Unraveling transcriptome dynamics in human spermatogenesis

Sabrina Z. Jan1,*, Tinke L. Vormer1,*, Aldo Jongejan1,2, Michael D. Röling1, Sherman J. Silber1,3, Dirk G. de Rooij1, Geert Hamer1, Sjoerd Repping1,4 and Ans M. van Pelt1

ABSTRACT
Spermatogenesis is a dynamic developmental process that includes stem cell proliferation and differentiation, meiotic cell divisions and extreme chromatin condensation. Although studied in mice, the molecular control of human spermatogenesis is largely unknown. Here, we developed a protocol that enables next-generation sequencing of RNA obtained from pools of 500 individually laser-capture microdissected cells of specific germ cell subtypes from fixed human testis samples. Transcriptomic analyses of these successive germ cell subtypes reveals dynamic transcription of over 4000 genes during human spermatogenesis. At the same time, many of the genes encoding for well-established meiotic and post-meiotic proteins are already present in the pre-meiotic phase. Furthermore, we found significant cell type-specific expression of post-transcriptional regulators, including expression of 110 RNA-binding proteins and 137 long non-coding RNAs, most of them previously not linked to spermatogenesis. Together, these data suggest that the transcriptome of precursor cells already contains the genes necessary for cellular differentiation and that timely translation controlled by post-transcriptional regulators is crucial for normal development. These established transcriptomes provide a reference catalog for further detailed studies on human spermatogenesis and spermatogenic failure.

KEY WORDS: Gamete development, RNA-binding proteins, RNA-sequencing, Human, Spermatogenesis

INTRODUCTION
Spermatogenesis is a tightly regulated developmental process during which mature haploid sperm cells are formed from diploid precursor spermatogonial stem cells. During this process male germ cells need to undergo strictly orchestrated cellular processes including mitotic divisions (pre-meiotic phase), meiotic divisions (meiotic phase) and extensive morphological transformations (post-meiotic phase). In each phase of human spermatogenesis, various developmental germ cell subtypes can be identified based on microscopic appearance and stages of the seminiferous epithelium (Amann, 2008; Muciaccia et al., 2013). In the pre-meiotic phase, Adark (quiescent), A pale (actively dividing) and B (differentiating) spermatogonia are present (Rowley et al., 1971; van Alphen et al., 1988). B spermatogonia eventually divide into pre-leptotene spermatocytes (de Rooij and Russell, 2000), which undergo the last round of DNA duplication prior to the meiotic divisions. In the meiotic phase, the most crucially important processes occur during the prophase of the first meiotic division: homologous chromosome alignment, meiotic recombination and crossover formation. After prophase I, spermatocytes progress through two consecutive meiotic divisions generating haploid round spermatids (Holstein et al., 1987). In the post-meiotic phase, round spermatids undergo extensive morphological changes, including chromatin compaction, reorganization of the cytoplasm and organelles, and development of the flagellum, eventually forming mature spermatozoa.

Disturbances in any of these phases can lead to spermatogenic failure. Various animal studies, as well as human cohort studies, have suggested a genetic basis for spermatogenic failure (Gurkan et al., 2013; Massart et al., 2012; Matzuk and Lamb, 2008; Sato et al., 2015; Song and Wilkinson, 2012; Stouffs et al., 2009; Venkatesh et al., 2014). Although these genetic studies provide useful information about spermatogenesis-related genes, they do not provide insights into the underlying molecular processes and as such cannot aid in understanding the pathobiology of spermatogenic failure and infertility.

In humans, knowledge about the molecular processes that control spermatogenesis is still limited. Recent gene expression studies have shown that human spermatogenesis is controlled by a complex network of molecular pathways (Bonache et al., 2014; Feig et al., 2007; Shafipour et al., 2014). However, these studies investigated expression changes in entire testicular biopsies from healthy and subfertile men. Owing to the highly heterogeneous mixture of cells present within the testis, these studies lack information on germ cell-specific expression and as such cannot pinpoint the molecular events required specifically for germ cell development. Furthermore, these studies have investigated gene panels selected beforehand and as such do not consider other potentially relevant genes not yet linked to spermatogenesis. Thus, generating germ cell-specific whole-transcriptome profiles is key to understanding the molecular landscape of each step during human spermatogenesis. Various groups have attempted to achieve this using various enrichment strategies; however, owing to the impurities of the isolated cell populations inherent to the techniques used, it has thus far been impossible to generate gene expression profiles of germ cell subtypes within the three phases during spermatogenesis (Chalmel et al., 2007; Zhu et al., 2016). For this purpose, we developed a protocol that allowed us to collect individual germ cell subtypes from fixed tissue using individual-cell laser-capture microdissection (LCM). Using this approach, we generated transcriptome profiles of six morphologically and functionally distinct successive germ cell subtypes that represent key steps in each phase of human spermatogenesis.

© 2017. Published by The Company of Biologists Ltd | Development (2017) 144, 3659-3673 doi:10.1242/dev.152413
spermatogenesis. Our data allow us to trace key gene expression dynamics during subsequent developmental steps throughout human spermatogenesis and furthermore provide a reference catalog for the characterization and understanding of various forms of spermatogenic failure and male contraception. Moreover, this study adds to the growing body of knowledge of processes involved in stem cell biology and cellular differentiation in other organ systems.

RESULTS
Our primary aim was to generate a comprehensive transcriptomic dataset of well-defined and distinct germ cell subtypes present in the human testis using LCM. In itself this dataset, which is freely available to the scientific community (deposited in NCBI’s Sequence Read Archive under accession number SRP069329), forms a basis for future studies and bioinformatics analyses on the etiology of spermatogenic failure, the development of male contraceptives and the basic understanding of human spermatogenesis. In the current paper we exemplify the usefulness of our dataset by addressing the following questions: What are the gene expression dynamics between successive germ cell subtypes during human spermatogenesis? What is the added value of germ cell subtypes compared with spermatogenic phases? How conserved is the germ cell transcriptome between human and mouse? How similar are Apale and Adark spermatogonia? What can we learn from post-transcriptional regulation in spermatogenesis by studying expression of RNA-binding genes and long non-coding RNA in the successive germ cell subtypes?

LCM RNA-seq for transcriptome analyses of individual germ cell subtypes
First, we developed an LCM method that allows isolation of individual germ cell subtypes from fixed testicular tissue. Given the heterogeneity of germ cell subtypes within the testis that lie in close proximity to each other, we decided to use LCM to allow capturing of individual specific germ cell types while minimizing contamination with surrounding cells that would possibly be in a different stage of development. We first selected a fixative that maintains both RNA integrity as well as the typical morphological nuclear characteristics required to recognize individual germ cell subtypes (Fig. S1). Our developed method enabled recognition and selection of specific germ cell subtypes based on a combination of morphological criteria (Clermont, 1972), location in the seminiferous tubular cross-section and germ cell associations present in the various stages of the seminiferous epithelium (Mucciaccia et al., 2013) within the three phases of spermatogenesis: pre-meiosis, meiosis and post-meiosis (Fig. 1). Five-hundred germ cells from each specific germ cell subtype were individually isolated using LCM and pooled. RNA from these pools was subsequently amplified and sequenced from 5-µm-thick sections using an alcohol-based fixative (see Materials and Methods; Figs S1 and S2). This method allowed us to capture specific germ cell subtypes, which cannot be isolated with any other cell sorting method, with high purity.

