






expression of dorsal mesoderm markers in animal caps exposed to
high doses of activin, but is unable to promote elongation of caps
alone (Ruiz i Altaba and Jessell, 1991; Sive and Cheng, 1991).
Previous research showed that RA acts during mesoderm formation
by transforming the anteroposterior value of mesoderm toward
the posterior. Nevertheless, factors that serve as permissive signals
or contribute to the competence of responding tissue are very
important for embryonic inductions, including mesoderm
induction (Fletcher and Harland, 2008). RA, in combination with
BMP4, can induce the production of mesodermal precursors from
embryonic stem cells (Torres et al., 2012), and many mesodermal
derivatives (e.g. somites, heart, kidney, gonads) are affected when
RA signaling is perturbed (Cartry et al., 2006; Hasegawa and Saga,
2012; Rhinn and Dolle, 2012, and reviewed by Cunningham and

Duester, 2015; Naylor et al., 2016). Here, we propose a new role
for RARγ signaling and show that it is required much earlier than
had been previously thought for the expression of mesodermal
markers, in vivo.

Retinoids are present in Xenopus eggs and embryos, but
their availability in early development has been controversial
(Pijnappel et al., 1993; Creech Kraft et al., 1994; Blumberg et al.,
1996). Reporter gene studies have suggested that retinoids are
not active in the embryo until neurula stages (Ang and Duester,
1999); however, 4-oxo-retinaldehyde (Blumberg et al., 1996) and
4-oxo-RA (Pijnappel et al., 1993) can activate RAR and are present
in gastrula-stage embryos. Chicken embryos also possess high
levels of RA in Hensen’s node during gastrulation (Chen et al.,
1992). Although cyp26a1 is highly expressed in the Xenopus

Fig. 3. RAR-selective agonist TTNPB modulates
expression of genes identified by RNA-seq.
(A-P) WISH from embryos treated at stage 6/7 with 1 �M
TTNPB or control vehicle (0.1% ethanol). (A-D,I-L) Control
expression of znf703, znf503, kremen2,mamdc2, skida1,
nkx6-2, dhh and cyp26a1. (E-H,M-P) TTNPB expands
expression of these genes. All embryos are shown in
vegetal view at stage 10.5/11 with dorsal lip at the top.
N, number of embryos scored in the experiment; 100%
of embryos displayed the phenotype shown.

Fig. 4. RARγ1 acts as a transcriptional activator in
rescuing znf703 expression in RARγ1 MO embryos.
(A-H) Embryos injected unilaterally at the 2- or 4-cell
stage. Injected side is to the right of the dashed line, and is
indicated by themagenta β-gal lineage tracer. (A,E) 3.3 ng
RARγ1.S+3.3 ng RARγ1.L/S MOs diminish znf703
expression. (B,F) VP16-RARγ1 mRNA (0.2 ng) rescues
and expands znf703 expression beyond its usual
boundary. (C,D,G,H) WT RARγ1 mRNA (0.5 ng) partially
rescues znf703 (C,G) and 2 ng DN-RARγ1 mRNA does
not rescue znf703 at all, and the severity of the knockdown
is increased (D,H). Embryos are shown at stage 10.5/11 in
vegetal (A-D) or dorsal (E-H) view. Fractions represent the
portion of embryos displaying the phenotype.
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circumblastoporal domain, it has not been determined whether
this enzymatic pathway is responsible for generating 4-oxo-
retinoids, in comparison with its known activity in producing
4-OH-retinoids (Shimshoni et al., 2012; Topletz et al., 2015).
We showed that only the wild-type and constitutively active forms
of RARγ1 rescued mesodermal markers (e.g. znf703) in RARγ1-
knockdown embryos. As the constitutively active form of RARγ1
mimics liganded RARγ1, our results suggest that retinoids are
available to the embryo (at least locally) at gastrula stages, unless
the receptor functions as an unliganded activator, which would be
unprecedented for an RAR.

Novel RAR targets in early mesoderm development
We identified several novel targets expressed in the circumblastoporal
region that are upregulated by RAR signaling in the early gastrula.
znf703, znf503, kremen2 and mamdc2 are normally absent from
the dorsal organizer, but are ectopically expanded there in the
presence of RA. Hence, RAventralizes dorsal tissue duringmesoderm
development, a phenomenon already recognized in later stages, as
RA-treated embryos display a bauchstuck (ventralized) phenotype
(Durston et al., 1989; Sive et al., 1990). RA also expanded the
expression domain of the ventral patterning gene nkx6-2. This is
concordant with the observation thatNkx6.2 is reduced in vitamin A-
deficient quail as well as RAR antagonist-treated chicken embryos
(Diez del Corral et al., 2003; Bayha et al., 2009).

