Boundary swapping in the Drosophila Bithorax complex

Carole Iampietro1,2, Fabienne Cleard1,2, Henrik Gyurkovics3, Robert K. Maeda1,2 and François Karch1,2,*

Although the boundary elements of the Drosophila Bithorax complex (BX-C) have properties similar to chromatin insulators, genetic substitution experiments have demonstrated that these elements do more than simply insulate adjacent cis-regulatory domains. Many BX-C boundaries lie between enhancers and their target promoter, and must modulate their activity to allow distal enhancers to communicate with their target promoter. Given this complex function, it is surprising that the numerous BX-C boundaries share little sequence identity. To determine the extent of the similarity between these elements, we tested whether different BX-C boundary elements can functionally substitute for one another. Using gene conversion, we exchanged the Fab-7 and Fab-8 boundaries within the BX-C. Although the Fab-8 boundary can only partially substitute for the Fab-7 boundary, we find that the Fab-7 boundary can almost completely replace the Fab-8 boundary. Our results suggest that although boundary elements are not completely interchangeable, there is a commonality to the mechanism by which boundaries function. This commonality allows different DNA-binding proteins to create functional boundaries.

KEY WORDS: Bithorax, Chromatin, Boundaries, Insulator

INTRODUCTION

The large cis-regulatory region of the BX-C is divided into nine parasegment-specific chromatin domains that control the expression of the three BX-C homeotic genes along the anteroposterior (AP) axis (Ubx, abd-A and Abd-B) (for reviews, see Duncan, 1987; Maeda and Karch, 2006). The precise parasegment-specific expression pattern of these genes determines the segmental identity of each of the segments of the posterior two-thirds of the fly. Each domain is kept separate and autonomous by specialized elements known as domain boundaries (Barges et al., 2000; Gyurkovics et al., 1990; Karch et al., 1994; Mihaly et al., 1997). In transgenic constructs, these boundary elements behave as insulators, blocking enhancer activity when placed between the enhancer and its target promoter (Barges et al., 2000; Gruzdeva et al., 2005; Hagstrom et al., 1996; Zhou et al., 1996). However, within their native context, they are often found between an enhancer and its target promoter. How BX-C enhancers bypass intervening boundaries is still a topic of contention.

Boundary deletions indicate that these elements are required to provide functional autonomy to the enhancers and silencers within the large cis-regulatory region. The Fab-7 boundary element, for example, is normally found separating the iab-6 and iab-7 cis-regulatory domains (see Fig. 1A). The iab-6 enhancer region controls the level of Abd-B expression in parasegment 11 (PS11) and determines the identity of segment A6. The iab-7 region, however, controls the level of Abd-B expression in PS12 and determines the identity of segment A7 (Celniker et al., 1990; Galloni et al., 1993; Mihaly et al., 2006; Sanchez-Herrero, 1991). When Fab-7 is deleted, the iab-6 and iab-7 domains become fused into a single domain, allowing both the iab-6 and iab-7 enhancers or silencers to become active in PS11 and PS12. In most cells of BX-C, the iab-7 enhancers are activated by iab-6 initiation elements, resulting in a homeotic transformation of PS11/A6 into PS12/A7. However, in other cells of PS11, the iab-6 initiators fail to activate the fused domain before iab-7 Polycomb Response Elements (PRE) silence the domain, causing these cells to take on a PS10/A5 identity (Galloni et al., 1993; Gyurkovics et al., 1990; Mihaly et al., 1997).

Previously, we have shown that insulators such as gypsy (Geyer and Corces, 1992) or scs (Kellum and Schedl, 1992) cannot substitute for Fab-7 within the BX-C (Hogga et al., 2001). Both of these insulators block interactions between the distal Abd-B enhancers and the Abd-B promoter. To test whether the boundaries of the BX-C can functionally replace each other, we used gene conversion to exchange the Fab-7 and Fab-8 boundaries within the BX-C. Although these two boundaries perform similar functions, they share little sequence identity. Surprisingly, we find that the Fab-7 boundary is almost completely capable of replacing the Fab-8 boundary, indicating that there is a similarity in the mechanism of boundary function that cannot be predicted through modern sequence analysis.

MATERIALS AND METHODS

Fab-7 replacement by Fab-8

The Fab-8 boundary element is an Alul-MstI 659 bp fragment (3R:12745503-12744844) cloned into an Nsi site of a P-CaSpER-based plasmid containing the genomic region surrounding Fab-7 (Hogga and Karch, 1995). This construct was injected into white males. Third chromosome inserts were recombined with the blueletal insertion (Galloni et al., 1993). Converiants were obtained and verified as described previously (Hogga and Karch, 2001).