Transcriptome profiles of spermatogenic phases
We were able to distinguish and select six specific germ cell subtypes (Fig. 2). We selected Adark (Ad) and Apale (Ap) spermatogonia to represent the pre-meiotic phase. As prophase I is the longest phase of meiosis, we chose three spermatocyte subtypes: leptotene/zygote (L/Z), early pachytene (eP) and late pachytene (IP) to represent the meiotic phase. Lastly, we selected round spermatids (rspt) to represent the post-meiotic phase (Fig. 1). Using this protocol, we successfully determined the transcriptomes of these germ cell subtypes from six individuals with normal spermatogenesis [Table S1 (counts per million individual data) and Table S2 (averaged data from six men, mean±s.d.). Owing to very low numbers of B spermatogonia and pre-leptotene spermatocytes in human testicular tissue (Skakkebaek and Heller, 1973), the limited amount of available tissue and the need for at least 500 germ cell sections per individual germ cell subtype for our protocol, we were unable to include these germ cell subtypes for our RNA-seq analysis. We also decided to exclude elongating spermatids from this study because transcription is known to be silenced during DNA compaction in elongating spermatids. To be able to compare and validate our results with previously described data on spermatogenic phases, we first grouped our spermatogonial (Adark and Apale spermatogonia), spermatocyte (leptotene/zygote, early pachytene or late pachytene) and spermatid data sets in silico to represent the major phases in spermatogenesis: pre-meiotic, meiotic and post-meiotic phases, respectively (Fig. 3A-D). Analysis of the mean number of expressed transcripts in each phase of spermatogenesis revealed that the pre-meiotic phase expressed the broadest gene set (mean of approximately 12,000 transcripts), which decreased by 17% (P=0.055) in the meiotic phase and further decreased by 24% (P=0.006) in the post-meiotic phase of spermatogenesis (Fig. 3A). The relative very complex transcriptome of the testis with respect to other organs has previously been reported and was explained by the complex transcriptome of spermatocytes and spermatids (Soumillon et al., 2013). However, we are the first to report a decrease in transcriptomic complexity as spermatogenesis proceeds with spermatogonia showing the highest complexity when investigating protein-coding genes on all chromosomes with exclusion of ribosomal genes. Interestingly, a decrease in transcriptomic complexity also occurs during cellular development in the lung epithelium (Treutlein et al., 2014).

Visualizing the mean of the transcriptomes of each individual germ cell subtype within each phase using multidimensional scaling (MDS) (Fig. 3B) revealed that germ cells of the pre-meiotic, meiotic and post-meiotic phases all have a distinct transcriptional fingerprint (Fig. 3B). We found 2544 differentially expressed genes (DEGs) between the pre-meiotic and meiotic phases and 4607 DEGs between the meiotic and post-meiotic phases of spermatogenesis (Fig. 3C). To enable visualization of expression dynamics of these DEGs, we used k-means clustering to group genes based on common expression patterns throughout spermatogenesis (Fig. 3D). Cluster 1 contains 1453 genes that are downregulated in the meiotic and post-meiotic phases compared with the pre-meiotic phase and includes well known spermatogonial genes associated with cell development and differentiation such as NOTCH1, GPR125 (ADGRA3) and MAGEA4 (He et al., 2010; Mori et al., 2003; Oatley et al., 2011; Sachs et al., 2014) (Fig. 4A; Tables S3 and S4), which is in line with the stem cell nature and propagation features of cells in the pre-meiotic phase. ID4, another spermatogonial marker (Sachs et al., 2014), was also observed more prominently in the pre-meiotic phase; however, owing to the large biological variation, the difference did not reach statistical significance (adjusted P-value=0.057). Cluster 2 contains 2189 genes, which are specifically downregulated in the post-meiotic phase relative to
the other phases. This cluster is enriched with genes involved in protein ubiquitylation, DNA repair and transcription, such as WWP2, BRCA1 and various genes encoding zinc finger proteins, all of which are processes that occur during the first two phases of spermatogenesis (Fig. 4A; Tables S3 and S4). Cluster 3 contains 1321 genes, which are upregulated in the meiotic phase relative to the pre-meiotic and post-meiotic phase, including genes like SYCP3, DMC1 and DMRTC2 (Bishop et al., 1992; Date et al., 2012; Kawamata et al., 2007; Lammers et al., 1994; Ozaki et al., 2011) involved in meiotic processes such as DNA repair and synapsis (Fig. 4A; Tables S3 and S4). Cluster 4 contains 1754 genes, which are upregulated in the post-meiotic phase compared with the other two phases and included genes involved in spermiogenesis such as CREM, TEKT1 and HOOK1 (Larsson et al., 2000; Mendoza-Lujambio et al., 2002; Weinbauer et al., 1998) (Fig. 4A; Tables S3 and S4). These results confirmed that our
A novel isolation procedure was able to isolate highly enriched populations of human germ cells.

Transcriptome profiles of germ cell subtypes

Next, we performed a germ cell subtype analysis comparing the changing transcriptomic profiles of consecutive developmental germ cell subtypes within and between each phase of spermatogenesis (Fig. 3E-H; Table S1). This revealed that the gradual decrease in transcriptomic complexity during spermatogenesis as seen in Fig. 3A, is initiated by a significant drop in transcript number during early meiosis [comparing the dividing uncommitted A_pale spermatogonia with leptotene/zygotene spermatocytes (P ≤ 0.0001)] (Fig. 3E). This is consistent with earlier studies describing low RNA production in leptotene/zygotene spermatocytes in mice (Monesi, 1964). This downregulation is then followed by an increase in the number of transcripts in early pachytene, and subsequent gradual decrease in number of transcripts upon completion of spermatogenesis. Investigating the distribution of these expressed transcripts reveals similar distribution across the chromosomes in all of the germ cell subtypes (Fig. S3).

MDS analysis confirmed that, although some biological variation within each phase was present, distinct clusters were visible for A_dark and A_pale spermatogonia, leptotene/zygotene spermatocytes, early and late pachytene spermatocytes, and round spermatids (Fig. 3F; Fig. S4).

Germ cell subtype gene expression dynamics during human spermatogenesis

DEG analysis between germ cell subtypes revealed that the majority of gene expression changes occur during three steps: meiotic initiation (A_pale spermatogonia to leptotene/zygotene spermatocytes), homologous chromosome synapsis (leptotene/zygotene to early pachytene spermatocytes) and the start of spermiogenesis (late pachytene spermatocyte to round spermatids) (Fig. 3G). K-means clustering of all DEGs at successive developmental steps during spermatogenesis again revealed four major gene expression clusters (Fig. 4H; Table S5). Gene ontology analysis revealed that cluster 1 contains 323 genes that are highly expressed in A_dark and A_pale spermatogonia, which are related to transcription, steroid metabolism and cell differentiation. Surprisingly, we could not find a gene cluster with low expression in spermatogonia and high in all other germ cells. When analyzing 25 sub-clusters (Fig. S5), we found one cluster (cluster 9) with low expression in A_dark and A_pale spermatogonia and high in L/Z, eP and lP spermatocytes, followed by a decrease in round spermatids. This sub-cluster contains 141 genes of the total 4622 genes that are typically known to be meiosis related. Cluster 2 (Fig. 3H), containing 1151 genes that are downregulated in leptotene/zygotene spermatocytes and subsequently show high expression later during meiosis, which are related to spermatogenesis, mitosis, proteolysis and sperm-egg interactions (Tables S5 and S6). These two clusters contain genes that are crucial in regulating exit of the mitotic phase and entry into the meiotic phase such as BNC2, AGO4 and FGF9 (Fig. 4B; Tables S5 and S6). In line with our results, Bnc2 and Ago4 knockout mouse models have shown that mutant testes display premature expression of meiotic-associated proteins such as SYCP3, which leads to premature meiotic entry and subsequent meiotic arrest (Modzelewski et al., 2012; Vanhoutteghem et al., 2014). Similarly, FGF9 treatment of mouse spermatogonia leads to diminished numbers of meiotic cells and maintenance of the meiotic repressor Nanos2 (Barrios et al., 2010; Bowles et al., 2010). We found 1474 genes that follow similar expression patterns during the switch from mitosis to meiosis (Table S5). These genes are all of interest when investigating spermatogenic failure that phenotypically result in a meiotic arrest.

