Tsix defective in splicing is competent to establish **Xist** silencing

Takashi Sado1,2,3,*, Yuko Hoki1,3 and Hiroyuki Sasaki1,2

Dosage differences of X-linked genes between male and female mammals are compensated for by a mechanism known as X-inactivation, and the noncoding **Xist** gene plays a crucial role in this process. The expression of **Xist** is regulated in cis by its noncoding antisense gene, **Tsix**, whose transcripts (though a fraction of them stay unspliced), are processed like common protein-coding RNAs. It has been suggested that certain classes of sense–antisense pairs of RNA are causally involved in not only gene regulation but also higher order chromatin structure in various organisms. In fact, recent studies demonstrated that **Tsix** modulates **Xist** expression through modification of the chromatin structure. It is still unknown, however, whether the RNA product is important for the function of **Tsix** or whether the antisense transcription is sufficient. To obtain insight into this issue, we eliminated the splicing products of **Tsix** in the mouse and explored the effects of this elimination on **Tsix**-mediated **Xist** silencing. To our surprise, the **Xist** locus was stably repressed on the X carrying the splicing-defective **Tsix** allele. Moreover, the repressive chromatin configuration was properly established at the **Xist** locus. These unexpected results indicate that the splicing products are dispensable for **Tsix**-mediated **Xist** silencing.

KEY WORDS: X-inactivation, Antisense regulation, **Xist**, **Tsix**

INTRODUCTION

Recent progress in transcriptome analysis has revealed that a large proportion of the genome can be transcribed from both strands, producing sense and antisense transcripts (Carninci et al., 2005; Kiyosawa et al., 2003; Yelin et al., 2003). The available evidence suggests that certain classes of RNA are causally involved in not only gene regulation but also higher order chromatin structure in various organisms (Bernstein and Allis, 2005). In addition, antisense transcription has often been implicated in either transcriptional or post-transcriptional regulation of the sense partner or the neighboring genes, although the exact molecular mechanisms have yet to be determined (Katayama et al., 2005).

It is known that X-inactivation in mammals, which ensures dosage equivalence of X-linked genes between males and females (Lyon, 1961), is regulated by the noncoding **Xist** (X-inactive specific transcript) gene (Brockdorff et al., 1992; Brown et al., 1992) and its antisense non-coding **Tsix** gene (Lee et al., 1999) mapped in the X chromosome inactivation center (Xic), a cytogenetically identified master regulatory region of X-inactivation (Avner and Heard, 2001). **Xist** is essential for the initiation of X-inactivation to occur in cis (Marahrens et al., 1997; Penny et al., 1996), and its expression is regulated by **Tsix** on the same chromosome in a negative fashion (Lee, 2000; Lee and Lu, 1999; Sado et al., 2001). The **Xist/Tsix** locus is probably one of the best-studied loci harboring a sense–antisense pair of transcripts, and study of this locus should allow us to obtain further insight into the molecular mechanisms underlying antisense-mediated gene regulation, which appears to be rather common in a variety of systems.

The paternal X chromosome is selectively inactivated by imprinting in the extra-embryonic tissues, which give rise to the placenta and part of the extra-embryonic membranes (Takagi and Sasaki, 1975), where the paternal copy of **Xist** is always activated and the maternal one is never expressed (Kay et al., 1993). Targeted disruption of **Tsix**, when maternally inherited, induces ectopic activation of the normally silent copy of **Xist** on the same X chromosome in these tissues (Lee, 2000; Sado et al., 2001). Subsequent inactivation of the mutated maternal X results in functional nullisomy of the X chromosome in both males and females, and eventual embryonic death at early postimplantation stages. Although the targeted disruption of **Tsix** revealed that **Tsix** is a negative regulator of **Xist** effective in cis, until recently little was known about the molecular mechanisms underlying the antisense regulation at the **Xist** locus. We recently showed that in the absence of **Tsix**, the **Xist** locus fails to establish the repressive chromatin configuration, and instead manifests the active modification in embryos, suggesting that **Tsix** mediates **Xist**-silencing through modification of the chromatin structure (Sado et al., 2005). Others also demonstrated **Tsix**-mediated chromatin effects using undifferentiated and differentiating embryonic stem (ES) cells as an in vitro model system (Navarro et al., 2005; Sun et al., 2006).

