Synthesis of the sulfate donor PAPS in either the *Drosophila* germline or somatic follicle cells can support embryonic dorsal-ventral axis formation

Xianjun Zhu*, Leslie M. Stevens and David Stein†

The establishment of dorsal-ventral (DV) polarity in the *Drosophila* embryo depends upon a localized signal that is generated in the perivitelline space of the egg through the action of a serine proteolytic cascade. Spatial regulation of this pathway is determined by the expression of the *pipe* gene in a subpopulation of ventral follicle cells in the developing egg chamber. The Pipe protein exhibits homology to vertebrate glycosaminoglycan sulfotransferases. In a previous study, we demonstrated that embryonic DV polarity depends upon the sulfotransferase activity of Pipe. Surprisingly, however, our results also indicated that formation of the embryonic DV axis does not require the synthesis of the high-energy sulfate donor, 3′-phosphoadenosine 5′-phosphosulfate (PAPS) in the follicle cells in which Pipe is presumed to function. Here, we resolve this apparent paradox by demonstrating that dorsalized embryos are only produced by egg chambers in which both germline and follicle cells lack PAPS synthetase activity. Thus, PAPS produced either in the germline or in the follicular epithelium can support the requirement for Pipe sulfotransferase activity in embryonic DV patterning. This finding indicates the existence of a conduit for the movement of PAPS between the germline and the follicle cells, which highlights a previously unappreciated mechanism of soma/germline cooperation affecting pattern formation.

KEY WORDS: Egg chamber, Sulfation, Sulfonation, Oogenesis, Dorsoventral, PAPS Synthase, *papss*, pipe, slalom, sugarless, sulfateless

INTRODUCTION

Pattern and polarity along the dorsal-ventral (DV) axis of the *Drosophila* embryo depends upon the spatial regulation of a serine protease cascade in the perivitelline space that surrounds the developing embryo (Morisato and Anderson, 1995; Moussian and Roth, 2005; Roth, 2003). This protease cascade leads ultimately to the ventral activation of the Toll receptor, which establishes the orientation of DV polarity in the developing embryo. The spatial parameters of the activated serine protease cascade in the perivitelline space are determined during oogenesis by the pattern of expression of the *pipe* gene (Sen et al., 1998), which is specifically transcribed in the ventral follicle cells of the stage-10 egg chamber. The *pipe* locus encodes up to 11 distinct protein isoforms (Sergeev et al., 2000) (see Flybase), produced by alternative splicing, that all exhibit amino acid similarity to vertebrate heparan sulfatase 2-0-sulfotransferase (HSST) and dermatan/chondroitin sulfate 2-0-sulfotransferase (D/CSST) (Kobayashi et al., 1997; Kobayashi et al., 1999). These Golgi-resident proteins mediate the transfer of sulfate to the 2-hydroxy1 position of uronic acid residues of glycosaminoglycan (GAG) carbohydrates such as heparin (Hep), heparan sulfate (HS), chondroitin sulfate (CS) and dermatan sulfate (DS). Like these enzymes, Pipe is present in the Golgi (Sen et al., 2000). In previous work we demonstrated that females carrying follicle cell clones that are mutant for genes required for HS and CS/DS GAG formation do not produce dorsalized embryos (Zhu et al., 2005). This, as well as other observations, indicates that HS and CS/DS GAGs do not serve as substrates for Pipe sulfotransferase activity, despite the amino acid similarity between Pipe and vertebrate HSST and D/CSST. However, additional lines of evidence are consistent with the proposal that Pipe does function as a sulfotransferase. For example, dorsalized embryos are produced by females carrying follicle cell clones that are mutant for *slalom* (sll), which encodes the Golgi transporter of 3′-phosphoadenosine 5′-phosphosulfate (PAPS) (Kamiyama et al., 2003; Luders et al., 2003), the universal donor in sulfation reactions.

