WAG2 represses apical hook opening downstream from gibberellin and PHYTOCHROME INTERACTING FACTOR 5

Björn C. Willige, Eri Ogiso-Tanaka, Melina Zourelidou and Claus Schwechheimer*

SUMMARY
When penetrating the soil during germination, dicotyledonous plants protect their shoot apical meristem through the formation of an apical hook. Apical hook formation is a dynamic process that can be subdivided into hook formation, maintenance and opening. It has previously been established that these processes require the transport and signaling of the phytohormone auxin, as well as the biosynthesis and signaling of the phytohormones ethylene and gibberellin (GA). Here, we identify a molecular mechanism for an auxin-GA crosstalk by demonstrating that the auxin transport-regulatory protein kinase WAG2 is a crucial transcription target during apical hook opening downstream from GA signaling. We further show that WAG2 is directly activated by PHYTOCHROME INTERACTING FACTOR 5 (PIF5), a light-labile interactor of the DELLA repressors of the GA pathway. We find that wag2 mutants are impaired in the repression of apical hook opening in dark-grown seedlings and that this phenotype correlates with GA-regulated WAG2 expression in the concave (inner) side of the apical hook. Furthermore, wag2 mutants are also impaired in the maintenance or formation of a local auxin maximum at the site of WAG2 expression in the hook. WAG2 is a regulator of PIN auxin efflux facilitators and, in line with previous data, we show that this kinase can phosphorylate the central intracellular loop of all PIN-FORMED (PIN) proteins regulating apical hook opening. We therefore propose that apical hook opening is controlled by the differential GA-regulated accumulation of WAG2 and subsequent local changes in PIN-mediated auxin transport.

KEY WORDS: Arabidopsis, WAG2 protein kinase, Apical hook, Auxin transport, Gibberellin

INTRODUCTION
Gibberellins (GA) are phytohormones that regulate a number of physiological responses in plants such as germination, elongation growth, greening, flowering time as well as apical hook formation (Achard et al., 2003; Alabadi et al., 2004; Gallego-Bartolomé et al., 2011; Ueguchi-Tanaka et al., 2007; Vriezen et al., 2004). All GA responses known to date are mediated by DELLA proteins, which have emerged as key repressors of the GA pathway that regulate different classes of transcriptional regulators such as the light-labile PHYTOCHROME INTERACTING FACTORS (PIFs; namely PIF1, PIF3, PIF4 and PIF5) and the related but light-stable bHLH targets in a biological context (Cheminant et al., 2011; Franklin et al., 2012; Oh et al., 2009), only a few studies have examined direct PIF transcription factor target genes using chromatin immunoprecipitation at the genome-wide level (Hornitschek et al., 2012; Oh et al., 2009), only a few studies have examined direct PIF targets in a biological context (Cheminant et al., 2011; Franklin et al., 2011; Gallego-Bartolomé et al., 2011; Li et al., 2012; Richter et al., 2010; Sun et al., 2012).

The phytohormone auxin regulates a large number of growth processes in plants such as tissue differentiation, organ formation and tropic responses (Teale et al., 2006). At the cellular level, auxin responses are controlled by the auxin response factor transcriptional regulators and by the inhibitory auxin-labile AUX/IAA proteins (Chapman and Estelle, 2009). At the organismal level, the polar transport of auxin within the plant plays a pivotal role in the control of plant development and differentiation. Cell-to-cell polar auxin transport is mediated by the AUXIN-RESISTANT 1/LIKE-AUX 1 (AUX1/LAX) auxin import carriers and PIN-FORMED (PIN) auxin efflux facilitators that may function together with MULTIDRUG RESISTANCE/PHOSPHOGLYCOPROTEIN (MDR/PGP) transporters (Kleine-Vehn and Friml, 2008). Particularly instructive for the understanding of polar auxin transport is the localization of PIN auxin efflux facilitators that are polarly distributed in the plasma membrane of many cells in the growing plant. In Arabidopsis thaliana, at least five members of the PIN protein family with in part specific and in part overlapping biological functions have been implicated in PIN-dependent polar auxin transport, PIN1, PIN2, PIN3 and PIN4, as well as PIN7 (Blilou et al., 2005). Although auxin transport itself cannot be directly visualized, models for
auxin transport by far and large support the notion that the knowledge on PIN polarity is sufficient to predict cell-to-cell auxin transport and to explain auxin-dependent growth processes (Grieneisen and Scheres, 2009; Wisniewska et al., 2006).

