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P14/P28 and absent at P60 (Fig. 5A,B; data not shown). The
specificity of this staining was validated in EC-specific, inducible
Vegfr2 mutants (supplementary material Fig. S9A). Similar to
Vegfr2, Vegfr3 protein, which was much more abundant on veins
and capillaries compared with arteries, gradually decreased during
maturation and only weak staining was visible at P28 and P60
(Fig. 5A,B; supplementary material Fig. S9A-C). As mentioned
above, signals obtained by Isolectin B4 staining also decreased in
maturing vessels and were much weaker at P28/P60 than at P10
(Fig. 5A,B).

The developmental downregulation of VEGF receptor expression
in the maturation phase between P10 and P28 was compromised in
Rbpji∆EC mutant retinas. In addition to enhanced Isolectin B4

binding, strongly increased Vegfr2 and Vegfr3 immunostaining was
observed in distal veins and perivenous capillaries, which are the
sites of ectopic endothelial sprouting and proliferation (Fig. 6A,C).
Further indicating a role of Notch in the vessel maturation program,
the downregulation of Vegfr3 expression was enhanced after EC-
specific NICD overexpression (NICDiEC-OE) between P10 and P18
(supplementary material Fig. S10A-D). This was accompanied by
accelerated vein remodeling, pruning of side branches and
decreased vessel density in the distal perivenous plexus
(supplementary material Fig. S10A). Likewise, even at P28, when
Vegfr2 levels were already very low in control retinas and
comparable to levels in NICDiEC-OE mutants, Vegfr3 staining in
perivenous capillaries and, in particular, in distal veins was
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Fig. 6. Downregulation of VEGF
receptors during maturation
requires Notch. (A) Regions with
vascular defects in RbpjiΔEC mutants at
P28 show ectopically high expression
of Vegfr2 and Vegfr3 (arrows). ECs are
marked by Isolectin B4 (green/white).
(B,C) Analysis of Vegfr2 and Vegfr3
expression in RbpjiΔEC (B) and Pdgfb-
iCre × Rosa26-NICD (NICDiGOF) (C)
capillaries and veins relative to
corresponding controls. P-values by
ANOVA. Error bars indicate s.e.m. 
(D) Inducible overexpression of active
Notch (NICD) in NICDiGOF mutants
lowered residual Vegfr3 (blue, arrows)
expression in veins at P28. a, artery; v,
vein.
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significantly decreased after expression of active Notch from P10
onwards (Fig. 6D). Suggesting that some of this regulation is
transcriptional, Vegfr3 mRNA levels were upregulated in Rbpji∆EC

lung lysates (supplementary material Fig. S10E,F). These findings
identify Notch as a key regulator of vessel maturation and
quiescence in the retinal vasculature (Fig. 7).

DISCUSSION
Vessel remodeling and maturation
The angiogenic expansion of the blood vessel network involves a
series of distinct but strongly coordinated steps including
proliferation, sprouting, anastomosis, pruning, remodeling and the
acquisition of quiescence (Eilken and Adams, 2010; Potente et al.,
2011). Some of these processes occur simultaneously, whereas
others are spatially or temporally separated (Fig. 7). For example,
while endothelial sprouting, proliferation and vessel anastomosis
contribute to the expansion of the vasculature at the angiogenic front
in the peripheral retina, the more central, previously formed vessels
have already reorganized into hierarchically organized arterial and
venous trees with connecting capillaries. The majority of the
remodeling and maturation processes in the retinal vasculature
occur after the growth phase (i.e. when ECs have stopped sprouting
and proliferating) and extend over a period of least 2 weeks
(Fig. 1A). This lengthy time course and the extensive reorganization
of the retinal vasculature between P10 and adulthood suggest that
the underlying regulation is likely to be complex and multifactorial.
Certain vessel connections are pruned away, whereas others are
presumably enforced. One can expect that factors such as blood
flow, laminar shear stress, EC-EC junctional contacts, cell-matrix
adhesion, and interactions with perivascular cells become enhanced.
As we show here, the expression of VEGF receptors is gradually
downregulated, which is likely to reduce the ability of ECs to
respond to pro-angiogenic VEGF family growth factors. The
transcriptional profile of the vascular cells and many other cellular
parameters are likely to change substantially. Thus, although we
identify the Notch pathway as an important regulator of vascular
remodeling and conversion to quiescence, numerous other pathways
are likely to contribute.

Are the findings in the retinal vasculature, which was chosen
as a model system because it develops later than most other vessel
beds and can be imaged in whole-mounts at high resolution,
relevant for remodeling processes in other organs? Several
examples suggest that this might be the case. The vascularization

of the brain occurs at mid-gestation in the mouse embryo, whereas
the sealing of EC-EC contacts and the formation of the blood-
brain barrier are only completed in the postnatal animal (Nitta et
al., 2003; Ruhrberg et al., 2002). Vessel sprouting can be observed
in the dermis of the mouse embryo (Wang et al., 2010), but this
process is largely completed before birth despite the extensive
growth of the organism during postnatal life. A dense and
primitive plexus of vessels has formed around the trachea of the
mouse by embryonic day 16.5, and this collapses soon after birth
and regrows, adopting a hierarchical, ladder-like pattern. In this
system, capillary loops and blind-ended sprouts/projections
continue to be resolved until the animals have reached adulthood
(Ni et al., 2010). The lymphatic vasculature, as the second tubular
system assembled by ECs, is formed and extends substantially
during the second half of embryonic development, but it is only in
postnatal life/adolescence that morphological changes are
completed and the vessels acquire resistance to VegfC withdrawal
(Karpanen et al., 2006; Norrmén et al., 2009). Taken together,
vessel remodeling and maturation appear to involve similarly
time-consuming and complex processes in different tissues and
vascular beds, which, in turn, indicates the wider relevance of
findings made in the retina model.

