
















We also obtained and analyzed movies of H2A-GFP transgenic
embryos driving baz RNAi in the mesoderm through twih-Gal4.
twih>baz RNAi embryos exhibited variations in phenotype, ‘strong’
or ‘weak’, characterized by a delayed invagination or apparently
normal invagination, respectively. In addition, the ‘strong’ baz RNAi
phenotype was associated with non-collective spreading and aberrant
cell division (Fig. 7H,K, showing cells cross the midline; R=0.86,
data not shown; Movie 3), whereas the ‘weak’ phenotype was
associated with decreased spreading strength (A=1.5, Fig. S3G,H;

Movie 4) but normal cell division (Fig. S3I,J). Surprisingly, in the
embryo exhibiting strong Baz RNAi phenotype, cell division was
non-uniform: some cells divide only once (Fig. 7N, gray circles),
whereas some divide three times (Fig. 7N, black circles; as observed
for ths ectopic expression, Fig. 7M). Baz expression was detected
throughout the mesoderm-spreading process, and mesoderm-specific
baz RNAi is associated with a decrease in the number of AJs at both
stage 7 and stage 9/10 (Fig. 7E, green line-associated asterisks,
P<0.05). Therefore, Baz plays multiple roles in the process of

Fig. 7. Live imaging shows that htl functions in the mesoderm to control cell division rate and number. (A-D) Tracking of mesoderm cell movement in the
embryos was accomplished by following the in vivo nuclear signal associated with H2A-GFP transgene in movies obtained by two-photon live imaging (see
Materials and Methods and Movies 1-3). (A) Ventral view of embryo showing the fitting of cylindrical coordinates. (B) Posterior view of an embryo showing the
invaginated tube and how each single mesoderm cell in the furrow was fitted to cylindrical coordinates. (C) For analysis of cell spreading, cells in the invaginated
tube are color-coded based on their azimuthal angular position. (D) For analysis of cell division trends, a color code relating to the radial position of a cell
is used (see Materials and Methods). (F,I,L) Tracking analysis from a control embryo (i.e. yw) showing movement of mesoderm cells in the angular direction
(F) using azimuthal color code (C), position and time of cell divisions superimposed on spreading tracks (I) using radial color code (D), and timing of cell division
relative to its radial position (L). The range of azimuthal angular positions of the mesoderm cells changes from � 0.5 to 0.5 at the beginning of themigration to � 1 to
1 at the end. A measurement of the spreading strength, A=θstart/θend (Fig. S3A,E), has a value close to 2 in the control embryos. In plots I and L, each colored spot
represents one cell division. The two mesoderm cell divisions are highly synchronized: cells with bigger r value (red, closer to the ectoderm) divide first and
cells with smaller r value (blue) divide later. (G,J,M) Tracking analysis showingmesoderm spreading phenotypes associated with ectopic expression of Ths ligand
(twih>ths) displayed in a similar manner to the control (see F,I,L). Spreading tracks aremore confined in G compared with F. Cell divisions are less synchronized in
J compared with I. Spots outlined in black in M indicate cells that, unusually, have divided a third time. (H,K,N) Tracking analysis of a twih>baz RNAi
embryo of severe phenotype. Some cells cross the midline (black line in the middle, H) and cell divisions are not synchronized (K). (N) Several tracked cells have
divided only once in the course of 3 h (outlined in grey), whereas the two cells marked with a black outline have divided a third time. (E) Number of AJs in the
mesoderm at stages 7, 8 or 9/10 of indicated genetic backgrounds. Error bars represent s.d. Based on Student t-test (*P<0.05), significance was reached in
comparison of AJ numbers present in twih>mys RNAi mutants with control at stage 9-10, as well as in twih>baz RNAi mutants at stage 7. Number of
embryos for control and mutant background at stages 7, 8 and 9-10 are as follow (total number of z-projections counted in the group is indicated in parentheses):
control, 5(43), 5(51) and 3(24); twih>mys RNAi, 3(25), 3(24) and 4(35); twih>baz RNAi, 4(39), 6(48) and 5(40). Scale bars: 20 μm.
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mesoderm migration: (1) it maintains or stabilizes AJs facilitating
invagination; (2) it ensures a slow decrease in AJ number to support a
prolonged EMTand the collectiveness of mesodermmovement; (3) it
supports monolayer formation by increasing apical AJ number and
reinforcing the basal Mys localization; and (4) it regulates cell
division, which may be indirect and dependent on the above
functions.

