise linear models (Ritchie et al., 2015) with TREAT (McCarthy and Smyth, 2009) to assess differential expression relative to a control reference gene set. The TREAT method was used to determine the fold-change of I2. The ChIP-seq data was analyzed using the cswag package (Lun and Smyth, 2014) from the Bioconductor project to compare read depth in contiguous 2 kb bins between control and Ezh2-depleted lung epithelium. The data are available from GEO (Accession Numbers GSE57391 and GSE57392). For a detailed description of the analysis, refer to methods in the supplementary material. Gene set testing and microarray analyses are described in the supplementary material.

Acknowledgements

The authors thank Caitlin Filby, Kati Villaniemi, Anne Rios, Stephen Wilcox and Lachlan Whitehead for technical support, Prof. Jane Visscher for critical reading of the manuscript.
the manuscript, and Prof Gordon Smyth for bioinformatics expertise. We thank Prof. Mike Lawrence, Callum Lawrence and John Menting for reagents and expert advice.

Competing interests
The authors declare no competing or financial interests.

Author contributions
L.A.G. and A.Z.H. performed the experiments; A.Z.H., A.T.L.L. and M.E.R. performed bioinformatics analysis; K.M.S. and I.M.S. performed 3D imaging and quantification; J.P. provided technical assistance; M.E.B. participated in the design of the experiments; L.A.G., A.Z.H. and M.-L.A.-L. designed the study, analyzed results and wrote the manuscript.

Funding
M.-L.A.-L. and M.E.B. are supported by Australian Research Council Queen Elizabeth II Fellowships. A.T.L.L. is supported by an Elizabeth and Vernon Puzey Scholarship from the University of Melbourne. L.A.G. is supported by Strathmore Community College Scholarship. This work was supported in part by an Australian National Health and Medical Research Council grant to M.-L.A.-L., M.E.B. and M.E.R. [APP1079756]. This work was made possible through Victorian State Government Operational Infrastructure Support and Australian Government NHMRC.IRISS. Deposited in PMC for immediate release.

Supplementary material
Supplementary material available online at http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.122077/-/DC1

References

Supplemental Figures

Figure S1. (A) Immunofluorescence staining of E16.5 lungs for Nkx2.1 (green) and Ezh2 (red) showing nuclear expression of Ezh2. Scale bars = 50µm. (B) PCR showing deletion of the SET domain of Ezh2. Genomic DNA was isolated from EpCAM⁺ and EpCAM⁻ sorted cells at E16.5. (C) RT-qPCR showing loss of the SET domain of Ezh2 in the lung epithelium. (D) PCR showing incomplete excision of Ezh2 SET domain in sorted EpCAM⁺ cells from one Shh-cre;Ezh2flo/flo mouse that survived to adulthood. (E) Whole lung volume analysis of OPT scanned E14.5 Shh-cre;Ezh2flo/flo and control lungs at E14.5. Data represent mean ± SEM. ** = p value < 0.01
Figure S2. (A) RT-qPCR analysis of Scgb3a2 mRNA expression in EpCAM⁺ and EpCAM⁻ cells isolated from E18.5 Shh-cre;Ezh2⁻/⁻ and Shh-cre;Ezh2⁺/+ control mice. Data represent mean ± SEM (n=3). (B) Immunohistochemistry showing the expression of Scgb3a2 and acetylated tubulin in proximal and distal airways of E18.5 Shh-cre;Ezh2⁻/⁻ and Shh-cre;Ezh2⁺/+ control mice (representative of n>7). Scale bars = 200 µm. (C) Immunohistochemistry staining for CC10, Ki67 and Keratin 5 in 1 week old Scgb1a1-creER;Ezh2⁻/⁻ and control animals. Scale bars = 200 µm. (D) Immunohistochemistry staining for markers of alveolar type II cell (Pro SP-C) in E18.5 lungs and alveolar type I cell (T1alpha) in E17.5 lungs. Scale bars = 25 µm.
Figure S3. (A) MA plot showing differentially expressed genes between Ezh2-deficient and control stromal cells in E16.5 embryonic lung. Differentially expressed genes (FDR<0.05) are marked in red (up-regulated) and blue (down-regulated). (B)
Expression analysis of *Hox* genes in Ezh2-deficient and control lung epithelium and stroma. The colours in the heatmap represent average log$_2$ cpm (n=3). (C) Genome browser view of H3K27 tri-methylation over the four *Hox* genomic loci demonstrating the loss of H3K27me3 mark in Ezh2-deficient epithelium. (D) Bar plot showing the number of overlapping genes (purple) between genes up-regulated in *Shh-cre;Ezh2$^{fl/fl}$* epithelium (blue) and top 2500 tissue-specific genes (orange).
Figure S4. (A) Immunohistochemistry showing apparition of Keratin 5 expression from E16.5 in airways of Shh-cre;Ezh2^{flo/flo} animals. Scale bars = 200µm (B) Gene set analysis of genes differentially marked by H3K27me3 (FDR < 0.05) in the basal gene signature from Rock et al. (2009) (gene set test p<0.0001).
Figure S5. (A) Box plot showing RNA-seq expression values (normalised log₂ cpm, n=3, FDR<0.01) for Dkk1 and genome browser view of H3K27 tri-methylation over the Dkk1 genomic locus. (B) qPCR data showing the expression of Krt5 and Trp63 in control and Shh-cre;Ezh2fl/fl E11.5 lungs cultured ex vivo with WAY262611 (500nM) or PPP (150nM) for 72 hours. (C) Flow cytometry analysis of Keratin 5 expression in E11.5 wild-type lungs treated ex vivo with PBS or IGF-1 for 4 days. Cells gated are EpCAM+CD104+. (D) Western blot analysis showing the expression of Keratin 14, Snai2 and β-actin in E11.5 embryonic lungs cultured ex vivo with PBS or IGF-1 for 96 hours.
Movies