Kremen2 is the receptor for Dickkopf, a Wnt inhibitor that
mediates mesendoderm internalization and promotes head
mesoderm and cardiac fate (Schneider and Mercola, 2001).
skida1, a DACH/dachshund-related gene of unknown function,
was more ubiquitously expressed than other markers, but highly
responsive to RA. Its expression in the pronephric kidney at later
stages (Seufert et al., 2005) could indicate a potential role of skida1
in responding to RA signaling in pronephric precursors. dhh is a
hedgehog gene important for mammalian Leydig cell differentiation
(reviewed by Franco and Yao, 2012), and is highly expressed in
Xenopus testis (Haselman et al., 2015). These findings could
provide molecular mechanisms linking RA signaling with
intermediate mesoderm and gonadal development.

Our results show that RARγ1MO inhibits cell adhesion in animal
caps which has important implications for numerous developmental
processes, such as the morphogenic movements of gastrulation and
the formation of somite or rhombomere boundaries. Two of the
targets identified in our RNA-seq dataset regulate adhesion.
Although the function of mamdc2 is not well characterized, the
MAM domain is found in proteins that regulate cell adhesion and

Fig. 5. RARγ1 MO inhibits cell adhesion in animal caps. (A-C) Embryos
were injected bilaterally at the 2-cell stage with 3.3 ng RARγ1.S+3.3 ng
RARγ1.L/S MOs. Animal caps were harvested at stage 9 and incubated in
control vehicle or defined doses of activin (0.8, 4, 20 and 100 ng/ml) overnight.
(A,B) RARγ1 MOs result in animal cap dissociation (note the large number of
single cells) (B), compared with control MO (A) in all treatment conditions. This
effect was replicated in three separate experiments. mRNAwas harvested 8 h
after treatment from the third and final animal cap experiment and evaluated as
shown in C. (C) ncam1 expression was significantly reduced in RARγ1 MO
animal caps compared with control MO, despite constant housekeeping
(histone H4) expression. The upper y-axis represents ncam1 expression 2−ΔCt

values normalized to histone H4. The bottom y-axis shows raw Ct values of
histone H4.

Fig. 6. RARγ1 knockdown yields a complex phenotype on myod mRNA
and Myod protein. Embryos were injected unilaterally at 2- or 4-cell stage.
(A) Injection of 3.3 ng RARγ1.S+3.3 ng RARγ1.L/S MOs lead to reduced
Myod mRNA expression (10/14 embryos, dorsal view). (B) RARγ1 MOs
cause loss of PSM expression of Myod protein and ectopic expression in the
trunk of coronal sections of stage 26 embryos (4/4 embryos). (C) RARγ1 MOs
cause loss and disorganization of mature somite marker 12/101 in coronal
sections of stage 26 embryos (4/4 embryos).
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motility, such as zonadhesin and nephronectin (Beckmann andBork,
1993). znf703 is implicated in epithelial-mesenchymal transitions
(EMTs), downregulates E-cadherin (cdh1), and increases cell
invasion/motility (Holland et al., 2011; Slorach et al., 2011; Shahi
et al., 2015). Although mesoderm formation in Xenopus is not
considered to be a classical EMT (Nakaya and Sheng, 2008), the
transformation of epithelioid cells to mobile mesenchymal cells
during Xenopus gastrulation undoubtedly requires genes that
regulate cell adhesion and morphogenesis, such as znf703. znf703
is also expressed in somites and the neural plate border (Hong and
Saint-Jeannet, 2017). Therefore, regulation of znf703 by RA might
be important for the epithelialization of somites as well as neural
crest migration.