FGF signaling controls EMT by regulating cell division timing
and number
Previous studies had suggested that cell divisions contribute to EMT
(e.g. Clark et al., 2011). Specifically, in the mesoderm, cells divide
at stage 8 as the furrow collapses and mesoderm cells touch down to
the ectoderm. Cell division is thought to decrease cell-cell adhesion
associated with EMT, possibly by exerting a pulling force between
cells as they divide. However, a potential link between mitosis and
FGF signaling activity had yet to be investigated. As our tracking
analysis had demonstrated that FGF regulates cell division rate, we
examined more closely whether FGF mutants exhibit a cell division
phenotype at gastrulation.
Using an antibody against phospho-Histone H3 (anti-PH3), it can

be observed that mitosis is highly synchronized among the
mesoderm cells, as indicated by their uniform staining pattern of
PH3: condensed histone staining during tube collapse (Fig. 8A)
and histone staining in smaller puncta during segregation and
cytokinesis (Fig. 8B) (Shibata et al., 1990; Su et al., 1998).
However, this synchrony in cell division is disrupted in the htl
mutants (Fig. 8H,I,K,L). htlM−Z− embryos exhibit less PH3 staining,
suggesting an overall reduced mitotic activity (nine out of nine
embryos, Fig. 8K,L); this is supported by the finding that these
mutants sometimes contain visibly fewer mesoderm cells (see the
gaps in Fig. 3K). In contrast, all cells divide upon high-level ectopic
expression of Ths (seven out of seven embryos, Fig. 8E,F),
consistent with the tracking analysis, which revealed an additional
division in the subset of mesoderm cells in this mutant (Fig. 7J).
How FGF signaling regulates cell division to support EMT is

unclear, but it has been noted that the htlM+Z−,stg double mutant
embryo exhibits a prolonged invaginated tube state (Fig. 8Y; Clark
et al., 2011). Furthermore, we found that AJs, identified by α- and β-
Catenin colocalization, concentrate at the center of the invaginated
tube at stage 7, and likely remain in this position until a later stage
when the developing midgut primordium becomes prominent (blue
arrows, Fig. 8Y compare with W; X, asterisks, P<0.01; Fig. S4).
Because this blocked-EMT phenotype is much more severe than
either stg or htl single mutant alone, FGF signaling likely also
functions through a distinct pathway rather than regulating mitosis
to support EMT (Fig. 8D, see Discussion).
To provide insight into its cell division-independent role, we

investigated whether FGF signaling impacts the expression of Snail,
a well-known transcriptional repressor of E-Cadherin (Cano et al.,
2000; Thiery and Sleeman, 2006). However, Snail protein levels in
htlM+Z−, htlM−Z− or twih>thsmutants were largely comparable with
those of the control embryo at stage 7 (Fig. 8C,G,J,M), indicating
that the differences in the number of AJs observed in FGF loss of
function or gain of function mutants (Fig. 2E,F) are not likely due to
the lack of Snail.
Most studies in Drosophila have focused on how Htl FGFR

activation acts through Ras/MAPK; however, FGFRs in other
systems can also activate PI3K (Ornitz and Itoh, 2015). We assayed
whether Ras- and PI3K-mediated intracellular pathways are
responsible for carrying out different parts of the FGF functions
during mesoderm development. Surprisingly, we found that

rasC40BM−Z− mutant embryos derived from germline clone
females (Prober and Edgar, 2000) exhibit spreading defects that
may be associated with asynchrony in cell division, in a manner that
is similar to what we observed in the htl mutants (eight out of eight,
Fig. 8K,L,N,O). However, rasC40BM−Z− embryos can form a cell
monolayer that acquires apicobasal polarity, as indicated by
localization of Baz to the mesoderm-yolk interface (Fig. 8P,P′,R).
In contrast, tissue-specific RNAi-mediated knockdown of class III
PI3K Vps34/PI3K59F (Ribeiro et al., 2011) in the mesoderm has no
effect on the timing of cell division (five out of five embryos,
Fig. 8S,T), but does result in a dramatic reduction in apical Baz
localization (Fig. 8R,U,U′), suggesting a loss of polarity. Together,
our data indicate that these two roles of FGF signaling during
mesoderm migration are carried out by two different intracellular
pathways: a Ras-dependent activity controlling cell division to
support spreading/EMT and a PI3K-dependent activity that relates
to the reacquisition of cell polarity/MET.