AGC kinases are a family of serine/threonine kinases that share homology with the well-characterized protein kinase A, protein kinase G and cAMP-dependent kinase from animals (Galván-Amudpia and Offringa, 2007). In Arabidopsis, a subset of the AGC kinases, PINOID (PID), PID2, WAG1 and WAG2 have been directly implicated in the control of auxin transport. PIDs and WAGs form a subgroup within the AGCVIII family and at least PID and the WAGs regulate PIN polarity by phosphorylating PINs at conserved phosphorylation sites (Cheng et al., 2008; Dhonukshe et al., 2010; Friml et al., 2004; Huang et al., 2010; Santner and Watson, 2006). The four members of the D6 PROTEIN KINASE (D6PK) subgroup of AGCVIII also regulate auxin transport and phosphorylate PINs; they have, however, been proposed to regulate PIN auxin transport activity rather than PIN polarity (Dhonukshe et al., 2010; Zourelidou et al., 2009). Interestingly, the blue light receptors PHOTOTROPIN1 (PHOT1) and PHOT2, which promote the auxin transport-dependent hypocotyl bending in response to lateral light, are also AGCVIII kinases (Christie et al., 2011; Galván-Amudpia and Offringa, 2007).

A number of growth and developmental processes in plants are regulated by auxin as well as by GA. To date, only a few studies have elucidated crosstalk mechanisms that can explain aspects of the interdependency of the two hormone pathways (Björklund et al., 2007; Frigerio et al., 2006; Fu and Harberd, 2003; Jacobs and Case, 1965; Scott et al., 1967; Willige et al., 2011). Auxin stimulates GA biosynthesis and it can be proposed that auxin promotes growth at least in part by increasing GA hormone synthesis and thereby degradation of the GA-labile DELLA growth repressors (Frigerio et al., 2006), e.g. the cessation of root growth in the absence of auxin transport from the shoot and the accumulation of DELLA proteins in the root may be explained through this mechanism (Fu and Harberd, 2003). Inversely, evidence for a control of auxin transport and signaling by GA has also been provided. Auxin transport in the stem is less efficient in GA signaling mutants and GA deficiency reduces PIN protein abundance, possibly by targeting PINs for degradation in the vacuole (Willige et al., 2011).

The development of the apical hook is a specific example for a process that is controlled by auxin transport as well as by GA signaling (Gallego-Bartolomé et al., 2011; Lehman et al., 1996; Li et al., 2004; Zádníková et al., 2010). The apical hook is formed during skotomorphogenesis of dicotyledonous seedlings and it protects the sensitive shoot apical meristem while the hypocotyl is growing through the soil to reach the light. Apical hook development can be divided into the hook formation, hook maintenance and hook opening phase (Raz and Ecker, 1999; Zádníková et al., 2010). The local accumulation of auxin is necessary for the formation and maintenance of the apical hook to restrict the elongation of cells in the concave (inner) side of the hook, which induces asymmetric growth in the apical part of the hypocotyl (Kuhn and Galston, 1992; Raz and Ecker, 1999). Recently, the auxin influx facilitators AUX1 and LAX3, as well as the auxin efflux facilitators PIN1, PIN3, PIN4 and PIN7, were identified as being necessary for normal hook development (Vandenbussche et al., 2010; Zádníková et al., 2010). In particular, the loss of PIN3 activity impairs the establishment of the asymmetric auxin maximum in the apical hook (Friml et al., 2002; Zádníková et al., 2010).