Tsix transcripts are subject to splicing and polyadenylation, like common protein-coding RNAs (Sado et al., 2001; Shibata and Lee, 2003). The major products of spliced **Tsix** RNA in undifferentiated ES cells, which are about 2.7 kb and 4.3 kb in length on northern blots, appear to be produced by differential usage of several polyA signals found in exon 4 of **Tsix** (Sado et al., 2001). RT-PCR-based methods also revealed the presence of some variants produced by alternative splicing (Sado et al., 2001; Shibata and Lee, 2003). In addition, **Tsix** RNA exists in spliced and unspliced forms, although the functional relevance of splicing remains unknown. Because a significant fraction of the RNA is processed, and the splicing variants identified so far all share exon 4, which is the only exon possessing complementarity with the **Xist** sequence, it had been postulated that the splicing products (especially the sequence in exon
4) play an important role in the function of *Tsix* by masking the A-repeats in *Xist*, a region known to be required for *Xist*-mediated silencing (Wutz et al., 2002), through base pairing (Shibata and Lee, 2003).

To obtain further insight into this issue, we studied the functional significance of spliced *Tsix* RNA produced by antiparallel transcription through the endogenous *Xist* locus. Here we eliminated the splicing products of *Tsix* in embryos by disturbing the splicing between proximal exons and exon 4. Loss of spliced *Tsix* RNA, however, compromised neither the *Tsix*-mediated *Xist* silencing nor the establishment of the proper chromatin configuration in the *Xist* promoter region. Our findings suggest that chromatin modulation at the *Xist* locus is not mediated by spliced *Tsix* RNA but rather nascent/unspliced *Tsix* RNA or the antisense transcription per se.

MATERIALS AND METHODS

Gene targeting

A plasmid containing a 4.4-kb *EcoRI* fragment and a 6.5-kb *XbaI* fragment from the *Xist* genomic locus (Sado et al., 2005) was digested with *PmaCI* and *SmaI* to release a fragment harboring the splicing acceptor site of 3′ *Tsix* exon 4, which was then replaced with a fragment containing an IRES-EGFP and a puromycin resistance gene similarly to how a targeting vector for the *Xist* 4′ allele was produced (Sado et al., 2005). The targeting vector thus produced was electroporated into R1 ES cells (Nagy et al., 1993), and chimeras were produced as described previously (Sado et al., 2005). Briefly, out of 96 colonies, three harbored the expected homologous recombination (*Tsix*ΔSAlox), and they were serially injected into blastocysts to generate chimeras. In this particular case, two female chimeras crossed with C57Bl/6 males happened to transmit the *Tsix*ΔSA allele to both male and female pups. Those females carrying *Tsix*ΔSAlox were crossed with males that ubiquitously expressed cre recombinase to derive animals carrying *Tsix*ΔSA.

RT-PCR and northern blotting

RT-PCR was carried out on cDNA prepared from 1 μg of total RNA using either random primer or strand-specific primers. For strand-specific RT-PCR, cDNA was synthesized using R1910U as a primer for *Tsix* and *Xist*7(−)20 as a primer for *Xist*. Subsequent amplification of a common sequence in *Tsix*/*Xist* was performed using primers R700P2 and *Xist*6(−)20. A Gapd-specific primer, GapdR, was also included in the cDNA reaction to amplify a Gapd sequence using GapdF and GapdR2 for normalization in real-time PCR analysis. Real-time PCR was performed on cDNA thus produced using SYBR Premix Ex Taq (Takara) and a LightCycler (Roche) according to the manufacturers’ instructions. The expression levels of each sequence were the value normalized by Gapd based on a mean value of the respective sequence obtained from two or three independent experiments. Primer sequences used in this study were as described previously (Sado et al., 2005; Sado et al., 2001) except for the following: 8111F, ccg cca cct ggt tgt ttt t; 8420R, cca cat gaa gag cat cac; EGF1P1, ctt caa cga cgg cgg ca; EGF2P2, tgg tgc aag tct tgc cc; Tsix2F, cca tca cag aag tca tgc tga; Tsix2R, aat gga tgg agg act cac gat.

RNA extracted from ES cells harboring the respective mutation was subjected to northern hybridization as described previously (Sado et al., 2001). An RNA probe was prepared from p10 and p10R for detection of *Tsix* and *Xist*, respectively (Sado et al., 2001). For Gapd, a cDNA fragment was used as a probe.

Methylation analysis and DNASel hypersensitive site assay

For methylation analysis of the *Xist* promoter region, Southern hybridization was performed in exactly the same manner as described previously (Sado et al., 2005).

The DNASel hypersensitive site assay was carried out as previously described (Sado et al., 2005), with the exception of a 0.4 kb *AflIII* genomic fragment (Af0.4) being used as a probe.