In our previous study, we also tested whether the expression of *papss* (also known as *Paps* – Flybase), the gene encoding PAPS synthetase (Jullien et al., 1997), is required in the follicle cell layer to support the formation of embryonic DV polarity (Zhu et al., 2005). Surprisingly, we did not detect embryos with DV defects among the progeny of females carrying follicle cell clones mutant for *papss*. This finding was paradoxical, given that the requirement for *sll* expression demonstrated a need for PAPS to be transported into the Golgi of the follicle cells. To explain this result, we proposed that PAPS is transported between the germline and the follicle cells, perhaps through gap junctions that are known to exist between follicle cells and the oocyte (Bohrmann and Haas-Assenbaum, 1993; Giorgi and Postlethwait, 1985; Goldberg et al., 2004; Waksmonski and Woorduff, 2002). In the work reported here, we have tested this hypothesis by generating females with egg chambers in which both the germline and clones of follicle cells were mutant for *papss*. These females produced dorsalized embryos, indicating that PAPS is required in the ovary for embryonic DV patterning, consistent with Pipe’s role as a sulfotransferase. In addition, we show that dorsalized embryos are not generated by females carrying both germline and follicle cell clones mutant for the GAG synthesis-related genes *sugarless* (*sgl*) (Binari et al., 1997; Hückter et al., 1997; Haerry et al., 1997) or *sulfateless* (*sfl*) (Lin et al., 1999). These findings definitively rule out HS and CS/DS GAGs as substrates for Pipe. The results reported here also demonstrate that although biological

Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.

*Present address: The Jackson Laboratory, Bar Harbor, ME 04609, USA
†Author for correspondence (e-mail: d.stein@mail.utexas.edu)

Accepted 10 February 2007
sulfation in the follicle cells is crucial for the production of embryos with normal DV patterning, it is apparently dispensible for the viability of follicle cell themselves. Our finding that papss mutant follicle cells can be rescued by a wild-type germline is consistent with a model in which PAPS can move between the germline and the follicle cells. This represents a novel mechanism for maintaining homeostasis in an embryonic patterning pathway.

MATERIALS AND METHODS

Genetics

The wild-type stock was Oregon R. The papss (Zhu et al., 2005), slp^liss (Luders et al., 2003), sg^p100/l (Hacker et al., 1997) and sg^6444 (Lin et al., 1999) mutations were carried on a chromosome bearing an insertion of P[w+M{hs}]=FRT[w{hs}]2A at chromosomal interval 79D (FRT^79D). An insertion of the D. melanogaster variant H2A.F/Z-class histone fused to green fluorescent protein (hGFP) (Clarkson and Saint, 1999) on 3L of the insertion of the variant H2A.F/Z-class histone fused to homeostasis in an embryonic patterning pathway.

RESULTS AND DISCUSSION

Identification and characterization of follicles and embryos from mosaic females

Follicles

Six days after eclosion, females were placed in yeasted vials for one day, then their ovaries were dissected and fixed in 4% formaldehyde in PBS and heptane for 15 minutes, followed by extensive washing in PBT (PBS+0.1% Tween 20). Ovaries were stained for 5 minutes with 0.2 μg/ml DAPI in PBT followed by three 5-minute washes in PBT. Stained ovaries were mounted in a 1:1 mix of glycerol/PBS and photographed using a Zeiss Axioscope II microscope outfitted with a Zeiss axiocam digital camera. Mutant clones were identified by the absence of GFP fluorescence in the nuclei.

Embryos

Six days following eclosion, mosaic females were mated to wild-type males and placed in an egglay collection tube. After an additional 48 hours, embryos were collected on yeast apple juice agar plates (Wieschaus and Nüsslein-Volhard, 1986) that were changed every 24 hours. Cuticle preparations (van der Meer, 1977) were made from embryos that were allowed to complete development. Dorsalization of cuticles was classified with normal DV patterning, it is apparently dispensible for the viability of follicle cell themselves. Our finding that papss mutant follicle cells can be rescued by a wild-type germline is consistent with a model in which PAPS can move between the germline and the follicle cells. This represents a novel mechanism for maintaining homeostasis in an embryonic patterning pathway.