Notch function in the growing vasculature
The functional roles of Notch signaling and its molecular crosstalk
with other pathways appear increasingly complicated. Previous
work has established that the pathway is a key regulator of arterial
differentiation. Loss of Notch signaling in early mouse and
zebrafish embryos led to compromised arterial-venous (AV)
differentiation, the loss of arterial markers and the ectopic
expression of venous markers within the dorsal aorta (Duarte et al.,
2004; Krebs et al., 2004; Lawson et al., 2001; Zhong et al., 2001).
Conversely, ectopic activation of Notch signaling repressed venous
markers and triggered the formation of AV shunts (Carlson et al.,
2005; Lawson et al., 2001; Murphy et al., 2012). Although the
continued expression of Notch pathway components in the arterial
endothelium might suggest a role in the maintenance or stabilization
of arteries throughout life, our findings show that this is actually
not the case in the retina. Nevertheless, our genetic experiments
affecting all retinal ECs confirm that Notch activity controls the
patterning and extension of growing arteries, which presumably
reflects a role in remodeling periarterial capillaries and not in Bmx+

arterial ECs.
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Fig. 7. Notch functions in angiogenesis. Previously known
(blue) and newly identified (red) roles of Notch signaling in EC
sprouting, proliferation, arterial differentiation, artery extension,
vein remodeling, and the transition to a mature, quiescent
network. Surprisingly, Notch activity is not required in the Bmx-
positive arterial endothelium.
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Another well-established function of the Notch pathway is the
regulation of EC behavior in angiogenic growth. Published work
has shown that the pathway suppresses endothelial proliferation and
sprouting and helps to coordinate the dynamic behavior of tip and
stalk cells (Hellström et al., 2007; Jakobsson et al., 2010; Lobov et
al., 2007; Suchting et al., 2007). These activities have been linked
to the modulation of VEGF receptor expression and, in zebrafish,
the microRNA miR-221 (Benedito et al., 2012; Hellström et al.,
2007; Nicoli et al., 2012; Suchting et al., 2007). By contrast, much
less is known about the function of Notch in vessel remodeling,
stabilization and maturation. Lobov et al. (Lobov et al., 2011) have
shown that Dll4/Notch inhibition can prevent retinal capillary
occlusion and regression in the oxygen-induced retinopathy model.
This was attributed to upregulated expression of the vasodilator
adrenomedullin and suppression of the vasoconstrictor
angiotensinogen. The effect of angiotensin II, a potent
vasoconstrictor that can induce the collapse and regression of
immature vessels, was significantly attenuated 24 hours after the
administration of soluble Dll4-Fc fusion protein, which inhibits
Dll4-Notch signaling (Lobov et al., 2011). The same study also
suggested that global inactivation of a single Dll4 allele or Dll4-Fc
administration can reduce vessel pruning without affecting
sprouting or proliferation between P7 and P10. Our characterization
of genetic models, however, strongly indicates that Notch promotes
physiological remodeling of the retinal vasculature and thereby
enhances activities such as pruning. Moreover, we find that Dll4-
Notch signaling is necessary to impose a quiescent endothelial
phenotype devoid of activities such as sprouting and proliferation at
stages up to P28. Unexpectedly, this important role of Dll4-Notch
signaling was most prominently required in veins and perivenous
capillaries, whereas previous work has linked the pathway to the
growth and differentiation of arteries (Gridley, 2007; Shawber and
Kitajewski, 2004; Swift and Weinstein, 2009).

Vascular remodeling in pathological settings
Pathological angiogenesis in diseases such as cancer, diabetic
retinopathy or the wet form of age-related macular degeneration is
frequently associated with excessive expression of VEGFA and
other pro-angiogenic factors, which leads to structural
abnormalities, excessive proliferation and sprouting, high
permeability and defective patterning (Carmeliet and Jain, 2011;
Ferrara, 2005). In tumors, the administration of VEGFA/VEGFR2
inhibitors can affect many of these features and induce pronounced
regression of the unstable vasculature (Carmeliet and Jain, 2011;
Jain, 2003; Mancuso et al., 2006). The residual tumor vasculature
surviving such treatments often displays a ‘normalized’ morphology
resembling many aspects of mature vessels in healthy tissues.

As the cellular and molecular processes contributing to vessel
normalization remain incompletely understood, better insight into
the events mediating physiological vessel remodeling and
maturation is likely to improve our understanding of the defects in
pathological angiogenesis and might clear the path to new
therapeutic opportunities. This might also benefit therapeutic
neoangiogenesis in wound healing and tissue regeneration, as we
currently lack clear strategies for the local generation of new vessel
beds. Thus, insights gained in the remodeling of retinal vasculature
might well provide valuable clues for the development of
therapeutic regimes for the generation of fully functional and stable
blood vessels during tissue repair processes.
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