CORRECTION

Correction: SoxF factors induce Notch1 expression via direct transcriptional regulation during early arterial development.
Development doi: 10.1242/dev.146241

Ivy Kim-Ni Chiang1,*, Martin Fritzschke2,*, Cathy Pichol-Thievendorf1, Alice Neal2, Kelly Holmes3, Anne Lagendijk1, Jeroen Overman1, Donatella D’Angelo4, Alice Omini4, Dorien Hermkens5, Emmanuelle Lesieur1, Nicolas Fossat6, Tania Radziewic6, Ke Liu7, Indrika Ratnayaka2, Monica Corada8, George Bou-Gharios7, Patrick P. L. Tam6,9, Jason Carroll3, Elisabetta Dejana8,10, Stefan Schulte-Merker5, Benjamin M. Hogan1, Monica Beltrame4, Sarah De Val2,‡ and Mathias Francois1,‡

1Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia. 2Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, The University of Oxford, Oxford OX3 7DQ, UK. 3Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK. 4Dipartimento di Bioscienze, Universita’ degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy. 5University of Münster, 48149 Münster, Germany Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, Westfälische Wilhelms-Universität Münster (WWU), Mendelstrasse 7, 48149 Münster and CIM Cluster of Excellence, Germany. 6Embryology Unit, Children’s Medical Research Institute, Westmead NSW 2145, Australia. 7Institute of Aging and Chronic Disease, University of Liverpool, Liverpool L69 3GA, UK. 8IFOM, FIRC Institute of Molecular Oncology, 1620139 Milan, Italy. 9School of Medical Sciences, Sydney Medical School, University of Sydney, Westmead NSW 2145, Australia. 10Department of Immunology Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden.

*These authors contributed equally to this work
‡Authors for correspondence (sarah.deval@ludwig.ox.ac.uk; m.francois@imb.uq.edu.au)

There were errors published in ‘SoxF factors induce Notch1 expression via direct transcriptional regulation during early arterial development’ by Ivy Kim-Ni Chiang, Martin Fritzschke, Cathy Pichol-Thievendorf, Alice Neal, Kelly Holmes, Anne Lagendijk, Jeroen Overman, Donatella D’Angelo, Alice Omini, Dorien Hermkens, Emmanuelle Lesieur, Ke Liu, Indrika Ratnayaka, Monica Corada, George Bou-Gharios, Jason Carroll, Elisabetta Dejana, Stefan Schulte-Merker, Benjamin Hogan, Monica Beltrame, Sarah De Val and Mathias Francois (2017). Development 144, 2629-2639 (doi: 10.1242/dev.146241).

The contribution of Nicolas Fossat, Tania Radziewic and Patrick P. L. Tam was inadvertently omitted. These authors generated and validated the Sox7 knockout mouse line used to produce the Sox7/Sox18 double-knockout line (Fig. 9A). An explanation of how this mouse line was generated is absent from the supplementary Materials and Methods. In addition, the middle initial of Benjamin Hogan was missing.

The corrected author list and affiliations appear below. Revised Author contributions and Funding sections, as well as a revised section of the supplementary Materials and Methods that now includes generation of the Sox7 knockout mouse line, appear below.

The authors apologise to readers for these mistakes.

Author contributions

Funding
This work was supported by the National Health and Medical Research Council of Australia (NHMRC) (APP1107643); The Cancer Council Queensland (1107631) (M.Fran.); the Australian Research Council Discovery Project (DP140100485, M.Fran.; DP1094008, P.P.L.T.); NHMRC Senior Principal Research Fellowship (APP1003100) (P.P.L.T.); University of Sydney Postdoctoral Fellowship (N.F.); NHMRC Career Development Fellowship (APP1111169) (M.Fran.); the Ludwig Institute for Cancer Research (M.Frit., A.N., I.R., S.D.V.); the Medical Research Council (MR/J007765/1) (K.L., G.B.-G., S.D.V.); the Fondazione Cariplo (2011-0555) (M.B., M.H., M.Fran.); and the Biotechnology and Biological Sciences Research Council (BB/L020238/1) (A.N., K.L., G.B.-G., S.D.V.). Deposited in PMC for release after 6 months.

Supplementary Materials and Methods
Generation and analysis of transgenic and mutant mice (final paragraph)
Sox7tm1 (Sox7+/-) mice were generated through germline transmission in chimaeras, using VGB6 ES cells (of C57BL/6NTac background) that contained an inactivated Sox7 allele replaced with a ZEN-Ub1 cassette from Velocigene (Sox7tm1KOMP)Vlc8), and
obtained from the KOMP repository at University of California at Davis (https://www.komp.org/pdf.php?projectID=VG10649). Compound Sox7^{−/−};Sox18^{−/−} mouse embryos were generated on the C57BL/6 background through crossing heterozygous Sox7^{tm1} to Sox18^{tm1}, generating Sox7^{+/−};Sox18^{+/−} mice which were subsequently incrossed (Pennisi et al., 2000a). Genotype was confirmed by PCR using the following primers: mSox7(F), TGTAACTTGGAGATCCATAGAGC; mSox7(R), TCATTCTCAGTATTGTTTTGCC; mSox7lacZ(R), TGGATCAGCTAAGCCAGGT; mSox18(F), CCCGACGTCCCATCAGACCTC; mSox18(R), GTCGCTTGCGCTGGCTCCTTC; mSox18lacZ(R), CGCCCGTTGACCACAGATG. All animals used were 7-24 weeks old.