Fab-8 replacement by Fab-7

The genomic region surrounding the Fab-8 deletion (3R:12745801-12744797) was generated by PCR using Bsu polymerase (Promega) and the following primers: 5’-TCTAGAGTCTCAATTCGTTCGGGG-3’ and 5’-CTCGAGTGGATTTCCTCTGAGC-3’ for the proximal region, and 5’-TCTAGACATAAAAGGGGAAGGGG-3’ and 5’-CTCGA-GGTTCATTGTTTGC-3’ for the distal region. The Fab-7 boundary (a 0.8 kb fragment) was generated by PCR using 5’-CTCGAGGCGGCAATATGTTTAACTGTTTAAACG-3’ and 5’-CTCGAGG-CAGAACAAAGGGGCG-3’, and was inserted between the two break points of the Fab-8 deletion. Transgenic flies were made as above and recombined onto a chromosome carrying the fts(3)s5649 P-element insertion. In trans to this chromosome, we placed the Df(3R)R59 chromosome

1NCCR, Frontiers in Genetics, University of Geneva, Department of Zoology and Animal Biology, 30 Quai Ernest Ansermet, 1211 Geneva 11, Switzerland. 2University of Geneva, Department of Zoology and Animal Biology, 30 Quai Ernest Ansermet, 1211 Geneva 11, Switzerland. 3Institute of Genetics, Biological Research Centre, PO Box 521, H-6701 Szeged, Hungary.

*Author for correspondence (e-mail: francois.karch@unige.ch)

Accepted 9 October 2008

DEVELOPMENT
carrying the Δ2-3 transposase and a Tp(3;1)bxd duplication to rescue the sterility of these dysgenic males. Putative conversion events were screened as above.

Antibody staining

Embryos were stained as previously described (Karch et al., 1990), using mouse monoclonal antibodies against Abd-B obtained from the Developmental Studies Hybridoma Bank, developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biological Sciences, Iowa City, IA 52242, USA.

Preparation of abdominal cuticles

Abdominal cuticles were prepared as described previously (Mihaly et al., 1997).

RESULTS AND DISCUSSION

The Fab-7 boundary can substitute for the Fab-8 boundary

Three reasons dictated our choice in converting Fab-8 to Fab-7 (F8→F7). First, Fab-7 and Fab-8 perform similar functions yet share almost no sequence similarity. Second, we wanted to test whether a BX-C cis-regulatory domain could interact with the Abd-B promoter over a boundary element that it generally never encounters. As Fab-7 is located on the promoter distal side of iab-7, iab-7 enhancers are never faced with the challenge of bypassing the Fab-7 boundary (see Fig. 1A). And third, recent data have suggested that BX-C boundaries are regulated along the AP axis (Cleard et al., 2006). From these data, it seems that boundaries interact with the Abd-B promoter until the neighboring (probably more posterior) domain becomes active (see also Maeda and Karch, 2007). If this regulated association is responsible for boundary function and the association is controlled by the boundary element itself, then a substitution of Fab-8 by Fab-7 should result in the inactivation of the boundary one parasegment too anterior. The expected phenotype resulting from such an event would be a homeotic transformation of A7 to A8 (much like a boundary deletion).

In the gene conversion, the Fab-8 region was removed and replaced by a minimal Fab-7 boundary element (Chen et al., 2005), inserted, in separate constructs, in each orientations. In order to completely remove the Fab-8 boundary without removing potentially important iab-7 or iab-8 sequences, we deleted the region around Fab-8 that is removed in the Fab-8 deletion. The Fab-8 deletion is the smallest characterized Fab-8 deletion that displays a complete Fab-8 phenotype; homozygous adult females are sterile and the A7 segment disappears due to an A7 to A8 transformation (Fig. 2B). Both the iab-8PRE (Barges et al., 2000) and most of the promoter targeting sequence 7 (PTS7) element (Zhou and Levine, 1999) are left intact in the Fab-8 deletion. As convertants for both orientations display identical phenotypes, we will simply call them F8→F7.