DISCUSSION
Our study demonstrates that FGF signaling serves multiple roles
during gastrulation to support this complex morphogenetic process
and to direct mesoderm tissue specification. We found that FGF
signaling (1) regulates cell division to support EMT, which we show
does not only represent the collapse of the tube but continues
throughout the mesoderm-spreading process to allow cell
movements; (2) establishes cell polarity of the monolayer through
control of localization of polarity proteins, including the β-PS
integrin Mys to the presumptive basal side of cells; and (3), in a role
possibly related to these activities above, regulates AJ number.
Modifying FGF levels only led to small changes in cell number
through effects on cell division, and the relatively large changes in
AJ number could not relate solely to changes in cell number.
Therefore, we favor the view that FGF has multiple roles, including
regulation of cell division, cell polarity and AJ number.
Furthermore, we propose that monolayer formation and re-
epithelialization of mesoderm cells through MET is important,
because it ensures that subdivision of the mesoderm occurs properly
throughout the trunk, allowing accurate specification of different
muscle subtypes (Fig. 6).

The role of FGF in supporting EMT is mediated by intracellular
Ras signaling, whereas its role in supporting MET requires
intracellular PI3K (Fig. 8N-V). The different requirement of
intracellular signaling pathway effectors, known to mediate FGF
signaling, supports the view that FGF has at least two functions in
supporting mesoderm migration and monolayer formation at
gastrulation. Furthermore, although activation of Ras has been
shown to be an effector of FGF signaling in Drosophila (Carmena
et al., 1998; e.g. Schulz and Gajewski, 1999), a role for PI3K in
supporting FGF-regulated MET is the first characterized activity for
this pathway in Drosophila, to our knowledge; however, it has been
documented in the mammalian system that FGF signaling activates
the PI3K pathway (Ornitz and Itoh, 2015). PI3K is also known to
directly impact the specification of cell polarity and has been shown
to regulate integrin trafficking and cell migration through endocytic
pathways (Abe et al., 2009; Ribeiro et al., 2011). Future experiments
will aim to define the molecular mechanism by which FGF
activation leads to PI3K activation versus Ras; possibly this
distinction relates to quality, quantity and direction of input from
ligands.