DESCRIPTION

To test our hypothesis that papss mutant follicle cells can be non-autonomously rescued by wild-type germline cells, it was necessary to generate females carrying mosaic egg chambers in which both germline and follicle cell clones were mutant for papss. In these follicles, the germline would be incapable of providing PAPS to the follicle cell layer. Thus, if PAPS were required for PAPS to the follicle cell layer. Thus, if PAPS were required for PAPS to the follicle cell layer. Thus, if PAPS were required for PAPS to the follicle cell layer. Thus, if PAPS were required for PAPS to the follicle cell layer. Thus, if PAPS were required for PAPS to the follicle cell layer. Thus, if PAPS were required for...
homozygous for P[ovoP1] degenerate and produce no mature eggs (Oliver et al., 1987). Thus, the only eggs that are laid by these females must be derived from homozygous papss2 germline clones. Our previous results demonstrated that 76% of the follicles carry somatic clones when FLP expression is driven by e22c-GAL4. Therefore, we expected the hsFLP1/+; e22c-GAL4, UAS-FLP/+; P[ovoP1], FRT79D/papss2, FRT79D females, which were heat shocked as larvae, to produce many eggs that formed in an egg chamber containing a follicle cell clone. The embryos produced by these females were collected, allowed to complete embryogenesis, and then cuticle preparations were made. Of 2736 embryonic cuticles examined, 800 (29%) exhibited a dorsalized phenotype, including 81 that showed the completely dorsalized D0 cuticular phenotype (Table 2) (Fig. 2H). To confirm our assessment of the cuticular phenotype with a molecular marker, we stained blastoderm-stage embryos with an antibody against Twist (Thiss et al., 1988), a marker for mesoderm, which is the most ventral pattern element along the embryonic DV axis. Many of the embryos produced by these females exhibited either complete elimination (not shown) or partial disruption of Twist expression (Fig. 2G). By contrast, the wild-type pattern of Twist staining was observed in embryos derived from papss mutant germline clones that presumably developed in a follicular epithelium in which tissue-specific FRT-mediated recombination had not been induced (Fig. 2E). As reported previously, disruption of Twist staining was also seen in the progeny of females carrying sfl mutant follicle cell clones (Fig. 2C) (Luders et al., 2003). Thus, the phenotypic consequence of depleting PAPS is equivalent to eliminating sfl expression in the follicle cells. This is consistent with the idea that sulfotransferase activity in the follicle cells is crucial for DV patterning of the embryo.

We have previously shown that DV patterning is normal in embryos derived from egg chambers containing ventral follicle cell clones mutant for sgl (Zhu et al., 2005), which encodes Drosophila UDP-glucose dehydrogenase (Binari et al., 1997; Haecker et al., 1997; Haerry et al., 1997). This finding led us to conclude that HS and CS/DS GAGs could not be the target of Pipe activity, because the product of Sgl enzymatic activity, UDP-glucuronic acid (UDP-GlcA), is required for their synthesis. Like PAPS, however, UDP-GlcA is a small molecule (577 Da) that could potentially move between the oocyte and follicle cells via gap junctions. Our finding that PAPS can be supplied to papss mutant follicle cells from a wild-type oocyte raised the possibility that in our previous study, follicle cell clones mutant for sgl were non-autonomously rescued by the transfer of UDP-GlcA from the germline. Indeed, observations made in the developing wing disc are consistent with this possibility. In this tissue, Wingless protein acts as a morphogen that forms a concentration gradient through a restricted diffusion mechanism. Wingless diffusion requires the function of the HS proteoglycans Dally and Dally-like; cells that lack either of these two proteins impede the movement of Wingless (Han et al., 2005). Although UDP-glucose dehydrogenase is required for HS synthesis, cells mutant for sgl do not interfere with Wingless diffusion (Strigini and Cohen, 2000). This discrepancy could be explained if the UDP-GlcA required for the formation of the HS chains in Dally and Dally-like were supplied to the sgl mutant cells by nearby wild-type cells. Therefore, to rule out a similar mechanism and definitively test the requirement for HS and CS/DS GAGs in embryonic DV axis formation, we generated females that simultaneously carried mutations in the papss and sgl genes.