Like auxin transport, GA biosynthesis and signaling are prerequisite for the formation and maintenance of the apical hook (Achard et al., 2003; Alabadi et al., 2004; An et al., 2012; Gallego-Bartolomé et al., 2011; Vrienze et al., 2004): although the loss of GA biosynthesis in the ga1 mutant results in the loss of hook formation, the weaker DELLA gain-of-function mutant gai-1 is able to form a weak apical hook that opens prematurely. By contrast, DELLA loss-of-function mutants form an exaggerated hook, indicating that DELLA protein function is required to control the degree of hook formation in the wild type. From two recent studies, it has emerged that GA controls the transcription of the ethylene biosynthesis genes AMINOCYCLOPROPANE CARBOXYLIC ACID SYNTHASE 5 (ACS5) and ACS8, of the ethylene response regulator HOOKLESS 1 (HLS1), as well as that of the auxin efflux facilitators PIN3 and PIN7 (An et al., 2012; Gallego-Bartolomé et al., 2011). The mode of transcriptional GA control could be elucidated for two of these GA target genes by chromatin immunoprecipitation (ChIP) where it was shown that ACS8 and HLS1 expression is directly controlled by the DELLA interactors PIF5 and ETHYLENE INSENSITIVE 3/EIN3-LIKE1 (EIN3/EIL1), respectively.

We have examined genes of the auxin transport machinery with regard to their transcriptional regulation by GA. In this study, we identified the AGC kinase WAG2 as a GA-regulated auxin transport gene. We further found that WAG2 represses apical hook opening in dark-grown Arabidopsis seedlings and that WAG2 is expressed in a GA-regulated manner in the concave side of the apical hook. We further identified the DELLA interactor PIF5 as a transcriptional regulator that activates WAG2 expression by binding to a G-box motif in the WAG2 promoter. Finally, in line with previous data on the role of WAG2 as regulator of auxin transport polarity (Dhonukshe et al., 2010), our data suggest that WAG2 may control apical hook opening by phosphorylating PIN proteins and by influencing the formation or maintenance of a specific local auxin maximum in the apical hook.

MATERIALS AND METHODS

Biological material

Unless otherwise stated in the text, mutants and transgenic lines used in this study have been previously described: ga1 (Willige et al., 2007; gai-1 (Peng et al., 1997); rga-24 gai-16 (King et al., 2001); syl1-10 (McGinnis et al., 2003)); DR5:GUS (Ulmasov et al., 1997); DR5rev:GFP (Friml et al., 2003); pif1, pif3, pif4, pif5 and PIFS10 (Fujimori et al., 2004; Hug et al., 2004; Khanna et al., 2007; Leivar et al., 2008; Lorrain et al., 2008; Monte et al., 2004); PIN1:GFP, pin3 and PIN3:GFP (Benková et al., 2003; Zádníková et al., 2010); wag1 and wag2 (Santner and Watson, 2006).

Growth conditions and physiological experiments

Seeds were stratified for 3 days at 4°C, exposed to white light for 8 hours and grown in the dark at 21°C ga1 mutant seeds were incubated for 5 days at 4°C in 100 μM GA3 to induce germination. The seeds were then thoroughly washed five times in water to remove excess GA before exposure to light for 20 hours. To measure growth parameters, all seedlings were grown on vertically oriented plates containing half-strength MS medium without sucrose. At the indicated time points, plates were scanned by a G-box motif in the WAG2 promoter. Finally, in line with previous data on the role of WAG2 as regulator of auxin transport polarity (Dhonukshe et al., 2010), our data suggest that WAG2 may control apical hook opening by phosphorylating PIN proteins and by influencing the formation or maintenance of a specific local auxin maximum in the apical hook.

Growth conditions and physiological experiments

Seeds were stratified for 3 days at 4°C, exposed to white light for 8 hours and grown in the dark at 21°C. ga1 mutant seeds were incubated for 5 days at 4°C in 100 μM GA3 to induce germination. The seeds were then thoroughly washed five times in water to remove excess GA before exposure to light for 20 hours. To measure growth parameters, all seedlings were grown on vertically oriented plates containing half-strength MS medium without sucrose. At the indicated time points, plates were scanned to determine apical hook angles or hypocotyl lengths using the ImageJ software (NIH). The angle of a completely closed apical hook was defined as 180°, whereas the angle of a fully opened hook was defined as 0°.