Given the simple nature of the experiment, we expected one of three outcomes: that the Fab-7 boundary would act as a simple insulator and block iab-7 from interacting with the Abd-B promoter (like an iab-7 deletion); that Fab-7 would not be functional in replacing Fab-8 and behave as an Fab-8 deletion mutation; or that Fab-7 would substitute for Fab-8. Scoring females homozygous for either F8→F7 conversion showed that Fab-7 can almost completely substitute for Fab-8. Almost all F8→F7 flies are wild-type appearance and are fertile (Fig. 2). In rare cases, we do observe homozygous flies displaying evidence of slight Abd-B misexpression. Patches of cells in A7 occasionally take on an A6 or A8 identity. To characterize this phenotype more carefully, we looked at F8→F7 hemizygous flies. F8→F7/Df(3R)P9 flies have features reminiscent of Fab-8 homozygotes (Fig. 3), indicating that although Fab-8 can mostly substitute for Fab-7, the boundary system in F8→F7 flies is less robust, occasionally allowing the iab-7 domain to be influenced by neighboring cis-regulatory domains. However, in a non-sensitized background, this effect is quite mild, affecting <5% of the flies scored.

Abd-B antibody staining confirms our results. In the embryonic CNS of wild-type flies, Abd-B is expressed in a step gradient pattern that noticeably increases parasegmentally from PS10 to PS13 (Fig. 2E). In Fab-8 deletion mutants, that pattern changes such that PS12 expression levels mimic those found in PS13. Meanwhile in iab-7 mutants, PS12 expression drops to the level of PS11. In F8→F7 conversion lines, we observe a staining pattern that is similar to that found in wild-type embryos.

This result was quite surprising. The fact that Fab-7 can substitute for Fab-8 means that everything required to restore Fab-8 function is present in the Fab-7 fragment inserted. However, at the DNA sequence level, the Fab-7 and Fab-8 boundaries share almost no similarity. A detailed analysis of the two sequences using dot-plot and Markov analysis found little in common between the two elements other than GAGA factor-binding sites (six in Fab-7 and two in Fab-8). The GAGA factor binding sites have previously been shown to be important for Fab-7 enhancer blocking activity in transgenic contexts (Schweinsberg et al., 2004). However, the role of the GAGA factor in Fab-8 enhancer blocking activity is still unknown. Thus far, the only factor shown to be important for Fab-8 function is the dCTCF factor. Previously, it has been shown that deleting the dCTCF-binding sites in Fab-8 impaired its insulator function in transgenic insulator assays (Moon et al., 2005). Moreover, dCTCF mutants display phenotypes reminiscent of Fab-8
To do this, we removed a Fab-7 substituting for each other. We, therefore, decided to replace the Fab-7 with a Fab-8. The A7 sternite (ventral) displays a characteristic shape with large bristles pointing towards the posterior (arrow). (B) Fab-B³⁰⁵, the A7 to A8 transformation leads to the absence or reduction of the tergite (dorsal) and sternite (ventral). (C) F8→F7 homoygous females display a wild-type A7 cuticle. (D) Diagram of F8→F7 substitution. (E-G) Abd-B expression in the embryonic CNS. (E) Wild-type: Abd-B is expressed in a step gradient pattern from PS10 to PS14. (F) Fab-B³⁰⁵: the Abd-B expression level in PS12 increases to the level normally observed in PS13. (G) F8→F7 embryos show a restoration of the wild-type expression pattern of Abd-B.

As mentioned above, there is a slight orientation effect with the Fab-7 boundary (freeing it from ectopic activation by iab-6), surprisingly, F7→F8 homozygous flies show a transformation of A6 towards A5. This means that there is a loss of Abd-B activation by iab-6 (Fig. 4). Abd-B antibody staining confirms these results (Fig. 4E-G). Instead of the normal stepwise gradient seen in the wild-type embryonic CNS, F7→F8 embryos display PS10-like Abd-B expression in PS11 (Fig. 4G). This phenotype is reminiscent of the phenotype obtained by substituting a minimal scs insulator for Fab-7 (Hogga et al., 2001). For that substitution, it was believed that the loss of iab-6 function was due to the blocking of iab-6 by the intervening insulator. A second possible explanation for this phenotype is that iab-6 is somehow being silenced in the F7→F8 substitution by the nearby iab-7PRE. This hypothesis is presented because Fab-7 functions, not only to prevent the inappropriate activation of adjacent cis-regulatory domains, but also to prevent the inappropriate silencing of adjacent domains. In Fab-7 mutants, for example, one sees a clonal mixture of both ectopic activation and ectopic silencing (Mihaly et al., 1997). The balance between these two clonal populations is sensitive to mutations in Polycomb group genes. We, therefore, crossed F7→F8 flies to the Polycomb-group mutant, Pcl. Because the phenotype of F7→F8 flies does not change upon the introduction of a Pcl/+ mutation (data not shown), we believe that Fab-8 is acting like a short-range insulator at this locus, blocking iab-6 enhancers from interacting with the Abd-B promoter.