Movie 1: OPT-scanned three-dimensional imaging of Shh-cre;Ezh2^{0/1} E16.5 lung stained with Keratin 5.

Movie 2: OPT-scanned three-dimensional imaging of Shh-cre;Ezh2^{0/0} E16.5 lung stained with Keratin 5.
Table S1: Survival at weaning of offsprings from Shh-cre mice crossed with Ezh2fl/fl mice per genotype.

<table>
<thead>
<tr>
<th></th>
<th>Ezh2fl/+</th>
<th>Ezh2fl/fl</th>
<th>Shh-cre; Ezh2fl/+</th>
<th>Shh-cre; Ezh2fl/fl</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed # of offspring</td>
<td>56</td>
<td>36</td>
<td>43</td>
<td>1</td>
<td>136</td>
</tr>
<tr>
<td>Observed %</td>
<td>41.2%</td>
<td>26.5%</td>
<td>31.6%</td>
<td>0.7%</td>
<td>100%</td>
</tr>
<tr>
<td>Expected % of offspring</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>100%</td>
</tr>
</tbody>
</table>

X² test was used to compare expected and observed number of offspring. (p = 1.46 x 10⁻¹⁰)

Table S2

Click here to Download Table S2

Table S3

Click here to Download Table S3
Supplemental Methods

Table of primers used for genotyping and qPCR

<table>
<thead>
<tr>
<th>qRT-PCR Primers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ezh2 SET Fwd</td>
<td>GAG GGC TAT CCA GAC TGG TG</td>
</tr>
<tr>
<td>Ezh2 SET Rev</td>
<td>ATG CCC ACA TAC TTC AGG GC</td>
</tr>
<tr>
<td>HPRT Fwd</td>
<td>CAC AGG ACT AGA ACA CCT GC</td>
</tr>
<tr>
<td>HPRT Rev</td>
<td>GCT GGT GAA AAG GAC CTC T</td>
</tr>
<tr>
<td>Scgb3a2 Fwd</td>
<td>GCT GGT ATC TAT CTT TCT GCT GGT G</td>
</tr>
<tr>
<td>Scgb3a2 Rev</td>
<td>ACA ACA GGG AGA CGG TTG ATG AGA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genotyping Primers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ezh2 Fwd</td>
<td>TTA TTC ATA GAG CCA CCT GG</td>
</tr>
<tr>
<td>Ezh2 Fwd Left</td>
<td>ACG AAA CAG CTC CAG ATT CAG GG</td>
</tr>
<tr>
<td>Ezh2 Rev</td>
<td>CTG CTC TGA ATG GCA ACT CC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Taqman probes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HPRT</td>
<td>Mm00446968_m1</td>
</tr>
<tr>
<td>Trp63</td>
<td>Mm00495793_m1</td>
</tr>
<tr>
<td>Krt14</td>
<td>Mm00516876_m1</td>
</tr>
<tr>
<td>Krt5</td>
<td>Mm00503549_m1</td>
</tr>
</tbody>
</table>
Table of Antibodies used for IHC, western blotting and FACS

