Cover: 3D representation of an organoid grown from a single mouse mammary basal cell upon stimulation with prolactin. This organoid model, which recapitulates features of mammary tissue architecture (highlighted by F-actin and DAPI staining, blue) and function (milk protein, red), offers a versatile system for exploring tissue dynamics, cell fate and mechanisms of disease. See Research report by Jamieson et al. on p. 1065.

EDITORIAL
935 Organoids: a Special Issue
Little, M. H.

SPOTLIGHTS
938 The hope and the hype of organoid research
Huch, M., Knoblich, J. A., Lutolf, M. P. and Martinez-Arias, A.

942 Ethical issues in human organoid and gastruloid research
Munsie, M., Hyun, I. and Sugarman, J.

946 The physics of organoids: a biophysical approach to understanding organogenesis
Dahl-Jensen, S. and Grapin-Botton, A.

952 Using brain organoids to understand Zika virus-induced microcephaly
Qian, X., Nguyen, H. N., Jacob, F., Song, H. and Ming, G.-l.

DEVELOPMENT AT A GLANCE
958 Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish
McCauley, H. A. and Wells, J. M.

MEETING REVIEW
963 Bringing together the organoid field: from early beginnings to the road ahead
Muthuswamy, S. K.

PRIMER
968 Translational applications of adult stem cell-derived organoids
Drost, J. and Clevers, H.

REVIEWS
976 Embryoids, organoids and gastruloids: new approaches to understanding embryogenesis
Simunovic, M. and Brivanlou, A. H.

986 Lung organoids: current uses and future promise
Barkauskas, C. E., Chung, M.-I., Fioret, B., Gao, X., Katsura, H. and Hogan, B. L. M.

998 Dissecting the stem cell niche with organoid models: an engineering-based approach

HUMAN DEVELOPMENT
1008 Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells
Giacomelli, E., Bellin, M., Sala, L., van Meer, B. J., Tertoolen, L. G. J., Orlova, V. V. and Mummery, C. L.

1018 Nutritional modulation of mouse and human liver bud growth through a branched-chain amino acid metabolism
Koike, H., Zhang, R.-R., Ueno, Y., Sekine, K., Zheng, Y.-W., Takebe, T. and Taniguchi, H.

1025 Retinoblastoma protein controls growth, survival and neuronal migration in human cerebral organoids
Matsui, T., Nieto-Estévez, V., Kyrychenko, S., Schneider, J. W. and Hsieh, J.

1035 Human umbilical cord blood-borne fibroblasts contain marrow niche precursors that form a bone/marrow organoid in vivo

1045 In vitro patterning of pluripotent stem cell-derived intestine recapitulates in vivo human development
Tsai, Y.-H., Nattiv, R., Dedhia, P. H., Nagy, M. S., Chin, A. M., Thomson, M., Klein, O. D. and Spence, J. R.

1056 Paracrine signals regulate human liver organoid maturation from induced pluripotent stem cells

1065 Derivation of a robust mouse mammary organoid system for studying tissue dynamics
Jamieson, P. R., Dekkers, J. F., Rios, A. C., Fu, N. Y., Lindeman, G. J. and Visvader, J. E.

1072 An essential role of CBL and CBL-B ubiquitin ligases in mammary stem cell maintenance
Mohapatra, B., Zutshi, N., An, W., Goetz, B., Arya, P., Bielecki, T. A., Mustaq, I., Storck, M. D., Meza, J. L., Band, V. and Band, H.

1087 Self-organisation after embryonic kidney dissociation is driven via selective adhesion of ureteric epithelial cells

1097 Self-organising aggregates of zebrafish retinal cells for investigating mechanisms of neural lamination
Eldred, M. K., Charlton-Perkins, M., Muresan, L. and Harris, W. A.
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1107</td>
<td>Intestinal epithelial organoids fuse to form self-organizing tubes in floating collagen gels</td>
<td>Sachs, N., Tsukamoto, Y., Kujala, P., Peters, P. J. and Clevers, H.</td>
</tr>
</tbody>
</table>