RARγ and mesodermal development – the bigger picture
RA can act late on myoblast, cardiac, renal or gonadal progenitor
populations to affect specification or differentiation, but our
results open the possibility that RARγ acts earlier to promote
mesodermal fates. Loss of adhesion and subsequent dissociation
in explants from RARγ1 MO-injected embryos is likely to disrupt
the ‘community effect’ (intercellular signaling), which has been
shown to be important for myogenic differentiation and the early
stages of somitogenesis (Gurdon, 1988; Cossu et al., 1995). In these
early studies, myogenic commitment was not solely determined
by inducing signals, but additional signals (e.g. embryonic FGF
ligand) within the responding tissue (Symes et al., 1988; Standley
et al., 2001). One of the earliest mesodermal genes upregulated
after induction is Myod, but expression of Myod alone doth not a
muscle make (Hopwood et al., 1991). The fact that the injected
side of RARγ1 MO tailbud embryos still expresses Myod without
12/101 indicates that cells have not received the appropriate
signals (even if only from each other) to fully stabilize myogenic
commitment and terminal differentiation.
In line with our previous findings (Janesick et al., 2014),

injection of RARγ1 MO led to an absence of Myod protein in
nuclei of the unsegmented PSM. This is expected because
RARγ1 is known to play an important role in the maintenance of
chordoneural hinge and unsegmented PSM (Janesick et al., 2014).
However, we also observed that in RARγ1 MO-injected embryos,
Myod+ cells were found ectopically in the trunk, which could
indicate that PSM identity is transformed rostrally. Alternatively, the
presence of Myod+ cells without somite maturation (as indicated
by 12/101 staining) suggests that the muscle differentiation
program commences, but cannot finish. In this scenario, RARγ1
loss of function might actually stabilize the muscle progenitor
state, thus hindering somite maturation, or Myod might require
RARγ1 for its degradation.
Unlike other manipulations of RA signaling (chemical treatment,

RARβ MO injection, overexpression of constitutively active or
dominant-negative RARα or RARγ), which shift somitomere
boundaries or alter somitomere size (Moreno and Kintner, 2004;
Janesick et al., 2014), or chevron morphology (Janesick et al.,
2017), loss of RARγ is the only manipulation of RA signaling that
completely precludes any somite boundaries from forming.
Furthermore, genes that normally regulate boundary formation,
such as ripply2 and thyl2 (mespa) are barely detectable in RARγ
MO-injected embryos (Janesick et al., 2014). The RARγ MO-
induced dissociation of explants is a clue that cellular adhesion, an
important component of boundary formation, is perturbed.
Furthermore, somite maturation requires Myod degradation for
proper somite epithelialization and boundary formation. Continued
ectopic Myod expression observed on the injected side of RARγ1

MO-injected tailbud embryos is likely to completely thwart a
successful myogenic program.

Our finding that RARγ is required for the expression of early
mesodermal markers opens the possibility that RA signaling
provides a more instructive role, as opposed to simply providing
positional cues to already committed tissue. Current guidance
protocols for making mesoderm or muscle from stem cells in
culture currently do not utilize RA (Chal et al., 2016; Loh et al.,
2016). Our results suggest that RA signaling could be exploited
in mesoderm formation, but with careful attention to specificity
of receptor subtypes. As new receptor-selective ligands are
developed (Tsang et al. 2003; Shimono et al., 2011), it will be
interesting to consider whether mesodermal lineages can be further
manipulated, stabilized or specialized based on the results provided
here and an increased understanding of how RA receptors actually
function in development.

MATERIALS AND METHODS
RNA-seq
Eggs from one clutch of female X. laeviswere fertilized in vitro and embryos
were staged as described (Janesick et al., 2014). Stage 6-7 embryos were
treated in groups of 25 in 60-mm glass Petri dishes with 10 ml of 0.1× MBS
containing 1 μM RAR-selective agonist TTNPB (Tocris), 1 μM RAR-
selective inverse agonist (antagonist) AGN193109 (a gift from Dr Rosh
Chandraratna, IO Therapeutics; Arima et al., 2005) or vehicle control (0.1%
ethanol). Each dish was harvested at gastrula stage 10.5 in five-embryo
aliquots; each aliquot was designated as n=1 biological replicate. Replicates
were taken from two different clutches, and five replicates were analyzed
within each clutch (ten replicates in total). Approximately ten embryos from
each chemical treatment were reserved and aged until stage 40 to verify that
the chemicals resulted in strong retinoid phenotypes as previously published
(Koide et al., 2001).