As mentioned above, there is a slight orientation effect with the Fab-7 boundary; Fab-7² homozygous adult flies primarily show an A6 towards A7 transformation (Fig. 4) (Galloni et al., 1993; Mihaly et al., 1997). Previous genetic and molecular analysis indicates that the nearby iab-7PRE (Mihaly et al., 1997) and PTS6 element (Chen et al., 2005) are left intact in the Fab-7² deletion. Again, we isolated conversants for each Fab-8 orientation. Although the two conversions differ slightly in their intensity, for the most part, they display similar phenotypes. Therefore, we will simply call the mutants F7→F8, indicating, when necessary, where the two orientations differ.

Although Fab-8 can restore the autonomy of the iab-7 domain (freeing it from ectopic activation by iab-6), surprisingly, F7→F8 homozygous flies show a transformation of A6 towards A5. This means that there is a loss of Abd-B activation by iab-6 (Fig. 4). Abd-B antibody staining confirms these results (Fig. 4E-G). Instead of the normal stepwise gradient seen in the wild-type embryonic CNS, F7→F8 embryos display PS10-like Abd-B expression in PS11 (Fig. 4G). This phenotype is reminiscent of the phenotype obtained by substituting a minimal scs insulator for Fab-7 (Hogga et al., 2001). For that substitution, it was believed that the loss of iab-6 function was due to the blocking of iab-6 by the intervening insulator. A second possible explanation for this phenotype is that iab-6 is somehow being silenced in the F7→F8 substitution by the nearby iab-7PRE. This hypothesis is presented because Fab-7 functions, not only to prevent the inappropriate activation of adjacent cis-regulatory domains, but also to prevent the inappropriate silencing of adjacent domains. In Fab-7 mutants, for example, one sees a clonal mixture of both ectopic activation and ectopic silencing (Mihaly et al., 1997). The balance between these two clonal populations is sensitive to mutations in Polycomb group genes. We, therefore, crossed F7→F8 flies to the Polycomb-group mutant, Pcl. Because the phenotype of F7→F8 flies does not change upon the introduction of a Pcl/+ mutation (data not shown), we believe that Fab-8 is acting like a short-range insulator at this locus, blocking iab-6 enhancers from interacting with the Abd-B promoter.

As mentioned above, there is a slight orientation effect with the Fab-7 boundary; Fab-7² homozygous adult flies primarily show an A6 towards A7 transformation (Fig. 4) (Galloni et al., 1993; Mihaly et al., 1997). Previous genetic and molecular analysis indicates that the nearby iab-7PRE (Mihaly et al., 1997) and PTS6 element (Chen et al., 2005) are left intact in the Fab-7² deletion. Again, we isolated conversants for each Fab-8 orientation. Although the two conversions differ slightly in their intensity, for the most part, they display similar phenotypes. Therefore, we will simply call the mutants F7→F8, indicating, when necessary, where the two orientations differ.
Therefore, if no PTS-type elements were deleted, the main difference between the cases tested is context. For example, in the wild-type situation, Fab-8 is located between the iab-7 and iab-8 cis-regulatory domains, whereas in F7→F8, Fab-8 is placed between the iab-6 and iab-7 cis-regulatory domains. We have recently found that the Fab-7 boundary seems to be regulated along AP axis (Cleard et al., 2006). If we assume that all boundaries behave in a similar manner, then Fab-8 would also be regulated along the AP axis. As this regulation does not seem to come from the boundary element itself (see above), it must come through specific interactions with the nearby cis-regulatory domains. Previous work has pointed to PTS elements as the mediators of this function. However, based on our data and because PTS deletions have little phenotype when deleted, we believe that there must be something more that inactivates boundary elements (Mihaly et al., 2006; Zhou and Levine, 1999). For now, the identity of these elements remains a mystery.

We thank Annick Mutero and Jean-Michel Gibert for critically reading this manuscript, and Eva Favre and Jorge Faustino for excellent technical assistance. C.I., F.C., R.K.M. and F.K. were supported by grants from the State of Geneva, the Swiss National Foundation and the Swiss National Center of Competence in Research. H.G. is supported by grants from OTKA and by the NIH as a subcontractor.

Supplementary material

Supplementary material for this article is available at http://dev.biologists.org/cgi/content/full/135/24/3983/DC1

References