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Supplier</th>
<th>Catalogue number</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC10</td>
<td>Kind gift from Dr. B. Stripp (Regenerative Medicine Institute at Cedars -Sinai)</td>
<td>-</td>
<td>1/2000</td>
</tr>
<tr>
<td>Keratin 5</td>
<td>Covance</td>
<td>PRB-160P</td>
<td>1/1000</td>
</tr>
<tr>
<td>E-cadherin</td>
<td>Invitrogen</td>
<td>13-1900</td>
<td>1/500</td>
</tr>
<tr>
<td>FoxJ1</td>
<td>eBioscience</td>
<td>14-9965</td>
<td>1/400</td>
</tr>
<tr>
<td>Sox2</td>
<td>Millipore</td>
<td>AB5603</td>
<td>1/500</td>
</tr>
<tr>
<td>Sox9</td>
<td>Millipore</td>
<td>AB5535</td>
<td>1/4000</td>
</tr>
<tr>
<td>Nkx2.1</td>
<td>Dako</td>
<td>M3575</td>
<td>1/200</td>
</tr>
<tr>
<td>Acetylated Tubulin</td>
<td>Sigma-Aldrich</td>
<td>T7451</td>
<td>1/800</td>
</tr>
<tr>
<td>Ki67</td>
<td>Dako</td>
<td>M7249</td>
<td>1/200</td>
</tr>
<tr>
<td>Ezh2</td>
<td>Invitrogen</td>
<td>36-6300</td>
<td>1/250</td>
</tr>
<tr>
<td>Scgb3a2</td>
<td>R&D Systems</td>
<td>AF3465</td>
<td>1/100</td>
</tr>
<tr>
<td>T1alpha</td>
<td>DSHB</td>
<td>clone 8.1.1</td>
<td>1/1000</td>
</tr>
<tr>
<td>β-actin</td>
<td>Sigma</td>
<td>A5441</td>
<td>1/5000</td>
</tr>
<tr>
<td>IGF-1</td>
<td>Abcam</td>
<td>ab9572</td>
<td>1/100</td>
</tr>
<tr>
<td>Keratin 14</td>
<td>Covance</td>
<td>PRB-155P</td>
<td>1/1000</td>
</tr>
<tr>
<td>Snai2</td>
<td>Cell Signaling Technology</td>
<td>9585</td>
<td>1/1000</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>Pro SP-C</td>
<td>Seven Hills</td>
<td>WRAB-9337</td>
<td>1/1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Secondary Antibody</th>
<th>Company</th>
<th>Catalogue number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donkey anti- Rabbit</td>
<td>Invitrogen</td>
<td>A21207</td>
</tr>
<tr>
<td>Donkey anti-Rat</td>
<td>Invitrogen</td>
<td>A21208</td>
</tr>
<tr>
<td>Goat anti-IgG2a Mouse</td>
<td>Invitrogen</td>
<td>A21137</td>
</tr>
<tr>
<td>Donkey anti-Goat</td>
<td>Invitrogen</td>
<td>A21432</td>
</tr>
<tr>
<td>Donkey anti-Rabbit</td>
<td>Invitrogen</td>
<td>A21206</td>
</tr>
<tr>
<td>Goat anti-IgG1 Mouse</td>
<td>Invitrogen</td>
<td>A21240</td>
</tr>
<tr>
<td>Goat anti-Rabbit</td>
<td>Vector Labs</td>
<td>BA-1000</td>
</tr>
<tr>
<td>Rabbit anti-Rat</td>
<td>Vector Labs</td>
<td>BA-4001</td>
</tr>
<tr>
<td>Horse anti-Goat</td>
<td>Vector Labs</td>
<td>BA-9500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Company</th>
<th>Dilution</th>
<th>Catalogue number</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPCAM</td>
<td>Biolegend</td>
<td>1/200</td>
<td>118212/118218</td>
</tr>
<tr>
<td>CD31</td>
<td>Biolegend</td>
<td>1/250</td>
<td>102418</td>
</tr>
<tr>
<td>CD45</td>
<td>Biolegend</td>
<td>1/250</td>
<td>103114</td>
</tr>
</tbody>
</table>
Antibody staining for FACS analysis