We found the highest number of DEGs upon the onset of spermiogenesis (late pachytene to round spermatid) (Fig. 3G,H). Gene ontology analysis revealed that cluster 3 was enriched for genes related to mitotic and meiotic processes such as SMC3, ATR and genes encoding synaptonemal complex proteins, which were all downregulated in round spermatids (Table S6). In addition, in line
Fig. 3. See next page for legend.
Fig. 3. Transcriptomic dynamics during spermatogenesis. (A-D) Spermatogenic phase analysis of in silico pooled data representing the pre-meiotic (average of A_dark and A_pale spermatogonia, n=11), meiotic (average of leptotene/zygotene, early and late pachytene spermatocytes, n=17) and post-meiotic (round spermatids, n=6) phases of spermatogenesis from six patients. (A) Mean number of transcripts expressed based on counts per million (mean±s.d.) in the pre-meiotic, meiotic and post-meiotic phases. *P<0.05. (B) An MDS plot showing the transcriptomic variability between pre-meiotic, meiotic and post-meiotic samples. (C) The number of differentially expressed genes (DEGs) and their direction of change (red arrow, upregulated; blue arrow, downregulated) found between the different phases of spermatogenesis (adjusted P-value≤0.05). (D) K-means clustering of 6717 DEGs across spermatogenesis. (E-H) Germ cell subtype analysis of data (mean±s.d.) obtained from the germ cell subtypes: A_dark (n=6), A_pale (n=5) spermatogonia, leptotene/zygotene (n=5), early pachytene (n=6), late pachytene (n=6) spermatocytes, round spermatids (n=6). (E) Mean number of transcripts expressed in the germ cell subtypes. *P<0.05. (F) An MDS plot showing the transcriptomic variability between the different germ cell subtypes: spermatogonia (purple; circles), spermatocytes (green; squares), spermatids (red; triangles). (G) Differentially expressed genes (red arrow, upregulated; blue arrow, downregulated) between the germ cell subtypes (adjusted P-value≤0.05). (H) K-means clustering of 4622 DEGs across spermatogenesis.

Comparing the transcriptome of germ cell subtypes with spermatogenic phases

With our RNA-seq analysis of specific germ cell subtypes within the three phases of spermatogenesis, we can now uncover the tightly regulated molecular control of human spermatogenesis. For example, the expression pattern of AGO4 was not differentially expressed between the pre-meiotic and meiotic phase (Fig. 3B). However, in our germ cell subtype analysis, we can clearly see that on average AGO4 is downregulated specifically in leptotene/zygotene spermatocytes compared with A_pale spermatogonia (adjusted P-value=0.09) and early pachytene spermatocytes (adjusted P-value=0.013). Although the former did not reach statistical significance (Table S1), we did detect statistically significant upregulation of AGO4 expression in early pachytene spermatocytes. The dynamic expression pattern of AGO4 during early meiosis suggests a possible dual function during the early mitotic-meiotic transition and later in meiosis. This information cannot be gained from mouse knockout studies or from crude expression analysis of the three spermatogenic phases. In other examples of the spermatogenic phase analysis, the expression of DMC1, SYCP3 and SMC3 (Fig. 4A,B), all involved in meiotic recombination and pairing and synopsis of the meiotic chromosomes, were highly expressed in the meiotic phase. However, by applying the germ cell subtype analysis, we found that these genes are significantly upregulated in leptotene/zygotone spermatocytes, i.e. during the early onset of meiosis. Exemplary is also the analysis of HIST1H1A (Fig. 4B), a gene necessary for compaction of chromatin. In the spermatogenic phase analysis, HIST1H1A expression was found mainly in the pre-meiotic phase, whereas at the germ cell subtype level, the expression was mainly localized in spermatogonia and leptotene/zygotene spermatocytes and not in early and late pachytene spermatocytes. Hence, our novel germ cell subtype data set provides crucial information about expression patterns otherwise lost when analyzed at the spermatogenic phase level.

Comparing our data set with the described specific gene expression set for human spermatogonia, spermatocytes and spermatids isolated by fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS) (Zhu et al., 2016), revealed that of the 66 genes detected by Zhu et al., 42 appeared differentially expressed in our data set and show a high similarity in expression profile at the specific spermatogenic phases (Fig. 4C; Fig. S6). More interesting, in our data set, genes could be further classified in very specific germ cell subtypes, which could not be done using the reported FACS method (Zhu et al., 2016). We found expression of the well-known spermatogonial genes GFRα1 and MAGEA4 in both A_dark and A_pale spermatogonia and the highest expression of the meiotic genes SYCP1, SYCP2 and NFAT5 in leptotene/zygotene spermatocytes. The SYCP proteins are components of the synaptonemal complex, but the role of NFAT5 in this germ cell subtype is unknown. In other cell types, NFAT5 is necessary for cell growth/volume and osmolarity (Ho, 2003). Knowing that the cell size of spermatocytes increases considerably, NFAT5 might have a function in this process. The spermatocyte genes MAZ, TCAM1P, NFATC4 and TEX264 were all mainly expressed in early pachytene spermatocytes. Whereas ADAM12 and ADAM18 were specifically expressed in late pachytene spermatocytes, LEF1 and LDHC were expressed in both early and late spermatocytes. Furthermore, although the previously reported data set (Zhu et al., 2016) originated from three pooled samples of five men for spermatogonia, spermatocytes and spermatids, there is much heterogeneity between the three samples of each germ cell type. Our current results clearly indicate that this heterogeneity reflects variation in the developmental stages of the germ cells in each germ cell sample. Our method using morphology and testicular localization enables isolation of a higher degree of well-defined and distinct germ cell subtypes with less contamination and thereby a higher resolution in transcriptome profiles throughout germ cell development than, for instance, with cell sorting of germ cells by STA-PUT, elutriation, FACS or MACS. Because we could discriminate the transcriptomic dynamics in smaller developmental steps, the molecular mechanisms of human spermatogenesis could be unraveled in more detail.

Comparing male germ cell transcriptomes between human and mouse

We investigated whether the male germ cell transcriptomes are conserved among species and compared our data set with available published data sets of mouse on spermatogenic phases (Namekawa et al., 2006) and on germ cell subtypes (leptotene/zygotone, pachytene spermatocytes and spermatids) (da Cruz et al., 2016), and used the categories and labels from these previously reported data sets in our comparative analyses (Fig. 4D,E), respectively. The expression of the three described pre-meiotic genes Osr2, Pcdh18 and Dmt1 (Fig. 4D) in the mouse spermatogenic phases data set (Namekawa et al., 2006) are indeed well conserved in spermatagonia between human and mouse. Interestingly, the mouse meiotic gene set of pachytene spermatocytes, identified by microarray analyses, showed overall high expression in the human meiotic phase. However, in the germ cell subtype analyses, the mentioned genes showed low expression in human leptotene/zygotone spermatocytes and high in early and late pachytene spermatocytes, suggesting that the STA-PUT-isolated mouse spermatocytes mainly contain pachytene spermatocytes. The mentioned post-meiotic gene set was also well conserved between mouse and human.
Fig. 4. See next page for legend.
More recently, da Cruz and colleagues determined the mouse transcriptome by RNA-seq from leptotene/zygotene, pachytene spermatocytes and spermatids isolated by FACS (da Cruz et al., 2016). Although they did not include a pure fraction of spermatogonia, we could compare our data set with their mouse gene set on the described gene ontology terms GO:007131 reciprocal meiotic recombination, GO:0045231 meiotic chromosome segregation, GO:0030317 sperm motility and GO:0035036 sperm-egg recognition (Fig. 4E). The genes in the GO terms reciprocal meiotic recombination and meiotic chromosome segregation are highly conserved in mouse and human and are all mainly expressed in leptotene/zygotene spermatocytes. Also the gene sets for sperm motility and sperm egg recognition are well conserved between mouse and human and mainly expressed by spermatids and/or pachytene spermatocytes. Because the mouse germ cells in this study were isolated from the first wave of spermatogenesis at ages 10-11 days postpartum (dpp) and 24-25 dpp, the germ cell-specific subtypes leptotene/zygotene and pachytene spermatocytes could be isolated based on the 4C DNA content at the two age ranges in mouse, respectively. Our method enables further discrimination among the pachytene spermatocytes into early and late pachytene spermatocytes, also in adults with complete spermatogenesis. Apart from similarities between mice and humans, we also found a clear difference in expression in the CATSPER gene family. The CATSPER proteins (CATSPER1, 2, 3 and 4) got lots of attention due to their proven role in ensuring sperm motility and thereby male fertility (Visser et al., 2011). Their exclusive expression in the testis have made them ideal target candidates for male contraceptives. For drug developers it is useful to know at what stage such genes are expressed for targeting purposes. In light of this, expression of Catsper1, 2, 3 and 4 has been thoroughly investigated in mice (Li et al., 2007), but in humans only in ejaculated spermatozoa. Human ejaculated spermatozoa express CATSPER1, 2 and 3 but do not contain CATSPER4, whereas in mouse spermatozoa all four Catsper members are expressed. On the other hand, expression of all CATSPER members is described in human testis (Lobley et al., 2003), but it is not known in which cell types. We now demonstrate that CATSPER1, 2 and 3 are mainly expressed in round spermatids, whereas CATSPER4 is mainly detected in spermatogonia (Fig. 4E) suggesting a function for CATSPER4 earlier in spermatogenesis compared with the other CATSPER family members. This information could be very useful in the field of male contraceptives.