RESULTS

Generation of a new *Tsix* mutant allele defective in splicing

In a previous study, we created a new *Xist* mutant allele, *Xist*Δlox, by replacing a part of exon 1 with a promoter-less IRES-EGFP cassette (Sado et al., 2005). This allele was created so as not to delete the splicing acceptor site for exon 4 of the overlapping antisense *Tsix* transcript (Fig. 1C). Although the *Xist* gene was disrupted by the replacement, primary *Tsix* transcripts were still appropriately processed to yield the major 2.7-kb and 4.3-kb RNAs with a polyA tail (Fig. 2D). We demonstrated that the function of *Tsix* was not impaired by this alteration, and the repressive chromatin configuration was properly established at the *Xist* promoter on the active mutated X chromosome (Sado et al., 2005). To elucidate the functional significance of spliced *Tsix* RNA in the proposed *Tsix*-mediated chromatin regulation at the *Xist* promoter, we attempted to disturb the splicing event by deleting the splicing acceptor site for exon 4 of *Tsix*. Accordingly, another targeting vector, which was very similar to the one used to derive the *Xist*Δlox allele, was created (Fig. 1A). The difference between these vectors was that the 5′ arm either did or did not contain a 0.6-kb *PmaCI*- *EcoRI* fragment harboring the splicing acceptor site. Upon a correct targeting event, the splicing acceptor site was successfully deleted on the single X chromosome in male ES cells by replacement with the IRES-EGFP cassette (*Tsix*ΔSAlox) (Fig. 1B,C). A puromycin resistance gene was subsequently removed by transient expression of cre recombinase in ES cells to generate the *Tsix*ΔSA allele (data not shown).

Splicing variants are not produced from the *Tsix*ΔSA allele in ES cells

We examined whether or not spliced *Tsix* RNA was eliminated in *Tsix*ΔSA/Y ES cells by performing RT-PCR using cDNA prepared by random priming. Unlike in XY and *Xist*Δlox/Y ES cells, a primer set spanning the introns (Xist1 175F and 21880F) failed to amplify the product derived from spliced *Tsix* RNA in *Tsix*ΔSA/Y as well as in XΔc^k^ Y ES cells, which carry the *Xist*Δlox allele on a *Tsix*-deficient X chromosome (Sado et al., 2005) (Fig. 2A,B). The presence of antisense transcripts was, however, evident in XY, *Xist*Δlox/Y, and *Tsix*ΔSA/Y ES cells when another primer set (8111F and 8420R) located in exon 4 was used, suggesting that the antisense transcription itself was not disrupted. The relative abundance of the antisense transcripts in each ES cell line was further analyzed by real-time PCR using two primer sets designed to hybridize within either exon 2 (Tsix2F and Tsix2R) or exon 4 (8111F and 8420R) (Fig. 2C). In XΔc^k^ Y, antisense expression was detected in exon 2 at a level comparable to that in XY but was barely detected in exon 4, which is consistent with the fact that *Tsix* is truncated on XΔc (Sado et al., 2005). On the other hand, the level of antisense transcripts in *Xist*Δlox/Y and *Tsix*ΔSA/Y turned out to be about twice as high as that in wild-type XY ES cells in both regions. It is unclear whether the transcription is upregulated or the stability of the antisense transcripts is increased by the alteration introduced on the mutated X in *Xist*Δlox/Y and *Tsix*ΔSA/Y. The absence of the spliced forms in *Tsix*ΔSA/Y ES cells was further confirmed by northern blotting using polyA RNA (Fig. 2D). Although an RNA probe specific to *Tsix* detected 2.7-kb and 4.3-kb bands in XY and *Xist*Δlox/Y ES cells, neither of these bands was detected in *Tsix*ΔSA/Y or XΔc^k^ Y ES cells. The hybridization signal observed in the high molecular weight region in XY, *Xist*Δlox/Y, and *Tsix*ΔSA/Y, which was missing in XΔc^k^ Y, probably represented unspliced *Tsix* RNA and/or perhaps an incompletely processed
one that contains the third intron. These results confirmed that the TsixΔSA allele was defective in splicing between proximal exons and exon 4 as expected, with the antisense expression activity being essentially unaffected.