Antibodies were diluted in 2% FCS/DPBS and incubated with cells for 25 min on ice. Cells were washed in 2% FCS/DPBS and incubated with secondary antibody for 15 min on ice. Cells were resuspended in Propidium Iodide solution before analysis on the flow cytometer.

GAF staining

Sections for Gomori’s Aldehyde Fuchsin (GAF) staining were fixed on Bouin’s fluid at 60°C for 1h, washed in water and left in 70% ethanol for 5 min. GAF stain was performed overnight at 4°C followed by 2h at RT. Sections were washed in 70% ethanol before Trichome staining and 1% acetic acid wash for 4 min each. Once washed in water, slides were incubated for 2 min in 2% light green in 1% acetic acid, washed in water and dehydrated for mounting.

RNA-seq: sample preparation and analysis

EpCAM⁺ and EpCAM⁻ cells from the Ezh2-deficient and control embryonic lungs at day E16.5 were pooled together as necessary to a minimum of 100000 cells per sample (3 samples per tissue-genotype combination). Total RNA was extracted and purified using Total RNA Purification Kit (Norgen) according to kit instructions. 150 ng of total RNA was subjected to NGS library preparation using TruSeq Stranded Total RNA with Ribo-Zero (Illumina) according to kit instructions. Completed libraries from different samples were pooled together at equimolar concentrations and sequenced on HiSeq 2000 with
TruSeq SBS Kit v3- HS reagents (Illumina) as 100 bp single end reads at the Australian Genome Research Facility (AGRF).

Reads were aligned to the mouse reference genome *mm10* and mapped to known genomic features at the gene level using the Rsubread package (version 1.14.2) (Liao et al. 2013) from the Bioconductor software project (Gentleman et al. 2004). Reads were summarized at the gene level using the featureCounts (Liao et al. 2014) function in a strand-specific manner. Genes with low counts were discarded, retaining only those with counts per million above 0.5 in at least 3 libraries. Predicted genes, genes without annotation and genes that mapped to Y or mitochondrial chromosomes were also removed from the analysis. After filtering, 14,831 genes remained available for the differential expression analysis. Read counts were normalised using the trimmed mean of M-values (TMM) method (Robinson and Oshlack 2010) from the edgeR package (version 3.8.2) (Robinson et al. 2010). The voom method (Law et al. 2014) was then applied to transform the data and derive observational-level weights which were used in the fitting of gene-wise linear models (Smyth 2004) with TREAT (McCarthy and Smyth 2009) to assess differential expression relative to a fold-change of 1.2. The false discovery rate (FDR) was controlled at 5% by applying the Benjamini-Hochberg method (Benjamini and Hochberg, 1995).