Quiescent and active spermatogonia have similar transcriptomic profiles

In non-human primates, the quiescent A_dark spermatogonia can be immediately activated upon depletion of the active A_pale population, as described after treatment with ionizing radiation (van Alphen et al., 1988). Interestingly, we did not observe any statistically significant DEGs between these two populations of spermatogonia (Fig. 3G). This implies that the proposed quiescent A_dark spermatogonia are virtually identical on a transcriptome level to A_pale spermatogonia and suggests that quiescent A_dark spermatogonia can rapidly switch to an active state while maintaining similar gene expression patterns. The variation observed within the A_dark and A_pale populations, is larger than that seen for the other germ cell subtypes from samples from the same men suggesting the variation is spermatogonial rather than individual specific (Fig. 3F, Fig. S4). This could explain the lack of DEGs found but also suggests that uncommitted cells are biologically more diverse than their differentiated counterparts. Despite this large variation, we see A_dark and A_pale clustering together (Fig. 3F) indicating these germ cell subtypes express a similar gene set. There have been speculations regarding the presence of various spermatogonial germ cell subpopulations within both the A_dark and A_pale populations, which to date cannot be distinguished by morphological criteria. In support of this, it has recently been described that, at the single-cell level, human spermatogonia (without distinguishing between A_dark and A_pale) display very diverse gene expression profiles (Neuhaus et al., 2017). To explore the possibility of subtle changes in molecular pathways between A_dark and A_pale spermatogonia, while accounting for inter-gene correlations, we used CAMERA (correlation-adjusted mean rank) analysis (Wu and Smyth, 2012). We found that one curated gene set, involving the neurotransmitter pathway, was significantly downregulated in A_pale compared with A_dark spermatogonia (non-adjusted P<0.01) (Table S7). Two genes were categorized within this pathway; namely, the glutamic acid decarboxylase known as GAD1 and an amino acid hydroxylase known as TPH1. Both genes have been shown to play a role in the regulation of stem cell proliferation (Du et al., 2013; Ye et al., 2014). GAD1 is an enzyme involved in the synthesis of GABA receptors and has shown to play a role in negatively regulating spermatogonial stem cell proliferation (Du et al., 2013). Its expression in A_dark spermatogonia may thus contribute to the quiescent state of these spermatogonia. On the other hand, TPH1, a mediator of serotonin synthesis, has shown to be expressed by human sperm (Jimenez-Trejo et al., 2012) but was not described in spermatogonia. We confirmed the expression of TPH1 in human spermatogonia at the protein level by immunohistochemistry (Fig. S7), suggesting that even if similar RNA expression levels are seen in A_dark and A_pale this would not exclude differences at the protein level. The use of proteomics in future studies might give more insights in potential differences between these two germ cell subtypes. In the hematopoietic system, TPH1-dependent serotonin depletion has been shown to negatively affect differentiation of erythroid precursors (Amireault et al., 2011) suggesting that perhaps TPH1 has a similar function in spermatogonia.

Spermatogonia express (post-)meiotic genes

Gene ontology analysis revealed that clusters 3 and 4 (Fig. 3H) are enriched with meiotic- and post-meiotic-associated genes. To our surprise, these genes all display low to moderate levels of gene expression in spermatogonia indicating that expression of (post-) meiotic-associated genes occurs during earlier steps in spermatogenesis. Indeed, further analysis confirmed that both A_dark and A_pale spermatogonia already express SYCP3, DMCI, SPO11, MSH4 and DMRTC2, which are known to be functional during meiosis, and OD2F, CAbYR, Hook1, TCP11, PHF7, which are known to be functional in post-meiosis (Fig. 5A and 5B, respectively; Table S5). We confirmed these data with RT-PCR (Fig. 5C). To exclude the possibility that these findings are the result of cell impurities, we checked for the presence of eight of the aforementioned genes using RT-PCR. In the same way as for the
RNA-seq experiments, we extracted RNA from 500 individually dissected and pooled spermatogonia from controls with complete spermatogenesis (Stl141 and Stl142) and from a man suffering from spermatogonial arrest (URO0074). Histological analysis revealed the complete absence of germ cells other than spermatogonia in patient URO0074 (Fig. S8). We confirmed the presence of five of the eight investigated genes (SYCP3, DMC1, MSH4 and DMRTC2), four post-meiotic genes (ODF2, HOOK1, TCP11, PHF7) and a reference gene (EPN3) in RNA isolated from spermatogonia collected from a spermatogonial arrest patient (URO0074; lane 1), and spermatogonia collected from vasectomy reversal men used for this study (Stl141 and Stl142, respectively; lanes 2 and 3). Note that owing to a limited amount of RNA from Stl142 we were unable to analyze SYCP3, ODF2 and TCP11. (D) Bar chart showing expression level of genes (mean±s.d.) encoding the PIWIL proteins in each germ cell subtype during spermatogenesis.

RNA-seq experiments, we extracted RNA from 500 individually dissected and pooled spermatogonia from controls with complete spermatogenesis (Stl141 and Stl142) and from a man suffering from spermatogonial arrest (URO0074). Histological analysis revealed the complete absence of germ cells other than spermatogonia in patient URO0074 (Fig. S8). We confirmed the presence of five of the eight investigated genes (SYCP3, DMRTC2, ODF2, TCP11 and PHF7) (Fig. 5C). DMC1, MSH4 and HOOK1 were undetectable in this sample but also showed variable expression in controls in which sequence counts were observed suggesting that the sensitivity of the RT-PCR technique might be insufficient to detect these genes. Consistent with our data, a study performed in chickens showed that transcripts of the meiotically associated SYCP family member homologs are already present in spermatogonia (Zheng et al., 2009) and many other transcribed genes are stored as translational inactive RNAs in ribonucleoprotein particles (Iguchi et al., 2006). The idea that genes encoding proteins required later during spermatogenesis are transcribed in spermatogonia is not new. Previously, studies in mice have indirectly suggested expression of meiotic and post-meiotic markers in pre-meiotic germ cells (Chalmel et al., 2012; Iguchi et al., 2006; Tanaka and Baba, 2005). In the present study, we now show expression of several specific meiotic- and post-meiotic-associated genes in human spermatogonia and have confirmed that these genes are not a result of contamination by other germ cell types. Together, these data suggest that spermatogonia express genes that are translated into protein and functional only later during differentiation.
Expression of RNA-binding protein mRNAs

Consistent with the idea of post-transcriptional storage of mRNA, we found a number of common testis-specific RNA-binding proteins known to play a role in transposon silencing and more recently mRNA repression, storage and degradation such as the PIWI-like proteins (Bak et al., 2011; Vourekas et al., 2012), encoded by PIWIL1, PIWIL2, PIWIL4, which were all differentially expressed (adjusted P-value<0.05) across spermatogenesis in a germ cell subtype-specific manner. This suggested that these RNA-binding proteins play a role in controlling specific differentiation and developmental steps. In our study, PIWIL1 expression fluctuated with highest expression levels in pachytene spermatocytes, suggesting a role for this protein during the meiotic phase (Fig. 5D). Consistent with our findings, recent in vitro protein interaction studies using recombinant PIWIL1 have shown that this protein can bind 3′UTR regulatory sequences of mRNAs encoding spermatid-specific proteins. Interestingly, these studies also showed that PIWIL1 can bind to protein and as such may play a role in post-transcriptional as well as post-translational regulation (Xu et al., 2014). Together with our expression data, these findings lead us to speculate that PIWIL1 plays a role in storing spermatid-specific mRNAs that are already expressed during the meiotic phase. In our data, PIWIL2 was expressed at a constant level during the pre-meiotic and meiotic stages and decreased during the post-meiotic phase, whereas PIWIL4 was expressed to a higher degree in the pre-meiotic phase relative to the meiotic and post-meiotic phases. Most studies on PIWIL2 and 4 focus on the transposon repressive functions of PIWI proteins (Carmell et al., 2007). However, considering that we find germ cell type-specific expression of these PIWI mRNAs, it would be interesting to investigate whether these two family members exhibit similar regulatory functions as PIWIL1.