Cloning and transgenic material

To generate WAGpro:GUS and WAGpro:GUS, 2.5 kb and 2.9 kb promoter fragments were amplified from Col-0 genomic DNA using the primers WAGpro-LP/RP and WAGpro-LP/RP, respectively. These sequences were inserted as EcoRI-Ncol fragments into pCAMBIA1391Z. At least six transgenic lines were generated in the Col-0 ecotype and
analyzed. Plant transformations were performed as previously described (Clough and Bent, 1998). The gene fragments of the cytoplasmic loops of PIN1, PIN2, PIN3, PIN4 and PIN7 were amplified by RT-PCR with specific PINLOOP-FW and PINLOOP-RV primers from Arabidopsis thaliana (Columbia) mRNA. The WAG2-coding sequence was amplified by PCR from cDNA clone U84295 (ABRC). The kinase-dead WAG2 (WAG2KD) coding sequence was created using overlap extension PCR with the primers (WAG2mut5a and WAG2mut3a). The Gateway system-compatible fragments were then cloned into the expression vector pDEST15 (Invitrogen) to generate transgenic lines of the GA biosynthesis mutant ga1 (Willige et al., 2011). In search for possible molecular mechanisms that underlie the control of auxin transport by GA, we also examined cell biological and histological analyses

For GUS staining, etiolated seedlings were fixed in heptane for 15 minutes and incubated in GUS staining solution [100 mM Na-phosphate buffer (pH 7.0), 2 mM K$_2$Fe(CN)$_6$, 2 mM K$_3$Fe(CN)$_6$, 0.1% Triton X-100, 1 mg/ml X-Gluc]. GUS-stained seedlings were photographed using a Leica MZ16 stereo-microscope with a PLAN-APOX1 objective (Leica). Microscopy of PIN1:GFP, PIN3:GFP and DR5rev:GFP was performed on 2- to 4-day-old etiolated seedlings using an Olympus BX61 fluorescence microscope with a digital camera XM10 (Olympus) or a FV1000/IX81 laser scanning confocal microscope.

RESULTS

WAG2 is a GA-regulated AGC protein kinase

We have previously shown that Arabidopsis GA biosynthesis and pathway mutants are deficient in polar auxin transport (Willige et al., 2011). In search for possible molecular mechanisms that underlie the control of auxin transport by GA, we also examined the GA-dependent transcriptional regulation of genes encoding AGCVIII kinase family members that have been or may be implicated in the regulation of polar auxin transport as well as auxin transport proteins (Fig. 1A). To this end, we tested seedlings of the GA biosynthesis mutant ga1 for GA-dependent changes in transcript abundance by quantitative real time (qRT)-PCR. This experiment identified WAG2 as the gene whose transcript abundance is most strongly increased in response to GA3 treatment (Fig. 1A). As light-regulated signaling by the PIF transcription regulators may interfere with GA signaling, we were next interested in examining GA-regulation of WAG2 in dark-grown seedlings to eliminate a possible co-regulation of WAG2 expression by these two stimuli. In addition, this experiment revealed a strong
GA-dependent increase in WAG2 transcript abundance in dark-grown ga1 seedlings, and inversely a decrease in WAG2 abundance in wild-type seedlings that had been depleted from GA by treatment with the GA biosynthesis inhibitor paclobutrazol (PAC) (Fig. 1B). As we observed that the GA-mediated regulation of WAG2 transcription can also take place in the presence of the protein synthesis inhibitor cycloheximide (CHX), we concluded that the GA response is dependent on a protein synthesis-independent mechanism such as GA-induced DELLA protein degradation (Fig. 1C). We then found that WAG2 abundance is reduced in other GA pathway mutants such as gid1a gid1c, gai-1 and sly1-10, which are known to accumulate DELLA repressors and to be increased in the DELLA loss-of-function mutant rga-24 gai-1 (Fig. 1D) (Peng et al., 1997). Finally, we found that WAG2 transcript abundance is reduced after the transfer of dark-grown seedlings to light, suggesting that WAG2 transcription is induced by light-labile regulators such as the PIFs (Fig. 1E). In summary, we concluded that WAG2 expression is regulated by DELLAAs and may be downstream from PIFs, their light-labile interaction partners.