ChIP-seq: sample preparation and sequencing

Freshly sorted EpCAM*+* cells from Ezh2-deficient and control embryonic lungs at day E16.5 were cross-linked in 1ml of freshly prepared 1% formaldehyde for 10 min at room temperature (RT). Cross-linking was stopped by adding 100μl of 1.25M Glycine and 5
min incubation at RT. Cells were collected by centrifugation at 1000 x g for 5 min at 4°C, resuspended in 200µl of hypotonic buffer from Chromatrap Standard Pro-A ChIP spin column sonication kit (Chromatrap) containing 1µl of proteinase inhibitor cocktail (PIC) (Sigma) and incubated on ice for 10 min. At this stage concentration of nuclei in the hypotonic buffer was estimated using a haemocytometer. Nuclei were collected by centrifugation at 5000 x g for 5 min at 4°C. Nuclear pellet was snap-frozen in dry ice and stored at -80°C. Nuclear pellets from several preparations were pooled together to a minimum of 400000-500000 cells per sample (2 samples per genotype) in 130µl of cell lysis buffer (Chromatrap) containing 1µl of PIC and incubated on ice for at least 10 min. The entire volume of lysate was transferred to a microTUBE (Covaris) and sonicated on Covaris S220 machine for 15 min under the following conditions: Duty Cycle 2%; Peak Incident Power 105 W; Cycles per Burst 200.

Sonicated lysate was centrifuged at 10000 x g for 5 min at 4°C and resulting supernatant was collected and stored at -80°C. A 25µl aliquot of lysate was combined with 5µl of 1M NaHCO3, 5 µl of 5M NaCl, 15µl dH2O and 1µl of 20mg/ml Proteinase K (Roche). The mix was incubated at 65°C for 2 hours and Proteinase K was inactivated by heating the mix to 95°C for 10 min. DNA was isolated by Phenol-Chloroform extraction followed by DNA precipitation and resuspended in 30µl of nuclease-free H2O. The fragment size and DNA concentration were determined using D1K Screentape on Tapestation instrument (Agilent).
50µl of sonicated lysate was combined with 450µl Chromatin Dilution Buffer (Millipore), 10µg H3K27me3 antibody (Millipore #07-449), 2.25µl PIC (Sigma) and 40µl of Magna ChIP protein A magnetic beads (Millipore #16-661). The chromatin slurry was incubated overnight with rotation at 4°C and beads were washed according to Magna ChIP A kit instructions (Millipore #17-610). Chromatin was eluted from the beads by resuspension in 100µl elution buffer (1% SDS, 0.1M NaHCO3) containing 1µl of 20mg/ml Proteinase K (Roche) followed by incubation at 62°C for 2h with shaking and Proteinase K inactivation at 95°C for 10 min. 2 IP reactions were set up for each sample and eluted chromatin corresponding to the same sample was combined at this stage. DNA was isolated by phenol-chloroform extraction followed by precipitation and resuspended in 30 µl of nuclease free water.

20-30ng of immunoprecipitated DNA from each of the samples as well as 100ng of whole genome extract were subjected to NGS library preparation using TruSeq Nano DNA Sample Preparation Kit (Illumina) following kit instructions with the following adjustments: fragmentation and size selection steps were omitted and 10 cycles of amplification were carried out during the fragment enrichment step. Resulting libraries were size selected using Pippin Prep DNA Size Selection System (Sage Science) to ensure fragment size below 900 bp. Libraries were pooled at equimolar concentrations and sequenced on HiSeq 2500 TruSeq SBS Kit v3 - HS reagents (Illumina) as 100 bp single end reads at AGRF.
ChIP-seq analysis

Reads were aligned to the mouse reference genome mm10 using Rsubread package (version 1.13.25) (Liao et al. 2013). For visualisation purposes, genome browser tracks were plotted using Gviz package (version 1.7.10) (Hahne et al., 2013) with a 1000 bp smoothing window. Briefly, reads over genomic loci of interest were extracted from individual bam files and read coverage was normalised to the effective library sizes computed as described below. Read depth for control and Ezh2-deficient samples was further normalised by dividing read coverage at each position by the respective read depth of the whole genome extract sample.

We used a locally developed R software package (ChIP-seq analysis with windows, or csaw) based on a previously described approach (Lun and Smyth, 2014) to call H3K27me3 enriched regions. Reads from each library were counted into contiguous 2 kb bins spanning the entire genome. Reads in genomic regions annotated as repeat sequences according to RepeatMasker (Smit et al., 2010) from the UCSC server (http://hgdownload.cse.ucsc.edu/goldenPath/mm10/bigZips/chromOut.tar.gz) were excluded from counting. The average log-count per million (logCPM) for each bin was computed using the aveLogCPM function in edgeR. Bins were filtered to retain only those with an average logCPM above 0.5 yielding 160484 bins. This removes low-abundance bins corresponding to putative regions of non-specific enrichment.