Furthermore, we analyzed a list of RNA-binding proteins using a curated RNA-binding protein database (Cook et al., 2011) and found that 110 of the 416 curated genes in this database were significantly differentially expressed between germ cell subtypes (Table S8). Of these 110 RNA-binding proteins, 12 were known to play a role in post-transcriptional regulation during spermatogenesis, and 23 genes were known to be expressed in the testis without a known post-transcriptional regulatory function (Table 1). Interestingly, a recent study showed that the RNA-binding protein YBX2 was able to bind to the 3′UTR of elongated spermatid-specific mRNAs and loss of YBX2 resulted in premature translation of these mRNAs (Cullinane et al., 2015). Indeed, we found that YBX2 is expressed in early and late pachytene cells and even in round spermatids, in line with its function as a repressor of elongated spermatid-specific transcripts. In addition, we found 75 RNA-binding proteins previously not described during spermatogenesis. We therefore analyzed the gene expression profiles for these RNA-binding proteins, which resulted in gene clusters displaying six distinct expression patterns (Fig. 6). Based on these six clusters we proposed phases that we termed ‘predicted functional phases’ (PFPs) during which these RNA-binding proteins are highly expressed. In this phase we predict, based on high gene expression, that the gene is translated into protein and is functional. We further validated the results of our RNA-seq experiment by performing protein expression analysis using immunohistochemistry of five RNA-binding proteins (ELAVL2, TDRD10, RBM28, TTC14 and ENOX1) from four of the six K-means clusters (Fig. 6B). The protein expression of all five RNA-binding proteins was fully in line with the RNA-seq expression pattern within the germ cell subtypes and PFPs as presented in the respective K-means clusters (Fig. 6A). More precisely, ELAVL2 was expressed mainly in spermatogonia, TDRD10 was present in spermatagonia, early and late pachytene spermatocytes and its expression decreases in spermatids, RBM28 was present in all germ cells at relatively high levels except for spermatids, TTC14 was expressed mainly in early and late pachytene spermatocytes and ENOX1 was expressed only in round and elongating spermatids. Future functional studies can use this information to investigate post-transcriptional regulation during specific steps in spermatogenic development.

Table 1. Categorization of known and novel RNA-binding protein (RBP) genes

<table>
<thead>
<tr>
<th>Genes expressed in testis</th>
<th>Novel RBP genes expressed during spermatogenesis</th>
<th>Genes with known post-transcriptional function during spermatogenesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKAP1</td>
<td>ACO1, LARP4B, RBM27, ZC3H13</td>
<td>CARHSP1 (Wishart and Dixon, 2002)</td>
</tr>
<tr>
<td>DAZL</td>
<td>ALKHB8, LEMD3, RBM28, ZC3H3</td>
<td>CPSF6 (Sartini et al., 2008)</td>
</tr>
<tr>
<td>DDX43</td>
<td>ASCC1, MATR3, RBM38, ZFP36L1</td>
<td>DAZAP1 (Yang and Yen, 2013)</td>
</tr>
<tr>
<td>ELAVL4</td>
<td>CNOT4T, MBNL2, RBM46, ZFP38L2</td>
<td>HNRNPA2B1 (Matsui et al., 2000)</td>
</tr>
<tr>
<td>RBMXL2</td>
<td>CPEB3, MCM3AP, RNF13B, ZFR2</td>
<td>HNRNPA8B (Fukuda et al., 2013)</td>
</tr>
<tr>
<td>HNRNPR</td>
<td>CPEB4, MEX3C, RNPS1, ZGAP1</td>
<td>IGFI2BP2 (Hammer et al., 2005)</td>
</tr>
<tr>
<td>HNRNPD</td>
<td>CPSF4, MEX3D, RRPP7A, ZRAN1</td>
<td>KHDRBS1 (Paronetto et al., 2010)</td>
</tr>
<tr>
<td>KHSRP</td>
<td>DHSK51, MKNR1, SAM4A, ZRAN2</td>
<td>LARP1 (Burrows et al., 2010)</td>
</tr>
<tr>
<td>MEX3B</td>
<td>EEF4H, NAA38, SAM4DB</td>
<td>MSI1 (Sutherland et al., 2014)</td>
</tr>
<tr>
<td>PR3</td>
<td>ELAVL2, NSUN6, SETD1A</td>
<td>PABPC1 (Ozturk et al., 2012)</td>
</tr>
<tr>
<td>RBM44</td>
<td>ENOX1, PARP10, SETD1B</td>
<td>PSPC1 (Myojin et al., 2004)</td>
</tr>
<tr>
<td>SAFB</td>
<td>ESRP2, PARP12, SF3B4</td>
<td>TIAL1 (Beck et al., 1998)</td>
</tr>
<tr>
<td>SNRPA</td>
<td>EWSR1, PCBP4, SNRP70</td>
<td>YBX2 (Cullinane et al., 2015)</td>
</tr>
<tr>
<td>SNRPG</td>
<td>FXR2, PNP1, SNRP1</td>
<td></td>
</tr>
<tr>
<td>SYN2</td>
<td>G3BP1, PPRC1, SRRM2</td>
<td></td>
</tr>
<tr>
<td>TAF15</td>
<td>HNRNPA0, PUF60, TDRD10</td>
<td></td>
</tr>
<tr>
<td>TARDBP</td>
<td>HNRNPA1L2, RALY, TOE1</td>
<td></td>
</tr>
<tr>
<td>TIA1</td>
<td>HNRNPD, RAVER1, TTC14</td>
<td></td>
</tr>
<tr>
<td>TNRC6A</td>
<td>HNRNPF, RAVER2, U2AF1L4</td>
<td></td>
</tr>
<tr>
<td>YTHDF1</td>
<td>HNRNPH3, RBM12, UF1</td>
<td></td>
</tr>
<tr>
<td>ZFR</td>
<td>HNRNPM, RBM12B, YTHDC2</td>
<td></td>
</tr>
<tr>
<td>HNRNPC</td>
<td>KIAA0430, RBM19, YTHDF3</td>
<td></td>
</tr>
<tr>
<td>KRR1</td>
<td>RBM22, ZC3H11A</td>
<td></td>
</tr>
</tbody>
</table>

KIAA0430 is also known as MARF1.
Differentially expressed long non-coding RNAs

Apart from RNA-binding proteins, long non-coding RNAs (lncRNAs) have also been proposed to play a major role in post-transcriptional gene regulation and chromatin remodeling (Yoon et al., 2013). We used a database provided by the HUGO Gene Nomenclature Committee at the European Bioinformatics Institute (Quek et al., 2015) to screen for lncRNAs in our dataset. We found 137 of the 2736 lncRNAs in this database to be differentially expressed.

Fig. 6. Expression patterns of differentially expressed RNA-binding protein genes. (A) K-means clusters showing the expression pattern of 110 differentially expressed RNA-binding proteins. The predicted functional phase is indicated by a gray box and ‘PFP’. (B) Immunohistochemistry of five selected RNA-binding proteins on testicular tissue of a prostate cancer patient (URO0368), repeated on three biopsies. Scale bars: 50 µm. Colored lines in the k-means clusters indicate the expression pattern of the mentioned corresponding gene.
expressed during spermatogenesis (Table S9). These IncRNA genes also showed germ cell subtype-specific expression patterns, which once again implies that these genes play a role in controlling the various steps during spermatogenesis (Fig. S9).

