Tracking and Transforming Neocortical Progenitors by CRISPR/Cas9 Gene Targeting and *PiggyBac* Transposase Lineage Labeling

Fuyi Chen¹,², Joel Rosiene¹, Alicia Che¹,³, Albert Becker⁴ and Joseph LoTurco¹,⁵

¹, Department of Physiology and Neurobiology, Institute for Systems Genomics, Institute for Brain and Cognitive Science, University of Connecticut, Storrs, CT 06268 United States

², Current address: Department of Neurology, Yale School of Medicine, New Haven, CT 06511 United States

³, Current address: Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021 United States

⁴, Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany

⁵, Corresponding author: 75 North Eagleville Road, Unit 3156, Storrs, CT 06268

Joseph.loturco@uconn.edu, Tel: 860-486-3283, Fax: 860-486-3303

Running title: Tracking lineage of neural progenitors with targeted somatic mutations

Key words: CRISPR/Cas9, neural progenitors, lineage, *PiggyBac*, in utero electroporation, glioblastoma multiforme
Tracking and Transforming Neocortical Progenitors by CRISPR/Cas9 Gene Targeting and PiggyBac Transposase Lineage Labeling

Fuyi Chen, Joel Rosiene, Alicia Che, Albert Becker and Joseph LoTurco

Abstract

The ability to induce targeted mutations in somatic cells in developing organisms and then track the fates of those cells is a powerful approach both for studying neural development and for modeling human disease. The CRISPR/Cas9 system allows for such targeted mutagenesis, and we therefore tested it in combination with a piggyBac transposase lineage labeling system to track the development of neocortical neural progenitors with targeted mutations in genes linked to neurodevelopmental disruptions and tumor formation. We show that sgRNAs designed to target PTEN successfully decreased PTEN expression, and led to neuronal hypertrophy and altered neuronal excitability. Targeting NF1, in contrast, caused increased astrocytogenesis at the expense of neurogenesis, and combined targeting of three tumor suppressors (PTEN, NF1 and P53) resulted in formation of glioblastoma tumors. Our results demonstrate that CRISPR/Cas9 combined with piggyBac transposase lineage labeling can produce unique models of neurodevelopmental disruption and tumors caused by somatic mutation in neural progenitors.
Introduction

A general approach to studying developmental mechanisms is to mutate genes of interest, and then evaluate the resulting phenotypes. Recent breakthroughs in genome engineering technology adapted from clustered regularly interspaced short palindromic repeats (CRISPR) and Cas9 systems in prokaryotes (Cong et al., 2013; Mali et al., 2013), have now been applied with unprecedented speed and precision to a wide variety of approaches. The type II CRISPR/Cas9 system has been used to generate transgenic animals in multiple species (Cho et al., 2013; Gratz et al., 2013; Yang et al., 2013; Hai et al., 2014), to induce or correct genetic mutations in vivo (Ding et al., 2014), to screen for genes involved in specific biological processes (Shalem et al., 2014; Wang et al., 2014), to activate or repress gene expression (Cheng et al., 2013; Gilbert et al., 2013; Qi et al., 2013), to isolate (Fujita and Fujii, 2013) (Chen et al., 2013) specific regions of interest within the genome, and to knock out genes involved in synaptic transmission (Incontro et al., 2014; Straub et al., 2014).