We observed unexpected activation of the \textit{Xist} locus on the mutated X in undifferentiated ES cells. As shown in Fig. 2D, an RNA probe specific to \textit{Xist} detected the chimeric transcripts of 4.5 kb in \textit{XdcY} and \textit{Xistlox/Y} and those of 4.0 kb in \textit{TsixΔSA/Y}. Despite the activation of the \textit{Xist} locus, neither of the DNaseI hypersensitive sites specifically found in the 5' region of the transcriptionally active \textit{Xist} allele in somatic cells (see Fig. 6) was observed on the mutated X in undifferentiated ES cells (Fig. 2E). While the ectopic activation of the \textit{Xist} locus in \textit{Xdc}Y was sustained even after differentiation, expression of the chimeric transcripts in \textit{Xistlox/Y} and \textit{TsixΔSA/Y} became downregulated upon differentiation as embryoid bodies for 12 days (Fig. 2F), suggesting that developmental regulation of the \textit{Xist} gene was compromised on the \textit{Xdc} chromosome, as previously described (Sado et al., 2005) but not on the mutated X in \textit{Xistlox/Y} and \textit{TsixΔSA/Y}. It is likely that the repressive action of \textit{Tsix} occurs after differentiation.
Fig. 2. Splicing products of Tsix are eliminated in ES cells. (A) The structure of the respective mutant allele is delineated with respect to the position of Tsix exons shown in gray. A proximal part of Tsix exon 4 shown in light gray indicates the region missing in the Tsix\(^{SA}\) allele. Tsix on X\(^{dc}\) chromosome is truncated by the insertion of IRESgeo (Sado et al., 2005). Positions of primers used for PCR and real-time PCR are also shown below the exons of Tsix. (R) and (Pm) are the EcoRI and PmaCI sites destroyed in the cloning process. (B) The absence of the splicing products of Tsix was confirmed by RT-PCR using cDNA prepared by random priming. The spliced form was detected using primer pair Xist1175F and 21b80F. The presence of the antisense transcription was monitored using primer pairs Tsix2F/Tsix2R and 8111F/8420R located in exon 2 and 4, respectively. (C) Antisense activity of Tsix was analyzed in each undifferentiated ES cell line by real-time PCR using primer sets Tsix2F/Tsix2R (exon 2) and 8111F/8420R (exon 4). (D) Northern blot analysis of polyA RNA isolated from ES cells carrying the respective mutation. Hybridization was serially performed using an RNA probe specific to Tsix (left) and Xist (middle), respectively, and a cDNA fragment of Gapd (right). The absence of the major splicing products is evident in Tsix\(^{SA}\) ES cells. (E) DNasel hypersensitive site assay using nuclei isolated from each ES cell line. Purified DNA was digested with HindIII and probed with A0.4 (see Fig. 6). Neither of the known DNasel hypersensitive sites (HS1 and HS5) found on the transcriptionally active Xist allele in somatic cells was observed in ES cells regardless of whether they harbor the mutation or not. A DNasel hypersensitive site HS3 shown by an asterisk, which is known to be common to both the active and inactive X in somatic cells, was more prominent in X\(^{dc}\)Y than others. (F) Real-time PCR analysis of the transcripts from the Tsix/Xist locus in undifferentiated ES cells and 12-day embryoid bodies using primers R700P2 and Xist6(–)20 on strand-specifically prepared cDNA.
Splicing variants of Tsix are eliminated in the mouse

Females heterozygous for TsixΔSA2lox were produced through germline transmission from chimeric mice and subsequently crossed with males expressing cre recombinase to derive animals carrying TsixΔSA by excision of the puromycin resistance gene (see Materials and methods) (Fig. 1D). Since the Xist gene on the mutated X was consequently destroyed, males failed to transmit the TsixΔSA allele to female offspring when crossed with wild-type females, as previously described (Marahrens et al., 1997; Sado et al., 2005). The mutant allele was, however, transmitted to both male and female mutants (Marahrens et al., 1997; Sado et al., 2005). The carrying maternal Tsix1lox allele was evident in both wild-type males and females and those carrying maternal Tsix1lox with primers spanning exon 2 and exon 4 (Xist1175F and 21b80F), such products were not observed in TsixΔSA/Y females or TsixΔSA/Y males (Fig. 3). In contrast, the expected fragment was amplified in all cases with a primer pair (8111F and 8420R) located in exon 4. These results suggest that TsixΔS impaired the splicing event but not the antisense transcription per se during embryonic development.