Normalization was then performed to correct for composition bias. Briefly, reads were counted in 10 kb bins for each library and the counts were used to compute normalization factors using the TMM method (Robinson et al. 2010). These factors were used to compute the effective library sizes for the differential enrichment analysis.
performed using edgeR (Robinson and Oshlack 2010). Significant differences between control and Ezh2-deficient samples were detected for each 2 kb bin using the quasi-likelihood negative binomial framework (Lund et al. 2012).

For a promoter-based summary of H3K27me3 marking, the set of bins overlapping each promoter (defined as 3kb up- and downstream of transcription start sites (TSS)) was identified. A combined p-value was computed for each promoter using Simes' method. Promoters with significant differences in marking were detected after applying the Benjamini-Hochberg method on the combined p-values, to control the FDR across promoters at 5%. 1214 genes were identified with increased marking in the control samples over the knockouts. We also repeated the analysis aggregating bins over gene bodies (gene length plus 3kb upstream of TSS) with the similar outcome.

Gene set testing

Visualisation of gene set analyses was conducted using the barcodeplot function from the limma package (version 3.22.0) (Ritchie 2015). For each plot, the dataset of interest was ranked by moderated t-statistics and elements of queried gene sets or signatures were plotted as bars. Enrichment of the gene set elements across the range of the statistics was displayed by plotting a moving average calculated using a tri-cube weight function. Genes in the figure S4B were ranked by log_{10} of FDR signed by the direction of the fold change (i.e. genes enriched for the H3K27me3 mark in control samples were assigned positive value, while genes depleted for the H3K27 mark were assigned a negative value).

Focused gene set testing of lung basal cell signature (Rock et al., 2009) was performed for differentially expressed genes between Ezh2-deficient and control lung
epithelium using the ROAST method (Wu et al. 2010). Gene set tests of H3K27me3 differentially marked genes was also performed among genes differentially expressed between conditions (Ezh2-deficient vs control lung epithelium) using ROAST and lung basal cell signature (Rock et al., 2009) using the geneSetTest function from limma (Ritchie et al., 2015).

Microarray analysis

Tissue-specific expression analysis was carried out using publicly available GNF Mouse GeneAtlas V3 data (GEO accession number GSE10246). Samples corresponding to cell lines and blood cell types were removed leaving 49 solid tissues (including 2 ES cell lines). Expression values were log2 transformed and quantile normalised. Differential expression analysis was then carried out using linear modeling (Smyth 2004) by contrasting the average expression in each of the tissues to the average expression across the remaining tissues using the limma package (Ritchie et al., 2015). Gene-wise p-values were detected at a false discovery rate of 5% by applying the Benjamini-Hochberg method. This yielded between 2541 and 4625 differentially expressed genes per tissue (logFC > 0). We then defined tissue-specific signatures as the top 2500 differentially expressed genes (FDR < 0.05) ranked by logFC value and estimated the overlap between these tissue-specific signatures and the genes up-regulated in Ezh2-deficient epithelium (FDR < 0.05, logFC > 0, 2655 genes).

Basal cell expression signature was derived by re-analysing the expression microarray profile of mouse trachea basal cells (Rock et al., 2009, GEO accession number GSE15724). Probes without annotation and with non-unique gene IDs were
filtered out leaving 38557 probes. Differential expression analysis was carried out using the limma package with sample-specific weights (Ritchie et al., 2006) by contrasting gene expression in Krt5-GFP⁺;Lectin⁺ cells with the average expression of double negative (Krt5-GFP⁻;Lectin⁻) and Krt5-GFP⁺;Lectin⁻ cells. To increase the stringency of the signature, we used the TREAT function in limma to test for differences greater than 2 fold. This approach yielded a basal signature of 165 unique genes that contained all of the consensus basal genes (Krt5, Krt14, Trp63, Ngfr, Snai2).
Supplemental References

Bioinformatics 2006, 7:261