DISCUSSION

In this article, we describe the use of a novel protocol allowing for isolation, amplification and next generation sequencing of picogram amounts of RNA from specific germ cell subtypes collected from fixed human testicular tissue. This protocol could be useful for other studies involving complex tissues composed of a heterogeneous cellular population to determine cell type-specific transcriptomic profiles, but might also be useful for clinical studies where tissue and RNA is limited. In recent years, various techniques have been developed aiming to determine cell type-specific expression profiles of cells within a tissue. Tomo-seq (Junker et al., 2014) employs a combination of tissue section-specific barcoding and post-sampling reconstruction to determine expression profiles of particular regions within a tissue. Although a very elegant technique, it is limited to regional information and lacks individual-cell resolution and thus relies on the fact that in a certain region-specific cell types are found in bulk. This is not the case for human testicular tissue. Using other techniques, investigators have tried to improve resolution by using a combination of *in situ* hybridization alongside RNA sequencing of dissociated cells. These techniques rely on the availability of marker genes (stained by *in situ* hybridization) in order to reconstruct the expression profiles (Achim et al., 2015; Satija et al., 2015). To date no specific marker genes are known for the germ cell subtypes mentioned in this study. Furthermore, dissociation of the cells used in other methods such as STA-PUT, elutriation, FACS or MACS will result in loss of cellular localization characteristics thereby limiting the discrimination of various germ cell subtypes. To overcome such limitations, Lee and colleagues developed FISSEQ, a very sophisticated technique that allows for *in situ* RNA sequencing within fixed cells, thus maintaining cells in their *in vivo* environment (Lee et al., 2015). Although a very appealing technique, it has only been tested on rather simple model systems and the robustness with more complex heterogeneous tissues, as seen within the testis, is not yet known. Considering the limitations of these approaches, LCM is the preferable alternative that does not require post-sequencing spatial reconstruction and works well with simple as well as complex tissues. LCM comes with an added benefit of allowing selection of cell types of interest based on morphological criteria and/or location within a tissue (Nakamura et al., 2007). Our newly developed LCM protocol is unique as we, for the first time, report the use of LCM to dissect individual germ cell subtypes from testes tissue fixed in a way that keeps the necessary morphological typical nuclear germ cell characteristics intact, while maintaining sufficient RNA integrity for whole transcriptome profiling. Although LCM allows cell morphological and localization characteristics to specify germ cell subtypes that otherwise cannot be isolated with current other methods, the amount of RNA from cells obtained by LCM of 5-µm-thick slides is low and therefore requires at least 500 cell sections for reproducible results.

The lack of transcriptomes from specific germ cell subtypes has been a major obstacle for reproductive medicine and biological research. Using the newly developed protocol described in this article, we have generated more detailed human germ cell subtype-specific transcriptome profiles than has thus far been possible with any other method. In addition, fixing the tissue directly after tissue collection allows us to avoid *in vitro* handling of the cells, eliminating the effects of external influences on the cells prior to RNA isolation thereby representing as close as possible the *in vivo* RNA expression profile of these cells. Nevertheless, comparing our spermatogenic phase data with previous transcriptome data of FACS and MACS sorted human spermatogonia, spermatocytes and spermatids (Zhu et al., 2016) shows high similarities. Whereas they pooled tissue from 15 patients in three biological replicates for isolation of the three spermatogenic phases, we analyzed more specific germ cell subtypes from individual patients thereby creating the opportunity to study individual variations in transcriptomes, which will be useful when analyzing transcriptomes of patients with a developmental arrest in specific germ cell subtypes in spermatogenesis in future studies.

The most dramatic changes in gene expression occurred during early meiosis and during meiotic exit. Strikingly, the germ cell subtypes A_{dark} and A_{pale} spermatogonia are highly similar in transcriptome pattern implying that the switch from a quiescent to active cellular state is not controlled at the transcriptional level. Furthermore, a high number of transcripts known to be required at a protein level during the later phases is already present in spermatogonia. This implies that uncommitted cells already express, albeit at low levels, lineage-specific genes that are required during specific differentiation steps later on. It may be biologically more efficient for uncommitted cells to express genes required later during differentiation so that upon stimulation by external triggers they can rapidly start the differentiation process. This suggests that more primitive uncommitted cells house the building blocks required for differentiation into a specialized cell. Our data reveal that timely and highly regulated transcription and translation, regulated by RNA-binding proteins or IncRNAs, are crucial for cellular differentiation, a phenomenon that could be generalized to development of various tissues. Indeed, there is evidence in other tissues such as the lung, intestine and blood to support this notion (Tadjali et al., 2002; Treutlein et al., 2014; Yang et al., 2013).

When analyzing the entire process of spermatogenesis, we found the highest transcriptomic complexity before meiosis. Although having similar transcriptomic profiles, we see that the variation in gene expression levels within the A_{dark} and A_{pale} populations is larger than that seen for the other germ cell subtypes in samples from the same men. This suggests a heterogeneity within the spermatogonial populations that cannot be distinguished morphologically and is present within both the A_{dark} or A_{pale} spermatogonia. Indeed, the presence of two or more subpopulations among spermatogonia has recently been reported in various species including mouse (Herrmann et al., 2015), rhesus monkey (Simorangkir et al., 2009) and human (Di Persio et al., 2017; Neuhaus et al., 2017).

Being able to assign a gene expression profile to the different germ cell subtypes is an important step forward in our understanding of the molecular control of human spermatogenesis. These profiles can be used in future comparisons with transcriptomic data from patients with arrested spermatogenesis to unravel the molecular causes of human spermatogenic failure. In addition, understanding how this developmental process occurs also enables us to understand how to inhibit spermatogenesis for developing male contraceptives. Besides this, the transcriptomic catalog helps us to understand key molecular events during cellular differentiation in the testis, which could be applicable to stem cell differentiation within other organ systems.
Tissue collection

Testicular biopsies were routinely collected from six men undergoing vasectomy reversal procedures approved at The Infertility Center of St. Louis, USA (Stl) and during testicular sperm extraction (TESE) or orchiectomy as part of a prostate cancer treatment approved at the Academic Medical Center (Amsterdam, The Netherlands; URO). An important point to note is that the transcriptome profiles are generated from men who were undergoing a vasectomy reversal procedure. Histological analysis of all tissues used in our experiments indicated that all men had complete and normal spermatogenesis. Furthermore, all men had children before vasectomy. Mature sperm were measured and detected in post-vasectomy-reversal samples from 5/6 men and successful impregnation was recorded in 4/6 men including one individual in which sperm parameters were not measured. This confirms that the germ cell subtypes used to generate these transcriptome profiles are representative of normal intact and fully functional spermatogenesis. The ages of these men ranged from 38 to 58 years and all gave informed consent. The biopsies were fixed in modified methacarn (90% methanol, 10% glacial acetic acid) and embedded in paraffin because this showed optimal morphology of the testsis while maintaining the highest RNA integrity. All procedures were performed under RNase-free conditions. All vasectomy reversal samples (Stl142, Stl141, Stl140, Stl138, Stl136, Stl135) and the prostate cancer sample (URO0368) used for this study had complete spermatogenesis and patient material from URO0074 had a spermatogonial arrest phenotype as confirmed by histological evaluation with HemaToxylin and Eosin staining.

