Contents

SLACK, J. M. W. Introduction (i)

1. Structure and properties of the oocyte and egg

WYLIE, C. C., BROWN, D., GODSAVE, S. F., QUARMBY, J. and HEASMAN, J. The cytoskeleton of *Xenopus* oocytes and its role in development 1–15

HAUSEN, P., WANG, Y. H., DREYER, C. and STICK, R. Distribution of nuclear proteins during maturation of the *Xenopus* oocyte 17–34

TAYLOR, M. A., ROBINSON, K. R. and SMITH, L. D. Intracellular pH and ribosomal protein S6 phosphorylation: role in translational control in *Xenopus* oocytes 35–52

MALACINSKI, G. M. and BARONE, D. Towards understanding paternal extragenic contributions to early amphibian pattern specification: the axolotl *ts-I* gene as a model system 53–68

2. The relationship between egg cytoarchitecture and later pattern formation

COOKE, J. The system specifying body position in the early development of *Xenopus*, and its response to early perturbations 69–87

GIMLICH, R. L. Cytoplasmic localization and chordamesoderm induction in the frog embryo 89–111

3. Analysis of developmental commitment using region and stage specific markers

GURDON, J. B., MOHUN, T. J., BRENNAN, S. *and* CASCIO, S. Actin genes in *Xenopus* and their developmental control 125–136

SLACK, J. M. W., CLEINE, J. H. *and* SMITH, J. C. Regional specificity of glycoconjugates in *Xenopus* and axolotl embryos 137–153

JONES, E. A. Epidermal development in *Xenopus laevis*: the definition of a monoclonal antibody to an epidermal marker 155–166

DUPRAT, A. M., KAN, P., GUALANDRIS, L., FOULQUIER, F., MARTY, J. *and* WEBER, M. Neural induction: embryonic determination elicits full expression of specific neuronal traits 167–183

4. Morphogenetic movements of gastrulation and neurulation

KELLER, R. E., DANILCHIK, M., GIMLICH, R. *and* SHIH, J. The function and mechanism of convergent extension during gastrulation of *Xenopus laevis* 185–209

BOUCAUT, J. C., DARRIBERE, T., LI, S. D., BOULEKBACHE, H., YAMADA, K. M. *and* THIERY, J. F. Evidence for the role of fibronectin in amphibian gastrulation 211–227

GORDON, R. A review of the theories of vertebrate neurulation and their relationship to the mechanics of neural tube birth defects 229–255

5. The cell cycle and the temporal control of development

SATOH, N. Recent advances in our understanding of the temporal control of early embryonic development in amphibians 257–270

FORD, C. C. Maturation promoting factor and cell cycle regulation 271–284

LASKEY, R. A. Chromosome replication in early development of *Xenopus laevis* 285–296
Contents

6. Developmental commitment at the single cell level

7. Embryonic induction: phenomena and mechanisms
 SMITH, J. C., DALE, L. and SLACK, J. M. W. Cell lineage labels and region-specific markers in the analysis of inductive interactions 317–331
 NIEUWKOOP, P. D. Inductive interactions in early amphibian development and their general nature 333–347
 GRUNZ, H. Information transfer during embryonic induction in amphibians 349–363
 WARNER, A. E. The role of gap junctions in amphibian development 365–380

8. Index of authors and titles 381–382
9. Subject index 383–388