In utero electroporation (IUE) is an efficient method to deliver multiple transgenes into rodent neural progenitors in the developing forebrain. It has been used in studies of neocortical development (LoTurco et al., 2009), and when combined with a binary piggyBac transposon plasmid system, in utero electroporation can be used as a lineage and fate-mapping tool for neural progenitors (Chen and LoTurco, 2012; Chen et al., 2014b; Siddiqi et al., 2014). The system has also been used to generate animal models of CNS tumors (Chen et al., 2014a; Glasgow et al., 2014). In this report, we combine the CRISPR/Cas9 system with in utero electroporation and piggyBac transposase lineage labelling to induce somatic mutations in cells in neural progenitor lineages and to investigate the effects on cells in the lineage. We tested two short guide sequences (sgRNAs) targeting rat PTEN, and these successfully abolished PTEN
expression in neurons. Moreover, PTEN null neurons demonstrated phenotypes that were similar to PTEN knockout or RNAi knockdown neurons previously reported (Kwon et al., 2001; Fraser et al., 2004; Luikart et al., 2011) including hypertrophy and altered neuronal excitability. We also found that sgRNA designed against NF1 leads to loss of NF1 expression and to a neural progenitor fate switch that increased gliogenesis. Finally we show that targeting three tumor suppressors (PTEN, NF1, and P53) by multiplex CRISPR/Cas9, leads to the formation of glioblastoma multiforme tumors. Our results demonstrate that the CRISPR/Cas9 system can be used to efficiently target genes in developing brain in vivo and to generate novel models of glioblastoma and neurodevelopmental disruption.

Results

Knocking out PTEN expression using CRISPR induced somatic mutation

To investigate the application of CRISPR to the central nervous system, we designed two short guide RNAs (sgRNAs) to target either of two exons of the rat phosphatase and tensin homolog (PTEN; exon 6 or exon 8) (Fig. 1A). We cloned these two sgRNAs into pX330 vector containing the wild type human codon optimized SpCas9 (Cong et al., 2013). In vitro SURVEYOR assay in rat neuroblastoma B104 cells showed that both sgRNAs were able to introduce mutations at targeted PTEN genomic loci in rat neuroblastoma cells (Fig. S1A). To test whether the sgRNAs targeting PTEN were able to introduce mutation in vivo, we used in utero electroporation to deliver pX330-PTEN E6 and pX330-PTEN E8 into E14 neocortical neural progenitors in rat. Empty pX330 vector containing wild type Cas9 but no sgRNA was used to control for Cas9 activity, and pCAG-mRFP was used as in utero electroporation control. All plasmids were used at the concentration of 1.5µg/µl. 1µg/µl pCAG-eGFP was co-
electroporated with CRISPR constructs, empty pX330 and pCAG-mRFP to visualize transfected cells. To further test whether sgRNA directed Cas9 targeting of PTEN can induce somatic mutation in vivo, we performed an in vivo SURVEYOR assay on genomic DNAs isolated from acute dissected transfected tissue from a P19 pX330-PTEN E6 transfected brain. As shown in Fig. S1B, sgRNA targeting PTEN exon 6 successfully induced mutations at the PTEN locus in vivo.

In immunofluorescence histochemistry for PTEN we found that 86 ±3.8 % (n=3 animals) of pX330-PTEN E6 and 82 ±5.2% (n=3 animals) pX330-PTEN E8 transfected neurons (GFP positive) were negative for PTEN (Fig. 1C). In contrast, in control transfected brains (n=3) 1.6 ±0.8% of neurons (5/314) were found to be PTEN negative in pX330 transfected animals (One-way ANOVA, F=88.05, p=1.61-E06; followed by post hoc Tukey HSD test; pX330-PTEN E6 vs. pX330, p=0.001; pX330-PTEN E8 vs. pX330, p=0.001). These results indicate that both sgRNAs targeting PTEN were able to introduce mutations in vivo at PTEN genomic loci that resulted in loss of PTEN protein expression with high efficacy.

PTEN mutated neurons were hypertrophic and showed altered neurophysiology

We assessed the phenotypes of neurons generated from E14 neural progenitors transfected with pX330-PTEN-E6, pX330-PTEN-E8, or the two controls (n=3 for each group). In all 4 conditions, the transfected cells migrated normally to their correct laminar positions, suggesting that they had acquired an appropriate neuronal identity. In both, PTEN CRISPR conditions approximately 10% of transfected neurons were ectopically located in white matter or deep cortical lamina (Fig. 1D,E), a significantly greater proportion than were in those ectopic positions in control transfections (One-way ANOVA, F=32.91, p=7.53e-05; followed by post
hoc Tukey HSD test; pX330-PTEN E6 vs. pX330, p=0.001; pX330-PTEN E6 vs. CAG-GFP, p=0.001; pX330-PTEN E6 vs. pX330, p=0.025; pX330-PTEN E6 vs. CAG-GFP, p=0.025). This result is consistent with previous studies showing that neuronal migration defects occur in a subset of PTEN null neurons (Backman et al., 2001; Kwon et al., 2001; Zhu et al., 2012).