Selection of germ cell subtypes

Germ cell subtypes were identified based on morphological nuclear criteria according to Clermont (1972) and germ cell association in the chosen area of the seminiferous tubule (stages of the seminiferous epithelium) according to Mucciaccia et al. (2013). Adark and Apale spermatogonia were selected based on morphological nuclear criteria and their localization on the basal membrane of the seminiferous tubules. Apale spermatogonia were identified by a ‘donut-like’ dense chromatin in the nucleus characterized by a rarefaction zone in the center, whereas Apale spermatogonia were identified by evenly distributed euchromatin in the nucleus surrounded by a thin dense border containing no more than one dense nucleolus. The different spermatocyte subtypes were selected based on nuclear staining and the association of germ cells in the chosen tubular segment, i.e. the stage of the epithelial cycle. Leptotene/zygotene spermatocytes (stages VII-XII) were identified as having condensed chromosomes in the nucleus and being located under (basal side) a second layer of larger late pachytene spermatocytes, which contained loose, less-dense, big chromosomes (stages VII-X). Early pachytene spermatocytes were identified as germ cells containing loose, less-dense chromosomes located in an area with only one layer of pachytene spermatocytes (stages I-VI) in association with round spermatids. Round spermatids were identified as small, round germs cells with a dense nuclear staining located at the luminal side of the tubule (Stages I-VIII).

Individual-cell laser capture microdissection

Directly prior to laser capture microdissection (LCM), 5-μm-thick sections of fixed testis tissue were mounted on Superfrost glass microscope slides (Thermo Scientific) and stained using an adapted quick Hematoxylin and Eosin protocol for LCM (using short incubation time and RNase-free solutions). Immediately after staining, the tissue was covered with 1 μl of mineral oil, diluted 1:5 in isopropanol, and used immediately for LCM (inverted PALM microscope, Carl Zeiss) (Fig. S2). To minimize the risk of contamination, we used the smallest possible laser beam for LCM to capture 5-μm-thick sections of only the nucleus and cytoplasm closely surrounding the nucleus of the selected cells without prior cutting. Only those cells were captured in which the nucleus was clearly visible for morphological characteristics. We evaluated each potentially selected germ cell at various focal levels to ensure that only one type of germ cell was present in the selected area. To exclude the possibility of cross-contamination between germ cell subtypes during capturing, sections were exclusively used for capture of one specific germ cell subtype. For each cell type, new sections were prepared. We used a 400× magnification (40× objective and 10× ocular lens) on the laser capture microscope for dissection, confirmation and contamination check. We closely examined all sections before and after LCM to ensure that no additional cells other than those we aimed to capture were removed from the section. Samples showing signs of possible contamination were discarded. For each germ cell subtype, 500 cells were individually laser dissected and pooled according to subtype. Laser-dissected cells were captured in silicon coated adhesive caps (Adhesive cap 500 opaque tube, Zeiss) and were lysed at 42°C in 10 μl of extraction buffer provided in the Picopure RNA isolation kit (Arcturus). Cell lysates were stored at −80°C until further use for RNA sequencing on the HiSeq2000 Illumina platform (supplementary Materials and Methods). All procedures were performed under RNase-free conditions.

Bioinformatics

All sequence data have been submitted to NCBI (SRA) and are available under the accession number SRP069329. Raw reads were trimmed using Trimmomatic v25 and corrected using SECER (Le et al., 2013). Trimmed reads were mapped to the hg19 human genome using TopHat/Bowtie2.0 using default parameters. Count data were obtained using the HTSeq program (version 0.5.4p3) using the UCSC hg19 GTF annotation file. Analyses were carried out with Bioconductor packages using the statistical software package R (version 3.1.2). Comparative analyses between the consecutive spermatogenic phases and consecutive germ cell subtypes were performed using the Voom method (Law et al., 2014). Differentially expressed genes were considered statistically significant when the adjusted P-value was ≤0.05 (see supplementary Materials and Methods for detailed individual bioinformatics analyses).

RT-PCR

RT-PCR was performed on RNA isolated and amplified from 500 laser-dissected spermatogonia from a testicular biopsy from a spermatogonial arrest patient and from two individuals with complete spermatogenesis, which were also used in the sequencing study (Stl141 and Stl142). RT-PCR was performed on selected genes for validation of the RNA-seq data (see supplementary Materials and Methods for further details including primer sequences).

Immunohistochemistry

Immunohistochemical staining was performed on 5-μm-thick paraffin human testis sections with or without antigen retrieval in sodium citrate, pH 6.0 at 98°C for 10 min. After inhibition of endogenous peroxidase by 0.3% H₂O₂, sections were blocked with Superblock (ScyTek). Subsequently, sections were incubated with rabbit primary antibody overnight at 4°C. Primary antibodies used were as follows: anti-ELAVL2 (1:500), anti-TTC14 (1:20) and anti-ENO1X (1:200) (HPA063001, HPA092995 and HPA038355, respectively, all from Atlas Antibodies), anti-RBM28 (1:20) and anti-TDRD10 (1:50) (ab150800 and ab121982, respectively, both from Abcam) and anti-TPH1 (1:50) (OAAB04046, Avivia Systems Biology). After washing, the sections were incubated with biotin-conjugated anti-rabbit IgG (Vector Laboratories) and subsequently with Avidin-Biotin complex (ABC, Vector Laboratories) and visualized using 3,3′-diaminobenzidine (DAB, Alfa Aesar) as a brown substrate and...
Hematotoxin as counterstain. As negative controls, we used isotype rabbit IgG instead of the primary antibody. Slides were examined using a brightfield microscope (Olympus BX41).

Acknowledgements

We would like to thank S. K. M. van Daalen and C. M. de Winter-Korver of the Center of Reproductive Medicine (AMC) for technical assistance, and Dr R. Kerkhoven of the Genomics Core Facility of the Netherlands Cancer Institute, Amsterdam, for conducting the RNA sequencing.

Competing interests

The authors declare no competing or financial interests.

Author contributions

Supplementary information

Accession number SRP069329.

This work was supported by a grant from ZonMw (The Netherlands Organization for Health Research and Development) (91796362). Deposited in PMC for immediate release.

Funding

This study was supported by a grant from ZonMW (The Netherlands Organization for Health Research and Development) (91796362). Deposited in PMC for immediate release.

Data availability

All sequence data have been deposited in NCBI\'s Sequence Read Archive under accession number SRP069329.

Supplementary information

Supplementary information available online at http://dev.biologists.org/lookup/doi/10.1242/dev.152413.supplemental

References

de Roij, D. G. and Russell, L. D. (2000). All you wanted to know about spermatogonia but were afraid to ask. J. Androl. 21, 776-798.

of four candidate loci for human male fertility traits with male infertility. Hum. Reprod. 30, 1510-1514.

SUPPLEMENTARY MATERIALS AND METHODS

RNA isolation, amplification and sequencing

Total RNA was isolated from cell lysates using the PicoPure RNA isolation kit (Arcturus) according to the manufacturers’ protocol including an on-column DNase treatment. RNA was eluted in 10µl elution buffer. Subsequently, the RNA was concentrated to a volume of 5 µl with a speed vacuum centrifuge for 8 minutes.

Total RNA isolated from 500 pooled cell sections was amplified using the Ovation RNAseq V2 System (Nugen) according to the manufacturers’ protocol. Reproducibility of the RNA amplification was confirmed using total RNA from three sets of 500 spermatocyte sections that were pooled after RNA isolation and split again into three technical replicates and subsequently amplified and sequenced.

For sequencing, the amplified SPIA-cDNA was sheared using the Covaris S220 (Thermo Fisher Scientific) with the following settings: DC 10%, I 5, C/B 200, T(s) 180. Sheared samples were visualized on the 2100 Bioanalyzer (Agilent Technologies). Insert sizes of ~200bp were selected using Agencourt AMPure beads (Beckman Coulter). DNA libraries were made using the DNA Truseq (Illumina) library preparation protocol and sequenced single-end, 50bps on the HiSeq2000 Illumina platform obtaining at least 10 million reads using 8 pmol per library.