Xist is properly repressed in the absence of spliced Tsix RNA

In previous studies, loss of function mutation of Tsix caused activation of Xist in cis (Lee, 2000; Sado et al., 2001), which was attributed to the failure to establish the repressive chromatin configuration at the Xist promoter (Sado et al., 2005; Sun et al., 2006). We first examined if the elimination of spliced Tsix RNA abrogated the proper regulation of Xist on the mutated X chromosome carrying the TsixΔSA allele. In female embryos heterozygous for the respective mutation, as shown in Fig. 4, the mutated X stays active in every cell because of Xist-deficiency on it. In our assay system, therefore, the expression of chimeric RNA from the mutated active X would demonstrate defects in the mechanism of silencing of Xist. As previously shown, XΔX female embryos expressed chimeric RNA due to functional deficiency of Tsix (Fig. 4). Such ectopic activation of the Xist promoter on the mutated X was not, however, observed in either TsixΔSA/Y or TsixΔSA/+ embryos (Fig. 4), suggesting that the Xist promoter was appropriately repressed on the mutated X chromosome carrying TsixΔSA. Similarly, the expression of chimeric RNA was detected in XδW/Y but not in TsixΔSA/Y. These results demonstrated that the Xist locus was properly silenced even in the absence of spliced Tsix on the mutated X.

Appropriate chromatin configuration was established at the Xist promoter on the X carrying TsixΔSA

It is known that the Xist promoter is differentially methylated in female somatic cells, with the active allele on the inactive X being unmethylated and the inactive allele on the active X being methylated (Norris et al., 1994). Our previous study demonstrated that functional loss of Tsix impairs establishment of complete methylation at CpG sites in the Xist promoter in cis. To examine whether CpG methylation was affected by loss of the Tsix splicing products, we carried out Southern blot analysis. Genomic DNA isolated from both male and female embryos carrying TsixΔSA at E13.5 was digested with digestion-sensitive HhaI or SacII in combination with methylation-insensitive BclI. As shown in Fig. 5, the Xist promoter was completely methylated on the mutated active X carrying TsixΔSA at a level comparable to that on the active X carrying TsixΔS as well as the wild-type allele in the embryonic and extra-embryonic tissues in both sexes. This result suggests that CpG methylation is established even in the absence of spliced Tsix RNA.

We went on to study the chromatin structure at the Xist locus by DNaseI hypersensitive site assays. Several DNaseI hypersensitive sites have been found in the Xist promoter region (Sado et al., 2005; Sheardown et al., 1997). It is known that HS1 and HS5 are specific to the inactive X, and HS3 is common to both the active and inactive X. In a previous study, we showed that functional deficiency of Tsix results in the failure to establish the closed chromatin structure in the Xist promoter region. As shown in Fig. 6, neither of the ectopic DNaseI hypersensitive sites seen on the XΔc was detected on the X carrying TsixΔSA in either male or female embryos at E13.5. This result indicates that the closed chromatin structure is established at the Xist promoter even in the absence of spliced Tsix RNA.

Fig. 3. Spliced Tsix RNA is eliminated in the placenta. The absence of the splicing products of Tsix was confirmed in the E13.5 placenta carrying TsixΔSA in the same manner as in ES cells shown in Fig. 2A and B. It is evident that the splicing products are not detected in the placenta of TsixΔSA/+ and TsixΔSA/Y embryos despite the presence of the antisense transcription.

Fig. 4. Xist is stably repressed in the absence of spliced Tsix RNA. Transcriptional activity of the Xist locus was analyzed by RT-PCR using RNA isolated from E13.5 male and female embryos carrying the respective mutation. Diagrams show the structure of each mutant allele and positions of primers used for PCR. Transcription of the Xist locus on the mutated X was examined using a primer set specific for EGFP.
DISCUSSION

This study was carried out to further elucidate the molecular aspects of the Tsix-mediated Xist silencing described in our previous report (Sado et al., 2005). Tsix transcripts are peculiar in that although a fraction of them remain unspliced, various patterns of splicing all remove most of the region complementary to Xist RNA from the 40-kb primary transcript, except for a 1.9-kb region present in the proximal end of Xist, to yield the major processed products of length 2.7 kb and 4.3 kb (Sado et al., 2001; Shibata and Lee, 2003). In addition, the distal part of the processed Tsix RNA thus produced covers the region up to 1.8-kb upstream of the Xist transcription start site, where no transcription has been detected in the sense orientation. These features of the antisense transcripts at the Xist locus imply that the 1.9-kb region common to Tsix RNA and Xist RNA is relevant to the effect of Tsix on the antisense transcription. It has been shown that the function of Tsix is impaired by truncation of Tsix in the downstream region of Xist without deleting any genomic elements (Luikenhuis et al., 2001; Shibata and Lee, 2004). In addition, Shibata and Lee failed to rescue the loss-of-function phenotype of Tsix caused by the truncation even though a Tsix minigene was introduced immediately downstream of Xist so as to be transcribed in the same orientation as Xist under the control of an exogenous constitutively active promoter (Shibata and Lee, 2004). These studies suggest that Tsix action is not merely derived from the processed transcripts but requires concurrent antiparallel transcription through Xist.