Only a few studies have attempted to link FGF signaling to the
establishment of cell polarity, a hallmark component of MET. In
C. elegans and zebrafish, FGF indirectly regulates cell polarity by
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Fig. 8. FGF signaling functions cell-autonomously to drive EMT by regulating cell division and MET by controlling cell polarity. (A,B,E,F,H,I,K,L) Cross-
sections of stage 8 embryos stained with anti-phospho-Histone H3 (anti-PH3) antibody to label mitotic cells in embryos of indicated backgrounds (left).
(A,E,H,K) The stage of tube collapse, when chromosome condensation is most apparent in the control. (B,F,I,L) Stage of initial spreading, when segregated
chromosomes in the daughter cells are also strongly marked by PH3. Number of stage 8 embryos sectioned is indicated in the bottom right-hand corner.
(C,G,J,M) Z-projections of confocal immunofluorescence scans from stage 7 embryos of indicated genotypes co-stained using anti-Sna (red) and anti-Nrt (blue)
antibodies. (D) A model diagram showing how FGF signaling functions to control the EMT and MET of the mesoderm at gastrulation. Blue spots in stage 7 and
stage 8 embryos mark the AJs in the mesoderm. Red spots in stage 10 embryo represent AJs that colocalize with Baz. (N-V) Cross-sections of embryos
stained with anti-PH3 at stage 8 (N,O,S,T), anti-Baz (P,P′,U,U′) and anti-Twi (Q,V) at stage 10 in rasC40B germline clones and twih>PI3K59F RNAi mutant
backgrounds. Numbers of embryos sectioned are indicated in the bottom right-hand corner in O and T for PH3 and inQ and V for Twi. Boxed regions in Pand Vare
shown at higher magnification in P′ and V′. (R) Quantification of relative Baz enrichment in the mesoderm in P′ and U′ compared with the controls (see Fig. 4A,B).
Number of embryos and sections are indicated underneath the genotype (*P<0.005). (W,Y) Z-projections from confocal scans of stg (W) and htlM+Z−,stg (Y)
embryos co-stained for α-Catenin (violet) and β-Catenin (green) at stages 7 and 10. Strong colocalized signals are observed in between mesoderm cells in
htlM+Z−,stg double mutants (blue arrows, Y). Themeso-ectoderm boundary is marked by a semi-transparent blue dashed line at stage 10. (X) Quantification of the
relative enrichment of colocalized α- and β-Catenin in the mesoderm in W and Y. Number of embryos (and sections) at stages 7 and 10, respectively, are as
follows: stg, 3(7) and 3(10); htlM+Z,stg, 3(6) and 3(10). Significance is reached at both stages when comparing the double mutants with stg mutants (*P<0.01).
Control refers to a heterozygous zygotic htl mutant (i.e. htlM+Z−/+). Scale bars: 20 μm.
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influencing Wnt signaling activity (Minor et al., 2013; Venero
Galanternik et al., 2015), whereas in Ciona intestinalis, localized
signaling by FGF ligands has been shown to directly control
asymmetric cell divisions or convergent extension that relies on
planar cell polarity components (Cota and Davidson, 2015; Shi
et al., 2009). In vertebrates, ectopic activation of FGF signaling has
been linked to aberrant growth, resulting in cranial malformation.
This suggests that polarized activation of FGF signaling is necessary
to provide directional growth (Li et al., 2013). In Drosophila
embryos, FGF signaling through a different receptor, Breathless,
has been shown to regulate E-cadherin turnover to support the
collective movement of cells in the gut (Parés and Ricardo, 2015),
and mutation in polarity proteins such as Cdc42 results in
mesoderm-spreading defects (Clark et al., 2011). Our results have
demonstrated a previously uncharacterized role for FGF in
supporting mesoderm cell polarity, as well as the importance of
the directional activation of the FGF receptor in this context,
because HtlCA is not able to rescue the polarity phenotype
exhibited by htlM+Z− mutants whereas the wild-type Htl gene can
(Fig. 5C,K compared with G,O; Q,R).
We also found that at the end of spreading, E-Cad and N-Cad are

both expressed in the mesodermmonolayer, but in a complementary
manner: E-Cad is at the basal side, whereas N-Cad is in the
apicolateral domain. This complementary expression pattern of
cadherins has been observed in other tissues and cell types, such as
the dental epithelial cells of fish and mammals (Heymann et al.,
2002; Verstraeten et al., 2013) and the ommatidia of theDrosophila
retina (Chan et al., 2017; Mirkovic and Mlodzik, 2006). In the
ommatidia, Wnt and EGF signaling pathways are integrated through
E-Cad and N-Cad, which have opposing effects on their rotation
through interactions with the cytoskeleton components. The precise
cell arrangement and the coordinated cell movement require
the cadherins to be expressed in the correct domain at correct
level. The fact that mesoderm cells also place E-Cad and N-Cad in
complementary cellular domains suggests that AJs at the apical and
basal side of the mesoderm are of distinct organization and may
carry out different functions, possibly interacting with different
signaling pathways, such as Wnt, Dpp and FGF.
The epithelial state of the mesoderm monolayer, achieved at the

end of gastrulation, has been previously underappreciated, but our
analysis suggests the monolayer is important in integrating different
signaling pathways and ensuring the uniform distribution of
different precursor lineages derived from mesoderm. At this stage,
the combination and level of Dpp, Wnt and FGF signaling received
by mesoderm cells will determine what type of muscle the cells will
differentiate into. Therefore, forming a monolayer facilitates
effective induction of consistent number of precursors from each
hemisegment. In addition, the polarized expression of adhesion
molecules such as Mys, E-Cad and N-Cad also serve as signal
integrators (Moser et al., 2009; Wheelock and Johnson, 2003),
making the signal transduction more efficient and regulated.
Alternatively, FGF signaling is generally linked to the regulation