Detailed bioinformatics

Count data was normalized using in edgeR (version 3.8.6) with default parameters (R version 3.1.2). Samples with a normalization factor between 0.6-1.4 were included in the analyses. One A pale (Stl 135) and one leptotene/zygotene (Stl 136) sample was removed from the analyses since the normalization factor was outside the set criteria. To determine the number of
genes present in each phase of spermatogenesis, a gene was considered expressed in each germ cell subtype if it had >1 count per million present in at least three individuals. Raw counts were transformed to moderated log-counts-per-million before filtering using the cpm function with default parameters. For initial analyses of the transcriptome complexity of the phases of spermatogenesis, the various germ cell subtypes in each phase were grouped in silico as follows: pre-meiotic phase (mean number of transcripts expressed in spermatogonia; 6 A\textsubscript{dark}, 5 A\textsubscript{pale} samples), meiotic phase (mean number of transcripts expressed in spermatocytes; 5 leptotene/zygotene, 6 early pachytene and 6 late pachytene spermatocyte samples) and post-meiotic phase (mean number of transcripts expressed in spermatids; 6 round spermatid samples). Welch’s t-test was used to test for statistically significant differences in the mean number of transcripts present. Genes were reannotated using biomaRt (version 2.22.0). The MDS plots are based on the 500 genes most relevant for distinguishing each pairwise comparison of samples. A list with differentially expressed genes (DEGs) between various germ cell types was obtained by estimating the mean-variance of the log counts using the voom method (Law et al., 2014) and analysing these with the empirical Bayes pipeline as implemented in limma (version 3.22.7). After correcting for multiple testing, a p-value of <0.05 was considered significant for DEG analysis. K-means clustering (default algorithm) was used to obtain plots for the scaled normalized relative gene expression data on a log scale for each expressed gene using packages clValid (version 0.6-6), cluster (version 2.0.2) and stats. Gene ontology analysis was performed using the functional annotation clustering tool in DAVID. An enrichment score of >1.3 was considered significant (Huang da et al., 2009). To analyse gene sets, a more modest non-adjusted p-value of <0.01 was used for the Correlation-Adjusted MEan RAnk (CAMERA) gene set test (limma). CAMERA is a gene set test which determines differences in molecular control by
looking at sets of genes rather than individual DEGs, thereby accounting for inter-gene correlation (Wu and Smyth, 2012). Gene sets were obtained from MSigDB (version 4.0, collections 2,3,5-7). For comparison of our RNA-seq data with previously described human and mouse germ cell RNA-seq data we used the RPKM values (reads per kilobase per million mapped reads) of the previously described selected gene sets (Zhu et al., 2016) (Supplementary File 2) and of the gene sets in the GO terms as described in another study (da Cruz et al., 2016). RPKM values were mean centred and scaled. For comparison of our data set with that of previously described selected mouse gene set (SI Fig 9a and b) we used mouse microarray data as previously described (Chalmel et al., 2007) from the reported Geo dataset: GSE4193 generated by Affymetrix microarray (Namekawa et al., 2006). Probes were annotated according to the Affymetrix Mouse 430 2.0 (GPL1261) annotation using the R package mouse430v2.db. Probes with the highest expression level were selected if multiple probes per gene existed. Expression values were log2 transformed, mean centered and scaled. For all comparisons with both mouse data, mouse gene names were mapped to the human orthologs using BioMaRt (release 65, www.ensembl.org) and Homologene (build 68, ftp://ftp.ncbi.nih.gov/pub/HomoloGene/) and only those genes that mapped with the human orthologs were used in this study. In case of previously described human data (Zhu et al., 2016) (Fig 3c), row clustering was applied when generating the final heatmap.

RT-PCR

RNA was amplified with the Nugen amplification kit and the resulting cDNA was used for SYBR green based (Roche) RT-PCR. Primer sequences used: SYCP3 (tgaaactcagcagcaagagat / tgacttaacagaaagggaggtc), DMC1
Primers were designed using primer blast on the NCBI website. Primers were screened for SNPs and possible binding to pseudogenes. RT-PCRs with the selected primers were optimized and validated using RNA from whole testicular biopsies with a gradient PCR. Only primers that resulted in a single band on gel were used in the experiment. Amplicons (ranging from 70 to 200 bp) resulting from all primers were sequenced to confirm the primers amplified the target genes.

References

Figure S1. Selection of fixative.
Fixatives were selected to give the best morphology while maintaining RNA integrity. Poor morphology was observed with formalin fixation (a) and the best morphology was observed with diluted Bouin (b) and alcohol-based fixatives (c). Black arrow: spermatogonia, open arrow: spermatocyte, and black arrowhead: spermatid; bar: 50µM. (d) RNA integrity was tested using the Paradise PLUS reagent system (protocol B) developed by Arcturus (Life Technologies), a qPCR based method uses oligo dT primers to generate cDNA transcripts which are subsequently amplified using primers specific to a proximal and distal portion of the 3’UTR of the b-actin gene. A ratio of proximal:distal transcript number gives an indication of RNA integrity. A ratio of 1 represents completely intact RNA and greater than 1 partially degraded RNA. According to manufacturer’s instructions a value of <20 is acceptable for expression measurements. The RNA integrity in tissue fixed in four alcohol-based fixatives revealed that the lowest ratio (mean ±SD), was achieved with modified methacarn (n=3). (e) The RNA integrity values measured in our samples was approximately 2, indicating RNA of sufficient quality.
Figure S2. Laser capture microdissection protocol and RNA sequencing.
(a) A flowchart depicting the RNase-free novel protocol developed including an image of testicular tissue before and after laser capture microdissection. Dissected germ cells encompassed by dotted circles. Untouched interstitial cells including somatic Leydig cells are shown by black arrow. Bar represents 25 µm. (b) A test run was performed using a technical replicate of 500 spermatocytes to check reproducibility of the RNA amplification kit and RNA sequencing procedure.
Figure S3. Gene expression distribution across chromosomes.
Graphs showing the distribution (mean ±SD) of the expressed transcripts across the chromosomes in each germ cell subtype. Based on counts per million. Ad; Adark and Ap; Apale spermatogonia, L/Z; leptotene/zygotene, eP; early pachytene and IP; late pachytene spermatocytes, rspt; round spermatids.
Figure S4. MDS plot between germ cell subtypes
MDS plot displaying the variation between germ cell subtypes including sample information. Symbols represent germ cell subtypes: filled circle: A_{dark} (Ad) spermatogonia, open circle: A_{pale} (Ap) spermatogonia, filled square: leptoeten/zygotene (L/Z) spermatocyte, crossed square: early pachytene (eP) spermatocyte, open square: late pachytene (lP) spermatocyte, filled triangle: round spermatids (rspt). Colors represent the origin of testis samples in the experiment.
Figure S5. K-means plots of differentially expressed genes
K-means plots (25x) were used to categorize the 4622 genes that were differentially expressed between successive germ cell subtypes.
Figure S6. Clustered heatmap of selected gene set.
Clustering of the previously described gene set (Zhu et al. 2016) (figure 3c) for germ cell types with that of the spermatogenic phases and germ cell subtypes in this study.
Figure S7. Immunohistochemistry of TPH1 expression in human testis section.
Validation of potential differences in expression of *TPH* between A dark and A pale spermatogonia on the protein level. Left panel: TPH is expressed in A dark spermatogonia (black arrow) and late pachytene spermatocytes (black arrowhead), but to a lesser extent in A pale spermatogonia (open arrow). This indicates a difference in TPH expression between A dark and A pale spermatogonia. Right panel: negative control. Bar represents 20µm.
Figure S8. Histology of testis tissue used for RT-PCR.
(a) and (b) hematoxylin and eosin staining of testis tissue from men with complete spermatogenesis: Stl141 and Stl142, respectively, containing all germ cell subtypes and somatic cells. (c) hematoxylin and eosin staining of testis tissue from a man suffering from spermatogonial arrest: URO0074, containing only spermatogonia and somatic cells. Bar: 40µM.
Figure S9. Expression patterns of differentially expressed long non-coding RNAs.
K-means clusters corresponding to the 137 differentially expressed lncRNAs. Areas of relatively high expression are indicated by grey boxes. Ad; Adark and Ap; Apale spermatogonia, L/Z; leptotene/zygotene, eP; early pachytene and lP; late pachytene spermatocytes, rspt; round spermatids.
Table S1

Click here to Download Table S1

Table S2

Click here to Download Table S2

Table S3

Click here to Download Table S3
Table S4

Click here to Download Table S4

Table S5

Click here to Download Table S5

Table S6

Click here to Download Table S6
Table S7

Click here to Download Table S7

Table S8

Click here to Download Table S8

Table S9

Click here to Download Table S9