Table 1. Observed frequencies of egg chambers containing mutant mitotic clones in the follicle cell layer, the germline, or both, following induction of FLP expression

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Follicle cell clones n/total counted (%)</th>
<th>Germline clones n/total counted (%)</th>
<th>Follicle and germline clones n/total counted (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type control</td>
<td>464/612 (76)</td>
<td>10/760 (1.3)</td>
<td>8/660 (1.2)</td>
</tr>
<tr>
<td>papss</td>
<td>312/504 (64)</td>
<td>8/868 (0.9)</td>
<td>6/920 (0.7)</td>
</tr>
<tr>
<td>sgl</td>
<td>415/596 (70)</td>
<td>6/678 (0.9)</td>
<td>5/710 (0.7)</td>
</tr>
<tr>
<td>sfl</td>
<td>405/601 (67)</td>
<td>8/918 (0.9)</td>
<td>6/692 (0.9)</td>
</tr>
</tbody>
</table>

papss, sgl and sfl mutant alleles were carried on an FRT79D-bearing chromosome. An FRT79D-bearing chromosome carrying wild-type alleles of these three genes served as the wild-type control. The frequency of follicle cell clones was determined in females expressing FLP under the control of the e22c-GAL4 enhancer-trap element. Germline clone frequencies were determined in females expressing FLP under the control of the hsFLP1 transgenic insertion. The frequency of egg chambers carrying both follicle cell and germline clones was determined in the ovaries of females expressing FLP under the control of both of these elements.
Table 2. The proportion of dorsalized embryos produced by females in which follicle cell and germline clones mutant for papss, sgl or sfl are being generated

<table>
<thead>
<tr>
<th>Third-chromosome genotype of females</th>
<th>DV phenotypes of progeny embryos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DO</td>
</tr>
<tr>
<td>papss FRT79D/hGFP FRT79D</td>
<td>2</td>
</tr>
<tr>
<td>sgl FRT79D/hGFP FRT79D</td>
<td>0</td>
</tr>
<tr>
<td>sfl FRT79D/hGFP FRT79D</td>
<td>0</td>
</tr>
<tr>
<td>papss FRT79D[svoD1] FRT79D</td>
<td>81</td>
</tr>
<tr>
<td>sgl FRT79D[svoD1] FRT79D</td>
<td>0</td>
</tr>
<tr>
<td>sfl FRT79D[svoD1] FRT79D</td>
<td>0</td>
</tr>
</tbody>
</table>

FLP was expressed under the combined control of the e22c-GAL4 enhancer-trap element and hsFLP1 in females carrying mutant alleles of papss, sgl or sfl on an FRT79D-bearing chromosome. In one set of experiments, a transgene bearing the dominant female-sterile marker P[ovoD1] was present on the FRT79D chromosome carried in trans to the mutation-bearing chromosome to ensure that all embryos produced were derived from egg chambers with a mutant germline. Embryos from females in which clones were being generated were examined for dorsalization in cuticle preparations and classified according to Roth et al. (1991) as follows: D0 embryos are completely dorsalized, lacking all lateral and ventral pattern elements; D1 embryos carry the dorsolaterally-derived tracheal structures, Filzkörper; D2 embryos carry Filzkörper and ventral denticle bands of reduced width; D3 embryos carry Filzkörper and ventral denticle bands of normal width and are either twisted at a point along the anterior-posterior axis or exhibit a tail-up or U-shaped phenotype.