of EMT, but this role often involves regulation of Snail expression
levels (Ciruna and Rossant, 2001). We found no clear evidence that
Snail expression requires FGF, but did uncover that FGF signaling
regulates cell division as well as supports another undefined activity
that promotes EMT: htlM+Z−,stg double mutant phenotypes are
more severe than stg mutant alone. Like Htl, mutants for the Rho
GTP exchange factor Pebble also impact mesoderm cell division
and spreading; however, it is thought that Pebble and FGF work in
parallel pathways (Gregory et al., 2010). We show that htlM−Z−

mutants exhibit decreased proliferation, whereas upon ths ligand

ectopic expression proliferation is increased (Figs 7M and 8E,F).
However, htlM+Z− ,stg double mutants exhibit stabilized AJs that
appear to delay the tube collapse, retaining apical-inside
organization at later stage 9/10. In addition, previous studies have
shown that cell-cell junctions are mechanosensitive (Weng and
Wieschaus, 2016), and therefore future studies should involve
deciphering the interplay between FGF signaling, cell division and
membrane tension.

We propose that regulation of cell division by FGF may be a
conserved mechanism of action in which a slow, prolonged EMT is
directed by this pathway in order to support collective cell
migration. A gradual decrease in AJs as accomplished by cell
division that is controlled by both Stg/Cdc25 and the FGF-Ras
pathway may allow the mesoderm cells to maintain just enough cell-
cell contacts to ensure that movement as a group is collective
(reviewed by Campbell and Casanova, 2016). How migrating cells
manage decisions to divide, changes in cell shape (including
protrusive activity), acquire cell polarity and initiate differentiation
programs remains to be determined, but more-recent studies have
shown that sometimes these processes are interdependent (Matus
et al., 2015) and this is also likely the case at gastrulation.

MATERIALS AND METHODS
Fly stocks and genetic crosses
All the fly stocks and crosses were maintained at 25°C. htl-mCherry was
generated through an in-frame insertion of the mCherry reporter into a htl
construct that is able to rescue the mutant phenotype (Irizarry and
Stathopoulos, 2015). htlAB42/TM3,ftz-lacZ (#5370), His2AV-GFP
(#5961), twi-GAL4 (#914; Carmena et al., 1998; Greig and Akam, 1993;
and #58804; Lee et al., 2003; Marqués et al., 2002), string7M53 (#2500;
Jürgens et al., 1984), shgGFP (#60584) UAS-baz-GFP (#29037; Benton and
St Johnston, 2003), UASp-baz-mCherry (#65844; Harris and Peifer, 2005),
UASp-baz-GFP (#65845; McKinley et al., 2012) and UAS-mys RNAi
(#33642; Zhai et al., 2012) were obtained from the Bloomington stock
center. UAS-baz RNAi (GD2914; McDonald et al., 2008) and UAS-
PI3K59F RNAi (KK100962; Ribeiro et al., 2011) were from the VDRC
stock center. UAS-ths [AMS289-22] (Stathopoulos et al., 2004), UAS-pyr
[AMS330-3] (Kadam et al., 2009) and UAS-htlCA (Michelson et al., 1998)
have been described previously. FRT101,mysXG43/FM7c,ftz-lacZ and
UAS-mys,UAs-srcEGFP/CyO,ftz-lacZ were gifts from Dr Hilary L. Ashe
(University of Manchester, UK) (Sawala et al., 2015; Schöck and Perrimon,
2003; Wieschaus et al., 1984). htlAB42 (Irizarry and Stathopoulos, 2015),
rasC40B (Prober and Edgar, 2000) and mysXG43 (Boube et al., 2001;
Leptin et al., 1989) germline clones were made using standard FRT-
mediated germline clone methodology (Chou and Perrimon, 1996). htl, stg
double mutants were made through homologous recombination of htlAB42
and string7M53. The twi-GAL4 driver on the first chromosome (#914)
exhibits stronger expression in the embryonic mesoderm and is referred to as
twih-GAL4; the one inserted on the third chromosome (#58804) is referred to
as twil-GAL4. The genotype ‘control’ in this study refers to htlAB42/TM3
heterozygote, unless mentioned otherwise.