WAG2 is a repressor of apical hook opening

To gain an insight into the possible role of GA-regulated WAG2 transcription, we phenotyped previously characterized wag2 mutants (Santner and Watson, 2006). As WAG2 expression is elevated in dark-grown seedlings, we paid particular attention to the effects of the loss of WAG2 function during skotomorphogenic growth and noticed with interest a decreased apical hook angle in 4-day-old wag2 mutants (Fig. 2A). At the same time, we did not observe any other phenotypes in dark-grown seedlings, such as changes in hypocotyl elongation (supplementary material Fig. S1).

Interestingly, we measured an increased opening of the apical hook only in 3- and 4-day-old wag2 mutant seedlings (during the hook formation phase), and not in 2-day-old seedlings during the hook opening phase, suggesting that WAG2 is required for the repression of hook opening (Fig. 2B). As WAG2 had previously been found to genetically interact with its closest paralog, WAG1, in the control of root growth, we also included wag1 single and wag1 wag2 double mutants in our analysis (Santner and Watson, 2006). However, we found no evidence for a contribution of WAG1 to the apical hook opening phenotype of wag2, neither in the wag1 single mutant nor in the wag1 wag2 double mutant (Fig. 2A,B). We thus conclude that WAG2 represses apical hook opening in dark-grown seedlings and that WAG2 functions independently from WAG1 in this process.

We also tested whether GA is required and sufficient for the normalization of apical hook development in wag2 and wag2 ga1 seedlings. The GA-deficient ga1 mutant fails to form an apical hook and therefore apical hook formation requires GA treatments. In a comparison of GA-treated ga1 and wag2 ga1 mutants, we noted with interest that the normalization of the ga1 phenotype by GA was impaired in the presence of the wag2 mutation, indicating that WAG2 represses apical hook opening in dark-grown seedlings downstream from GA (Fig. 2C).

In order to gain insight into the tissue-specific expression pattern of WAG2 and to understand the divergent role of WAG1 in apical hook opening, we generated transgenic Arabidopsis lines that express the GUS reporter under control of WAG1 and WAG2 promoter fragments (2.5 kb and 2.9 kb, respectively), WAG1pro:GUS and WAG2pro:GUS. Our analysis of the WAG1 and WAG2 expression patterns indicated a specific expression of WAG2pro:GUS but not of WAG1pro:GUS in the concave side of the apical meristem (Fig. 2D).
the apical hook (Fig. 2D,E). The expression of WAG2pro:GUS in the apical hook was GA regulated as shown after crossing WAG2pro:GUS into the GA-deficient ga1 background or treatment of WAG2pro:GUS lines with the GA biosynthesis inhibitor paclobutrazol (PAC) (Fig. 2F-I). WAG2pro:GUS expression thus mirrors the expression of the WAG2 gene as observed in our qRT-PCR experiments (Fig. 1) and reveals the specific expression of WAG2 in the concave side of the apical hook, which is of particular interest with regard to the phenotype of the wag2 mutant. At the same time, the apparent absence of WAG1pro:GUS expression in the apical hook, even after extended staining for GUS reporter activity, is consistent with our finding that WAG1 does not contribute to the wag2 hook phenotype.

WAG2 is regulated by PIF5

As WAG2 expression is controlled by light and GA, we reasoned that WAG2 expression was controlled by PIF5 transcription factors. This hypothesis was particularly intriguing as PIF5 had previously been reported to regulate apical hook maintenance (Gallego-Bartolomé et al., 2011; Khanna et al., 2007). We used qRT-PCR to examine the expression of WAG2 in previously characterized pif1, pif3, pif4 and pif5 single, double and quadruple mutants (Fig. 3A). This analysis revealed a strongly decreased WAG2 transcript abundance in pif5 mutants. At the same time, WAG2 transcript levels were increased in pif4 mutants but slightly decreased in pif4 pif5 (pif45) double mutants. These findings are consistent with the notion that PIF5 is an activator and PIF4 is a repressor of WAG2 expression. Although WAG2 expression was unaltered in pif1 and pif3 single mutants, WAG2 expression was decreased in pif1 pif3 (pif13), suggesting that PIF1 and PIF3 may be functionally redundant activators of WAG2 expression. Importantly, our analysis of an overexpression line of PIF5 (PIF5ox) supported the concept of PIF5 being an activator of WAG2 expression (Fig. 3B). The results from the qRT-PCR analysis were confirmed when we examined the expression of WAG2pro:GUS transgenes in the pif5 and PIF5ox backgrounds, respectively (Fig. 3C). Owing to an apparent linkage between the WAG2pro:GUS transgene and the PIF5 locus, we had to use a different WAG2pro:GUS parental line (line #2) for the cross with pif5, which exhibited a lower (line 2) basal WAG2pro:GUS expression level than our WAG2pro:GUS reference line (line 1). Regardless of this fact and consistent with our qRT-PCR data, we found that WAG2pro:GUS expression in the apical hook is reduced in the pif5 mutant background and increased in PIF5ox when compared with their respective wild-type segregants (Fig. 3C).