Each five-embryo pool was homogenized in 200 μl of TriPure (Roche).
Total RNAwas DNAse treated, LiCl precipitated, and 100 ng was reverse
transcribed into cDNA using Ovation RNA Amplification System
V2 (NuGEN). Deep-sequencing libraries with barcode indices were
synthesized using ABI SOLiD 5500 Fragment Library Core Kit and
subjected to 50-nucleotide, single-read multiplex sequencing with ABI
SOLiD 5500XL deep sequencers (Aceto, et al., 2014). The Bowtie,
TopHat and Cufflinks pipeline was used (Trapnell et al., 2012), and
expression data deposited in Gene Expression Omnibus under accession
number GSE119124. Differential gene expression analysis (TTNPB or
AGN193109 versus control) was conducted using CyberT (Kayala and
Baldi, 2012) to facilitate comparison with our previously published
microarray datasets (Arima et al., 2005; Janesick et al., 2014). We
employed VSN normalization and performed unpaired two-conditions
data analysis on FPKM (fragments per kilobase per million mapped reads)
values for 1 μM TTNPB versus vehicle control, and 1 μM AGN193109
versus vehicle control. q-values from differential expression analysis are
reported as Benjamini–Hochberg-corrected P-values. The full dataset of
differentially expressed genes is available in Tables S1 (1 μM TTNPB)
and S2 (1 μM AGN193109). We conducted GO analysis using DAVID
(Database for Annotation, Visualization and Integrated Discovery; Huang
da et al., 2009a, b).

Embryo microinjection and in situ hybridization
Xenopus eggs were fertilized in vitro and embryos were staged as described
(Janesick et al., 2012). Embryos were microinjected bilaterally or
unilaterally at the two- or four-cell stage with gene-specific MOs
(Table S3) and/or mRNA together with 100 pg/embryo β-galactosidase
(β-gal) mRNA lineage tracer. Both morpholinos against RARγ1 yield the
same knockdown phenotype on znf703 (Fig. S3). Embryos were maintained
in 0.1× MBS until appropriate stages. Embryos processed for WISH were
fixed in MEMFA (10% 10× MEMFA salt, 10% formaldehyde, 80% DEPC
water), stained with magenta-GAL (Biosynth), and then stored in 100%
ethanol (Janesick et al., 2012).
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WISH was performed on microinjected embryos as previously described
(Janesick et al., 2012). fgf8 probe (courtesy of Nancy Papalopulu, University
of Manchester, UK) was linearized with BamHI. All other probes were
prepared by PCR amplification of protein-coding regions (∼500-800 bp)
from either cDNA or library clones with a bacteriophage T7 promoter at the
3′ end. Relevant primers are listed in Table S4. Probes were transcribed with
MEGAscript T7 (Life Technologies) in the presence of digoxigenin-11-
UTP (Roche) as previously described (Janesick et al., 2012).

Animal cap assays
Microinjected animal caps were explanted at stage 8-9 and collected into 1%
agarose, 0.4× MBS Petri dishes. Each cap was transferred to individual
depressions created in a 1% agarose-coated 6-well plate, in 0.4× MBS plus
activin treatment (R&D Systems recombinant Activin A) or control vehicle.
After overnight incubation (∼10 h), animal caps were homogenized in
200 μl TriPure (Roche). Total RNA was DNAse treated, LiCl precipitated,
reverse transcribed into cDNA, and quantified in a Light Cycler 480 System
(Roche) using ncam1 and histone H4 primer sets listed in Table S5 and
SYBR green detection. Quantitative PCR data were analyzed by 2−ΔCt

relative to histone H4 (Schmittgen and Livak, 2008).

Immunohistochemistry on vibratome sections
Embryos were embedded in 4% low-melt agarose (Bio-Rad, 1613111) in
1× PBS under a dissection microscope in disposable molds (VWR, 15160-
215). The embryos were sectioned coronally in cold 1× PBS using a Leica
VT1200 vibratome (50 µm thickness, 1 mm amplitude, 0.5 mm/s speed).
Free-floating vibratome sections were immunostained in mesh-bottomed
baskets. Sections were permeabilized (0.5% Triton X-100) for 30 min
then blocked (1% bovine serum albumin, 0.2% Triton X-100) in 1× PBS at
room temperature. Incubation in primary antibody against either Myod
(1:3) or 12/101 (1:10) (Developmental Studies Hybridoma Bank) was
carried out in blocking buffer overnight at 4°C. Sections were washed
three times for 15 min each wash in 0.2% Triton X-100 in 1× PBS then
incubated in secondary antibody (donkey anti-mouse Alexa Fluor 647 1:200;
Thermo Fisher Scientific) along with DAPI nuclear stain (1:2000). After
washing again, sections were mounted on glass slides in antifade medium
with 0.12 mm spacer (Thermo Fisher Scientific, S24735). Sections were
imaged at 1.0 zoom on the Zeiss LSM880 confocal microscope at 20×
magnification (Plan-Apochromat 1.3 numerical aperture) using a tiling
stage and Zeiss Zen Black acquisition software.
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