In situ hybridization, immunohistochemistry, plastic sectioning
and immunofluorescence
To examine the transcription level of bap and mys, antisense RNA probes
were labeled with digoxigenin and recognized by anti-DIG antibody
conjugated to alkaline phosphatase (1:200, Roche Applied Science). NBT
and BCIP were used as substrates for signal detection. Primary antibodies
used in this study were: rabbit anti-β-Gal (1:1000, Invitrogen, A-11132),
goat anti-GFP (1:5000, Rockland, 600-103-215), rabbit anti-GFP (1:400,
Abcam, ab6556), rabbit anti-RFP (1:400, BML PM005), mouse anti-
Armadillo (1:40, DSHB, N2 7A1 Armadillo), rat anti-α-Catenin (1:40,
DSHB, DCAT-1), rat anti-DE-cadherin (1:40, DSHB, DCAD2), rat anti-
Twist (1:200, made in house; Trisnadi and Stathopoulos, 2014), mouse anti-
Neurotactin (1:40, DSHB BP 106 anti-Neurotactin), mouse anti-even
skipped (1:50, DSHB 2B8), rabbit anti-Htl (1:200, a gift from Dr Alan
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Michelson, Harvard Medical School, USA; Michelson et al., 1998), rabbit
anti-Baz (1:500, a gift from Dr Jennifer Zallen, Sloan Kettering Institute,
USA; Blankenship et al., 2006), mouse anti-βPS (1:40, DSHB, CF.6G11),
rat anti-DN-Cadherin (1:200, DSHB, DN-Ex #8), goat anti-aPKC (1:200,
Santa Cruz Biotechnology, C-20), guinea pig anti-Sna (1:1000, a gift from
Dr Eric Wieschaus, Princeton University, USA; Weng and Wieschaus,
2016) and rabbit anti-PH3 (1:400, Millipore, 06-570). For chromogenic
staining, VECTASTAIN Elite ABC system was used in combination
with DAB substrate for signal development (Vector Lab). For
immunofluorescence, Alexa Fluor 488, 555 and 647 secondary antibodies
were used (Molecular Probes). DAPI (Molecular Probes) was used for
counterstaining. Embryos stained with anti-RFP, rabbit anti-GFP, anti-Arm,
anti-α-Catenin, anti-Neurotactin, anti-Baz, anti-Sna or rabbit anti-Htl
antibodies were fixed using a heat-methanol method. Standard
formaldehyde fixation and staining were used for other antibodies. To
quantify Baz immunofluorescent staining, embryos were cleared in 70%
glycerol overnight and manually cross-sectioned with a razor blade to
remove the anterior and posterior regions along the AP axis. The middle
regions were then mounted in 70% glycerol and imaged with LSM 800.
Quantification was carried out with the 16-color color lookup table function
of ImageJ. Embryos were mounted in Permount (Fisher Scientific) for
whole-mount studies or embedded in acetone-araldite (ElectronMicroscopy
Sciences) for cross-sectioning. Plastic sections (8 μm) were obtained using a
microtome (LKB Bromna 2218 Historange) and mounted in 1:1 acetone:
araldite solution. Fluorescent images were obtained with a LSM 800
confocal microscope (Carl Zeiss).

AJ counting and statistics
To compare the adhesion property of the mesoderm cells among the wild
type and mutants, we used an anti-α-Catenin and an anti-Armadillo (i.e.
β-Catenin) antibody simultaneously to label the AJs, and an anti-Htl
antibody to determine the genotype of the embryos. Embryos from stage 7 to
10 were collected from control (htlM+Z−/TM3), htlM+Z−, htlM−Z+, htlM−Z−,
twih>ths, twih>htlCA, twih>mys RNAi and twih>baz RNAi mutants, and
fixed by heat. Standard immunofluorescence staining procedure was
followed and all the stained embryos were manually picked, positioned on
the slides that were pre-coated with heptane glue and mounted in 70%
glycerol. Confocal scans of 68-100 µm along the z-axis were taken with
Zeiss LSM 800. For each embryo, 8-10 z-projections through the middle
one-third along the body axis from its 3D reconstructed image were
collected and used to count the AJs. To count the number of AJs in the
mesoderm on one z-projection, we used Photoshop (Adobe) to mark the
boundary between mesoderm and ectoderm, increase the contrast and lower
the exposure offset to make the white colocalization signals between α-
Catenin (violet) and Armadillo (green) more visible. The microscope
settings were kept the same as much as possible, except that more laser
power were used in mutant embryos with a taller furrow. All the images were
processed the same way. A mean of AJs numbers in the mesoderm was first
calculated from all the cross-sections for each embryo. Then, an average (as
the mean of the group) and a standard deviation (s.d.) were calculated for the
embryos that were pooled together based on their genotypes and
developmental stages. Stage 9 and 10 embryos were combined. Error bars
represent s.d. Shapiro-Wilk Normality test was used to test for normal
distribution of the means within the group. In the cases with fewer than five
individuals (n<5) in the group, we performed the test on the AJs number
counted from all the images acquired for the embryos in the group. Our data
exhibited normal distribution. Student’s t-test was used for significance
analysis. P<0.05 was considered statistically significant. Number of
embryos for each genetic background at stages 7, 8 and 9-10 are as
follows, respectively: control, 5, 5 and 3; htlM+Z−, 3, 7 and 6; htlM−Z−, 6, 4
and 4; htlM−Z+, 4, 3 and 3; twih>ths, 1, 4 and 3; twih>htlCA, 2, 3 and 3;
twih>mys RNAi, 3, 3 and 4; twih>baz RNAi, 4, 6 and 5.