We next examined the contribution of PIF5 to apical hook opening. In agreement with the previously published study, we detected also in our experimental conditions decreased and increased apical hook angles in pif5 and PIF5ox lines, respectively (Fig. 3D; supplementary material Fig. S2). These findings are thus consistent with the notion that the reduced and increased WAG2 transcript abundance in PIF5 loss-of-function mutants and overexpression lines may be causative for their differential apical hook phenotype.

To examine whether WAG2 is a direct transcription target of PIF5, we performed ChIP experiments followed by qRT-PCR with dark-grown seedlings using PIF5ox, which expresses an HA-tagged PIF5. Our binding site searches identified one G-box as putative PIF-binding site in the promoter of WAG2. Our ChIP experiment then revealed that this site is specifically bound by PIF5:HA, thus PIF5 may be a direct regulator of WAG2 (Fig. 3E). Consistent with the differential transcriptional regulation of WAG2 and WAG1, we did not find G-boxes in the promoter of WAG1.

WAG2 is required for a local auxin maximum in the apical hook

The analysis of mutants of the PIN auxin efflux facilitators implicated PIN1, PIN3, PIN4 and PIN7 in the maintenance of the apical hook (Zádníková et al., 2010). These analyses also identified pin3 as the single PIN gene mutant with the strongest apical hook phenotype. As WAG2 is an established regulator of PIN polarity (Dhonukshe et al., 2010), a link between WAG2 function and auxin transport regulation appeared reasonable. We therefore tested the genetic interaction between WAG2 and PIN3 in wag2 pin3 double mutants and compared their apical hook phenotype with that of the single mutants. This analysis revealed an enhancement of the apical
hook opening defect in the double mutant when compared to the single mutants suggesting that WAG2 and PIN3 act together to repress apical hook opening (Fig. 4A). As it is known that other PINs participate in apical hook opening, it can of course be envisioned that other PINs are involved in WAG2-regulated hook development.

It has previously been reported that WAG2 phosphorylates PIN2 and thereby controls PIN2 polarity in cortical root cells (Dhonukshe et al., 2010). As PIN2 is not expressed in the apical hook (Zádníková et al., 2010) and as we had observed an enhancement of the apical hook phenotype in the wag2 pin3 double mutant, we questioned whether WAG2 may phosphorylate PIN3 and other members of the PIN protein family besides PIN2. Using recombinant PIN fragments that correspond to their intracellular cytoplasmic loop, we could demonstrate that recombinant WAG2 phosphorylates – in addition to PIN2 – PIN1, PIN3, PIN4 and PIN7, at least in vitro, thus all PINs with an established role in cell-to-cell auxin transport and apical hook development (Fig. 4B). We subsequently examined wild-type and wag2 apical hooks to find out whether the loss of WAG2 had a consequence on the polarity or distribution of PIN1-GFP and PIN3-GFP. This analysis did not reveal any striking differences in PIN distribution or polarity in the epidermis and cortex of the apical hook, suggesting that changes in PIN polarity may not be responsible for the wag2 apical hook phenotype (Fig. 4C,D). At the same time, our observations by epifluorescence microscopy indicated that PIN1-GFP and PIN3-GFP are strongly expressed in the inner tissue of the apical hook (supplementary material Fig. S3). Unfortunately, specifically in the apical hook region and in contrast to the remaining hypocotyl, these endodermis and stele cell layers are not amenable to confocal microscopy analysis. As we cannot image PIN proteins in this region, we are also unable to draw any conclusions on the effect of WAG2 on PIN protein behavior, e.g. polarity. To test whether changes in PIN protein abundance are the cause for the changes in apical hook formation in wag2, we also performed immunoblots to detect PIN1 and PIN3 in wild-type and wag2 seedlings.