In addition to ruling out HS and CS/DS GAGs as substrates for the Pipe sulfotransferase, the experiments described above indicate that GAG synthesis is not required for either follicle cell viability or egg formation. We wanted to confirm these results, at least with respect to HS, using the sfl mutation, which in contrast to papss and sgl would not be expected to be subject to non-autonomous rescue. sfl encodes N-deacetylgalactosamine/sulfotransferase (Lin et al., 1999), an enzyme that mediates the deacetylation and sulfation of the N-acetylglucosamine residues of HS. Sfl is an integral membrane protein that acts on GAG monosaccharide units in the lumen of the Golgi. Its product, sulfated HS, is unlikely to pass freely between cells. In a previous study, we demonstrated that it is possible to generate females carrying follicle cell clones mutant for sfl and that they do not produce dorsalized embryos (Zhu et al., 2005). Here, we found that it was possible to generate females with coincident germline and follicle cell clones mutant for sfl (Table 1) (Fig. 1I,J). As expected, none of the 1980 embryos produced by sfl mosaic females, 1310 of which derived from females with an sfl mutant germline, exhibited a dorsalized phenotype (Table 2). Thus, the complete lack of HS GAG synthesis does not impede the establishment of DV polarity in the embryo, nor does it affect the viability of either the follicle cells or the germline, or the patterning of the egg chamber.

Despite Pipe’s similarity to glycosaminoglycan uronic acid-specific 2-O sulfotransferases, the findings presented here conclusively demonstrate that uronic acid-containing GAGs such as HS and CS/DS do not play an essential role in the establishment of embryonic DV polarity. Our results do support, however, previous evidence suggesting that Pipe is acting as a sulfotransferase (Zhu et al., 2005), as PAPS must be available to the follicle cells for DV pattern formation to occur normally. Although our data rule out the possibility that Pipe acts upon HS or CS/DS GAGs, we consider it likely that Pipe acts on an alternate type of glycoprotein or glycolipid-associated carbohydrate.

Our ability to generate egg chambers with simultaneous follicle cell and germline clones mutant for sgl provides evidence for the surprising conclusion that uronic acid-containing carbohydrates such as HS, CS and DS, as well modification of other molecules by glycosaminoglycan uronic acid-specific 2-O sulfotransferases, are dispensable for the viability and growth of the oocyte and follicle cells. Even more strikingly, our results from females carrying both papss mutant germline and follicle cells indicate that biological sulfation itself is not essential for follicle cell viability or oocyte maturation. Indeed, the only requirement for PAPS in the egg chamber that was detected in our experiments was in embryonic DV patterning, which presumably reflects the function of PAPS in the sulfation of the Pipe target.
Although PAPS is required for the function of Pipe, our results demonstrate that PAPS need not be synthesized in the Pipe-expressing ventral follicle cells as it can be supplied to them from the neighboring germline cells. PAPS is a highly polar molecule that is unlikely to diffuse freely across lipid membranes. We consider it likely that in the ovary, PAPS molecules travel through the gap junctions that are known to exist between the oocyte and follicle cell layer (Bohrmann and Haas-Assenbaum, 1993; Giorgi and Postlethwait, 1985; Waksmanoski and Woodruff, 2002). PAPS (507 Da) is sufficiently small to pass through the gap junctions, which allow passage of molecules of approximately 1 kDa (Goldberg et al., 2004). The gap junctions of insects and other invertebrates are composed of protein subunits called innexins (Phelan, 2005), for which eight genes have been identified in Drosophila (Stebbins et al., 2002). The gonads of flies lacking Innexitx 4, encoded by zero population growth (also known as invd), contain small numbers of early germline cells but lack more mature stages (Tazuke et al., 2002), indicating that communication via gap junctions is required for gametogenesis. During the course of oogenesis, the 15 polytene nurse cells provide the developing oocyte with various metabolites, and the ability of the follicle cells to receive PAPS from the oocyte provides evidence for a mechanism by which the follicle cells benefit from the robust synthetic capacity of the nurse cells. Thus, in addition to a potential influence of gap junctional communication on embryonic DV patterning, our findings raise the possibility that communication between germline and soma contributes to the homeostasis of other metabolites within the egg chamber. Finally, it is worth noting that the ability of other small metabolites to move from cell to cell should also be considered as a factor in other developmental contexts.

We are grateful to Drs Joe Duffy, Udo Härcke, James Kennison and Norbert Perrimon, and to the Drosophila Stock Center in Bloomington Indiana for providing Drosophila stocks. This work was supported by grants from the Mizutani Foundation for Glycosciences (040061) and the National Science Foundation (0344888).

References