Quantification on immunohistochemistry and
immunofluorescence images
To analyze chromogenic antibody staining of Baz, Mys, aPKC and E-Cad,
each genetic background (normally 50-120 embryos at stages 6-10) were
embedded for plastic sectioning. Poorly stained embryos, undeveloped

embryos or embryos with morphological defects that are clearly not due to
the genetic manipulations were excluded from our analysis. Sections mounted
unevenly that were difficult to focus on during imaging were excluded. Bright-
field images were photographed with a Zeiss Axio Imager under similar
settings. Aminimum of five embryos or six sections at each stagewere imaged
so that normality could be tested. In cases where fewer than five embryos were
recovered, wewere very confident in the consistency of the phenotype. Images
were converted to gray scale, reversed and measured in ImageJ. To calculate
the relative enrichment, boxes (ROI) of the same size were placed in the
mesoderm and the ectoderm, mean gray value in the mesoderm ROI was
divided by the mean gray value in the ectoderm ROI, and the quotient was
recorded as one data point. First, an average enrichmentwas calculated for each
embryo. Then the averages and the standard deviations (s.d.) were calculated
within the same genetic background. Error bars represent s.d. The Shapiro-
Wilk Normality test was used to test for normality. Student’s t-test was used for
significance analysis. Fluorescent anti-Nrt images were analyzed by
comparing the percentage of polarized mesoderm cells in the control and
mutant embryos. Colocalization of α- and β-Catenin in stg and htlM+Z−,stg
embryos was also quantified by measuring the mean gray value in the ROI.
Similarly, the quotients were compared between the two lines.

Two-photon imaging, cell tracking and analysis
Two twih>ths, twih>baz RNAi and yw embryos were imaged as previously
described using a Zeiss LSM 710 inverted microscope at 940 nm wavelength
(McMahon et al., 2008; Supatto et al., 2009). Nuclear tracking was performed
using Imaris (Bitplane). Imaris data were then exported to Matlab (The
Mathworks) for analysis using custom scripts (Supatto et al., 2009). Briefly,
distributions of the ectoderm cells were fitted into a cylinder in order to
register the 3D positional tracking data in cylindrical coordinates (r, θ and L),
which allows the analysis of cell movement along the corresponding body
axis of the embryo (Fig. 7A,B). Two different color codes were applied to
show the organization of themesoderm cells (Fig. 7C,D). In a spreading plot θ
(t) (Fig. 7F-H), color code marks the angular position of cells in the furrow at
stage 7, in order to better depict their spatial displacement over time. t=0 ( j0)
represents the onset of germ band elongation. Start ( jstart) is the time when
the furrow forms the best cylindrical shape, and end ( jend) is defined as
120 min after start. For cell division analysis, cells are color coded for their
radial position in the furrow to show the difference in division time according
to the distance from the ectoderm (Fig. 7I-N). The spreading profile or the θend
(θstart) plot shows howwell themesoderm spreads as a collective, in which the
angular position of each cell at the beginning and the end of the spreading
process is fitted into a regression line: θend=A.θstart+B. The slope A
characterizes the general spreading behavior and should be close to 2 in the
wild-type embryos. The coefficient R should be close to 1 when the cells are
migrating as a collective.
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