We also quantified the area of neuronal somas in PTEN CRISPR targeted neurons in layer II/III, and consistent with previous reports of hypertrophy in cases of PTEN deletion or knockdown (Kwon et al., 2001; Fraser et al., 2004; Luikart et al., 2011), found that neurons transfected with PTEN targeting sgRNAs showed substantially increased somal areas (Fig. 2A). At P19, pX330 transfected neurons (212.7±5.7 µm2, n=85) and CAG-mRFP transfected neurons (201.2±5 µm2, n=74) had areas that did not significantly differ (One way ANOVA, F= 3.14 p=0.08) (Fig. 2B). Neurons transfected with pX330-PTEN E6, in contrast, had significantly increased soma size (453.8±5.2 µm2, n=72) compared to neurons transfected with pX330 or CAG-mRFP (One way ANOVA, F=559.28, p=1.11e-16; followed by post hoc Tukey HSD test; pX330-PTEN E6 vs. pX330, p=0.001; pX330-PTEN E6 vs. CAG-mRFP, p=0.001) (Fig. 2B). Similarly, pX330-PTEN E8 transfected neurons had an average somal size of 428.5±12 µm2 (n=88); a value significantly greater than those of neurons transfected with pX330 or CAG-mRFP (One way ANOVA, F= 241.83, p= 1.11e-16; followed by post hoc Tukey HSD test; pX330-PTEN E8 vs. pX330, p=0.001; pX330-PTEN E8 vs. CAG-mRFP, p=0.001), and the soma sizes of pX330-PTEN E6 and pX330-PTEN E8 transfected neurons did not significantly differ (One-way ANOVA, F=2.77, p=0.98) (Fig. 2B). To quantify and compare another measure of neuronal hypertrophy, we measured the width of the primary dendrites at 50µm from the center of the soma. Neurons transfected with the two control plasmids, CAG-mRFP and pX330, had similar primary dendritic widths of 2.9±0.2µm (n=14), and 2.8±0.2µm (n=25) respectively (One way
ANOVA, F= 0.13, p=0.72) (Fig. 2C). In contrast, the primary dendritic widths in pX330-PTEN E6 transfected neurons were 4.7±0.2µm (n=24), which was significantly larger than CAG-mRFP or pX330 transfected neurons (One way ANOVA, F= 30.54, p= 7.13e-10; followed by post hoc Tukey HSD test; pX330-PTEN E6 vs. pX330, p=0.001; pX330-PTEN E6 vs. CAG-mRFP, p=0.001). Similarly, pX330-PTEN E8 transfected neurons had significantly thicker primary dendrites (5.4±0.2 µm, n=18) than CAG-mRFP or pX330 transfected neurons (Fig. 2C) (One way ANOVA, F= 55.92, p= 6.96e-14; followed by post hoc Tukey HSD test; pX330-PTEN E8 vs. pX330, p=0.001; pX330-PTEN E8 vs. CAG-mRFP, p=0.001).