Fig. 4. WAG2 phosphorylates PIN proteins and regulates the apical hook auxin maximum. (A) Apical hook opening phenotype of 3.5-day-old seedlings. Shown is the average and the standard deviation of two biological replicates (n>20). Asterisks indicate the significances (Student’s t-test: *0.01<P<0.05; **0.001<P<0.01). a, b and c indicate the comparison with Col, to wag2 or to pin3, respectively. (B) Phosphorylation experiment of recombinant GST-tagged PIN fragments by recombinant GST-tagged WAG2 or kinase-dead WAG2in. The two panels on the left represent immunoblots to demonstrate equal loading of the purified proteins. The two panels on the right are autoradiographs that reveal autophosphorylation of the active GST:WAG2 but not of GST:WAG2in and transphosphorylation of GST-tagged cytoplasmatic loops of PINs by GST:WAG2. (C,D) Confocal images of the concave apical hook region of (C) PIN1:PIN1:GFP- and (D) PIN3:PIN3:GFP-expressing, 3.5-day-old skotomorphogenic wild-type and wag2 mutants. Arrowheads indicate the polar distribution of PIN:GFP proteins. Scale bars: 25 μm. (E) Immunoblot with anti-GFP antibody of 15 μg total protein extracts prepared from the cotyledons and 1-2 mm of the apical hypocotyl of 3.5-day-old dark-grown PIN1:PIN1:GFP-expressing seedlings. (F) Immunoblot with anti-PIN3 antibody of 15 μg membrane protein extracts from the cotyledons and 1 to 2 mm of the apical hypocotyl of 3.5-day-old dark-grown seedlings. (G) Photographs of shoot apices of DR5:GUS-expressing wild-type and ga1 3.5-day-old dark-grown seedlings grown, where indicated, on 1 μM NPA- or 1 μM PAC-containing media. Scale bar: 200 μm. (H) Confocal images of the apical hook of DR5rev:GFP-expressing 3.5-day-old dark-grown wild-type, ga1 and wag2 mutants. Scale bar: 200 μm. (I) Immunoblot with anti-GFP antibody of 15 μg total protein extracts prepared from the cotyledons and 1 to 2 mm of the apical hypocotyl of 3.5-day-old skotomorphogenic DR5rev:GFP-expressing seedlings. Arrowheads indicate the position of the apical hook auxin maximum. (J) Confocal images of the cotyledons of DR5rev:GFP-expressing 3.5-day-old skotomorphogenic wild-type and wag2 seedlings. Scale bar: 200 μm.
seedlings (Fig. 4E,F). As PIN protein levels were identical in both genotypes, we concluded that changes in PIN protein abundance are not the cause for the apical hook phenotype of wag2.

We next examined auxin distribution in the apical hook region using the well-established DR5 auxin (response) reporters. DR5:GUS, as well as DR5rev:GFP expression analysis revealed a strong signal of the reporters in the concave side of the apical hook in dark-grown Arabidopsis seedlings (Fig. 4G,H). In agreement with previous reports, the lateral apical hook expression pattern of DR3:GUS, as well as auxin hook formation were absent in seedlings that had been treated with the auxin transport inhibitor NPA or the GA biosynthesis inhibitor PAC (Fig. 4G,H) (Gallego-Bartolomé et al., 2011; Lehman et al., 1996; Zádniková et al., 2010). In addition, when we introduced DR5:GUS and DR5rev:GFP into the ga1 mutant, the DR5 signal for the apical hook was not visible, unless the ga1 mutant had been treated with GA (Fig. 4G,H). These findings confirmed the recently established observations from other laboratories showing that auxin transport is required for the apical hook formation and therefore an analysis of PIN polarity in the inner tissues of the apical hook would be highly desirable but can at present not be realized. It also did not escape our attention that auxin transported from the cotyledons may be required for the establishment of the auxin maximum in the apical hook, as the loss of the auxin hook maximum is a consequence of the reduced auxin levels in the cotyledons that we infer from the reduced DR5rev:GFP expression in this tissue. As several reports point at a role of PIF transcription factors in the control of auxin biosynthesis and response (Franklin et al., 2011; Hornitschek et al., 2012; Li et al., 2012; Nozue et al., 2007; Sun et al., 2012), the correlation of WAG2 expression and the apparent auxin maximum in the apical hook could also be the consequence of a direct regulation of auxin distribution via the PIFs. As the local auxin maximum is strongly reduced in wag2 mutants, the maintenance of this auxin maximum should, however, be WAG2 dependent, either through the postulated role of WAG2 in controlling auxin transport or another role of WAG2 on auxin biosynthesis and signaling.