In this study, we attempted to further clarify the significance of processed Tsix RNA produced by antiparallel transcription through the endogenous Xist gene. In contrast to targeted disruption (Lee, 2000; Lee and Lu, 1999; Sado et al., 2001) or transcriptional attenuation of Tsix (Luikenhuis et al., 2001; Shibata and Lee, 2004), loss of spliced Tsix RNA compromised neither the Tsix-mediated Xist silencing nor the establishment of proper chromatin configuration in...
the Xist promoter region. These results indicate that the splicing products of Tsix RNA are unexpectedly dispensable for the chromatin modulation in the Xist promoter region. It is possible that unspliced Tsix RNA on its own is sufficient for mediating the establishment of the repressive chromatin configuration in the Xist promoter region. Alternatively, the RNA products are not required and the antisense transcription per se, especially across the Xist promoter region, is responsible for the bona fide effect mediated by Tsix. Another Tsix mutant allele, which prematurely terminates the antisense transcription in exon 4 of Tsix before it runs across the Xist promoter, appears to be defective in Tsix function despite the fact that more than 90% of the entire Tsix transcription unit is still transcribed to produce truncated RNA (T. Ohhata, Y.H., H.S. and T.S., unpublished). The antisense transcription across the Xist promoter region, therefore, seems to be crucial for Tsix-mediated Xist silencing. Considering all these findings taken together, we currently speculate that the antisense transcription is more important for the Tsix-mediated regulation than the RNA products. It is still possible, however, that the distal region of unspliced Tsix RNA covering the Xist promoter region is involved in the establishment of the appropriate chromatin conformation, perhaps through the formation of a secondary structure. Further study will help to clarify the role of RNA-antisense transcription in the antisense regulation by Tsix at the Xist locus.

Another unexpected observation in this study was the activation of the Xist locus on the mutated X chromosome in undifferentiated Xist\(^{loxp}\)Y and Tsix\(^{ASA}\)Y ES cells. Unlike in X\(^{loxp}\)Y ES cells, however, Xist becomes downregulated upon differentiation in these mutant cells. This is consistent with the finding in the mutant embryos that Tsix’s function is compromised on X\(^{loxp}\) but not affected on the mutated X chromosome carrying Xist\(^{loxp}\) and Tsix\(^{ASA}\) Nonetheless, the activation of the Xist locus in the undifferentiated state in Xist\(^{loxp}\)Y and Tsix\(^{ASA}\)Y as well as in X\(^{loxp}\)Y ES cells suggests that in these mutant cells, the genetic alteration introduced at the Xist locus impaired the silencing mechanism at the Xist locus, which would be independent of Tsix function, in undifferentiated ES cells. It is possible that the IRES-EGFP fragment introduced at the mutated locus somehow induces the Xist promoter, although the chromatin structure as revealed by the DNase hypersensitive site assay showed no difference between the wild-type and mutated alleles. Alternatively, the deleted region in these mutant alleles may contain a cis regulatory element required for Xist-silencing in undifferentiated cells. It has been shown that Xist has been expressed from the paternal allele since the 2-4 cell stage, becomes downregulated in a cell that has contributed to the inner cell mass (ICM) at the blastocyst stage (Mak et al., 2004; Okamoto et al., 2004). Tsix is expressed only from the maternal allele, most probably in the trophectoderm, at this stage (Lee, 2000; Sado et al., 2001) and, therefore, repression of the paternal Xist in the ICM should be mediated by a Tsix-independent mechanism. It is tempting to speculate that the putative cis element mentioned above, if any, might be involved in the silencing of the hitherto active Xist in undifferentiated ICM cells. It will be of interest to see if the Xist locus on the paternaly derived mutated X chromosome carrying either Xist\(^{loxp}\) or Tsix\(^{ASA}\) is activated at the 2-4 cell stage and subsequently downregulated in the ICM cells at the blastocyst stage.

We thank Minako Kanbayashi for genotyping of mice and Tatsuya Ohhata for valuable discussions throughout the course of this study. This work was supported by grants from Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST) and from the Ministry of Education, Science, Sports, and Culture of Japan to T.S.

References