We next examined the electrophysiological properties of transfected neurons. Neurons transfected with CAG-mRFP, pX330 and pX330-PTEN E8 had similar resting membrane potentials (CAG-mRFP: -74.99 ± 1.97 mV, n = 13; pX330: -72.98 ± 0.89 mV, n = 6; pX330-PTEN E8: -71.71 ± 1.19 mV, n = 9; one-way ANOVA, F2,25 = 1.43, p = 0.26; followed by Tukey’s multiple comparisons test, difference not significant between any two conditions; Fig.3B). However, consistent with the increased soma size in pX330-PTEN E8-transfected cortical pyramidal neurons, we found significantly lower input resistance in this condition when compared with neurons transfected with the other two constructs (pX330-PTEN E8: 44.03 ± 3.57 MΩ, n = 12; CAG-mRFP: 98.42 ± 11.98 MΩ, pX330: 76.66 ± 5.941 MΩ. One-way ANOVA, F2,22 = 11.48, p = 0.0004; followed by Tukey’s multiple comparisons test, pX330-PTEN vs. pX330: p = 0.009, pX330-PTEN vs. CAG-mRFP: p = 0.0003, pX330 vs. CAG-mRFP: p = 0.11; Fig. 3A,C). We also measured the frequencies of spontaneous synaptic events (sEPSC) in each condition. Neurons transfected with pX330-PTEN have markedly higher sEPSC frequencies compared to ones transfected with pX330 or CAG-mRFP (pX330-PTEN: 8.27 ±1.01 Hz, n=7; pX330: 3.75 ± 0.60 Hz, n=12; CAG-mRFP: 5.03 ± 0.90 Hz, n=6; one-way ANOVA, F2,22 =
8.74, p = 0.002; followed by Tukey’s multiple comparisons test, pX330-PTEN vs. pX330: p = 0.001, pX330-PTEN vs. CAG-mRFP: p = 0.04, pX330 vs. CAG-mRFP: p = 0.52; Fig.3E,F). Similarly, in the presence of tetrodotoxin, no difference in miniature EPSC (mEPSC) frequencies were observed between CAG-mRFP and pX330 transfected neurons, while mEPSC frequencies of pX330-PTEN transfected neurons remained significantly higher (pX330-PTEN: 4.79 ± 0.50 Hz, n=7; pX330: 2.95 ± 0.53 Hz, n=12; CAG-mRFP: 1.33 ± 0.19 Hz, n=6; one-way ANOVA, F2,22 = 8.85, p = 0.001; followed by Tukey’s multiple comparisons test, pX330-PTEN vs. pX330: p = 0.04, pX330-PTEN vs. CAG-mRFP: p = 0.001, pX330 vs. CAG-mRFP: p = 0.10; Fig.3D). Taken together, the phenotypes from the PTEN CRISPR transfected neurons were remarkably consistent with the loss of function PTEN phenotypes previously described in mouse knockouts, and RNAi treated neurons (Kwon et al., 2001; Fraser et al., 2004; Luikart et al., 2011).

NF1 and P53 CRISPR

To further explore the application of CRISPR/Cas9 and to study the effects of somatic mutations on the lineage of neural progenitors, we designed and tested sgRNAs targeting rat Neurofibromin 1 (NF1) exon 1 (pX330-NF1 E1) and P53 exon 6 (pX330-P53 E6). Both sgRNAs were able to introduce mutations at the targeted genomic locus in rat neuroblastoma B104 cells as determined by SURVEYOR assays (Fig. S1C). To test the efficacy of sgRNAs targeting NF1 and P53 on protein expression in vivo, we initially tested for changes in expression of both proteins in neurons labeled without the piggyBac transposon lineage label, thereby only labeling the immediately generated cohort of neurons and not subsequently generated cells in the progenitor lineage (e.g. astrocytes and oligodendrocytes). Immunohistochemistry showed that sgRNAs targeting NF1 and P53 reduced the percentage of cells expressing NF1 and P53
expression in post mitotic neurons at P19 (Fig. S1D-G). For NF1 CRISPR transfected brains 22 ±0.2% (132/564, n=3 brains) were NF1 negative while in 3 brains transfected with pX330 1.78±0.06% (10/514) transfected neurons were negative for NF1 (Fig. S1D, E) (One way ANOVA, F=71.40, p=1.22e-6). Similarly, 23.5±1.8% of pX330-P53 E6 transfected neurons (43/182, n=3, at least 3 sections from each brain) were negative for P53 (Fig.S1G) and 0.5±0.3% (4/420, n=3, at least 3 sections from each brain) transfected neurons were negative for P53 in pX330 transfected brains (Fig.S1F) (n=3, 3 sections from each brain, One-way ANOVA, F=107.15, p=1.12e-6).