Our interest in WAG2 had arisen from our observation that WAG2 abundance is increased after GA treatment. In recent years, different families of transcription factors have been reported that are controlled by DELLA repressors of the GA pathway (Schwechheimer, 2011).
We inferred from our observation that WAG2 expression is controlled by light that WAG2 is downstream from the light-labile PIF transcription factors. Comparing WAG2 expression patterns in different pif mutant backgrounds and subsequent ChIP analyses identified PIF5 as one PIF transcription factor that activates WAG2 expression downstream from GA, DELLAs and light. The role of PIF5 as a regulator of WAG2 is also supported by the apical hook phenotype of pif3 mutants and PIF5 overexpressors.

Based on the close relationship between WAG2 and WAG1, and the fact that both kinases had previously been shown to act in a functionally redundant manner in the control of root growth, we also examined the functional redundancy between the two kinases as repressors of apical hook opening. Interestingly, we found no evidence for a role of WAG1 in apical hook formation. Most striking is our observation that WAG1 is not expressed in the apical hook region and that the WAG1 promoter, in contrast to the WAG2 promoter, does not contain any G-boxes, which are known binding sites for PIF transcription factors.

In summary, our results propose a model whereby PIF5, the activity of which is regulated by GA, DELLAs, and light, controls WAG2 expression in dark-grown seedlings. We further propose that the tissue-specific expression and activity of WAG2 in the concave side of the dark-grown seedling alters PIN polarity or PIN activity by direct PIN phosphorylation and that thereby WAG2 contributes to the regulation of a lateral auxin maximum that is required for apical hook maintenance in dark-grown seedlings (Fig. 5). Interestingly, we also observed that WAG2 expression in the concave side of the dark-grown seedling can be detected throughout dark-grown seedling development whereas the phenotype of wag2 mutants is restricted to the apical hook opening phase. Therefore, our results also suggest that other regulatory mechanisms must exist that control hook formation.

Importantly, DELLAs proteins have most recently also been shown to repress the ethylene signaling proteins EIN3 and EIL1 (An et al., 2012). Ethylene promotes apical hook formation and ein3 eil1 mutants are insensitive to the ethylene effect on apical hook photomorphogenesis in darkness. Therefore, the concave side of the dark-grown seedling is downstream from GA, DELLAs and light. We inferred from our observation that WAG2 expression in the concave side of the dark-grown seedling alters PIN polarity or PIN activity by direct PIN phosphorylation and that thereby WAG2 contributes to the regulation of a lateral auxin maximum that is required for apical hook maintenance in dark-grown seedlings (Fig. 5). Interestingly, this model also suggests that, besides the ethylene/GA-dependent regulation of HLS1, a GA-controlled auxin transport-dependent process must exist that modulates hook curvature through asymmetric auxin accumulation. In the context of this very recent study, the GA-dependent control of WAG2 expression is a good candidate for this elusive auxin transport regulatory mechanism (Fig. 5).

Acknowledgements
We thank Inês Barbosa and René Richter for critical comments on the manuscript and Jutta Elgner for excellent technical support.

Funding
This work was supported by grants from the Deutsche Forschungsgemeinschaft to C.S. [SchW751/8-1 and SFB924].

Competing interests statement
The authors declare no competing financial interests.

Supplementary material
Supplementary material available online at http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.081240/-/DC1

References