Tracking CRISPR targeted neocortical progenitor lineages using piggyBac lineage mapping

Standard IUE with episomal plasmids fails to label the entire lineage of neocortical progenitors because episomal plasmids are lost with cell division (Chen and LoTurco, 2012; Chen et al., 2014b; Siddiqi et al., 2014). In order to label the lineage of CRISPR targeted progenitors in vivo we used a binary piggyBac transposase plasmid system that when transfected by IUE produces stable integration of donor transgenes into the entire progenitor lineage. For these experiments a piggyBac donor plasmid (PBCAG-eGFP or PBCAG-mRFP) was co-transfected with a helper plasmid encoding piggyBac transposase (GLAST-PBase) and CRISPR/Cas9 constructs containing sgRNAs targeting NF1, PTEN and P53, alone and in combination. A comparison of the total number of cells in the lineages resulting from transfection of the different CRISPR/Cas9 vectors (see pX330:Fig.3A, A’, C, D; pX330-P53 E6: Fig. S2A, A’; pX330-PTEN E6: Fig.S2B, B’; pX330-PTEN E8: Fig. S2C, C’ and pX330-NF1: Fig.3B, B’, E-H), indicated that pX330-NF1 caused an increase in the numbers of glial cells (Fig.3B, I and J). As shown in Fig. 3B, patches of labeled glia cells containing cells positive for
either S100β (Fig.3E,F) or olig2 (Fig. 3G,H), in neocortex (Fig. 3E,G), hippocampus (Fig.3F) and striatum (Fig.3H) were evident in the NF1 CRISPR transfection condition. The density of transfected cells in neocortex was 3.5±0.3, 3.6±0.1, 3.7±0.2, 3.4±0.2, and 7.5±1.8 cells /10^4 µm^2 in sections containing neurons transfected with pX330, pX330-PTEN E6, pX330-PTEN E8, pX330-P53, and pX330-NF1 respectively (Fig.3I) (n=3 brains, 3 sections quantified in each brain). Thus there was an approximately 2 fold higher density of transfected cells in the pX330-NF1 conditions that was significantly higher than in the other 4 conditions) (One-way ANOVA, F=138.53, p=1.19e-11; followed by post hoc Tukey HSD test, pX330 vs. pX330-NF1:p=0.001, pX330-PTEN E8 vs. pX330-NF1 E1: p=0.001, pX330-PTEN E6 vs. pX330-NF1 E1: p=0.001, pX330-P53 E6 vs. pX330-NF1 E1: p=0.001). The increased number of transfected cells in the NF1-CRISPR condition did not appear due to an increase in ongoing proliferation as assays of Ki67 labeling showed that there was no significant difference in the percentage of transfected cells that were positive for Ki67 (Fig. S3 A-D, F-G). (pX330 labeled glia: 1065, Ki67+: 9, 0.8±0.2%, n=3 brains; pX330-PTEN E8 labeled glia: 1538, Ki 67+: 17, 1.1±0.3%, n= 3 brains; and pX330-P53 E6 labeled glia: 1254, Ki67+: 18, n=3 brains; pX330-NF1 E1 labeled glia: 1564, Ki67+: 25; 1.4±0.2%, n=3 brains; One way ANOVA, F=1.63, p=0.20; followed by post hoc Tukey HSD test, pX330 vs. pX330-NF1 E1: p=0.18, pX330-PTEN E6 vs. pX330-NF1 E1: p=0.90, pX330-PTEN E8 vs. pX330-NF1 E1: p=0.67, pX330-P53 E6 vs. pX330-NF1 E1: p=0.90)

The increased number of cells in the NF1 CRISPR treated lineages appeared to be due primarily to an increase in glial cells. We therefore determined the percentage of glia relative to neurons in the lineages generated in the 5 transfection conditions. Transfected neurons and glia show distinct morphologies (Fig. S4) and could be quantified separately, and their identity as
neurons or glia (both astrocytes and oligodendrocytes) was confirmed by S100β and Olig2 immunopositivity for the glial cell populations, uniform negativity for those markers in labeled neurons as well as the presence of axons and dendrites on neurons. Quantification showed that 96.7 ±0.1% of transfected cells were glia in pX330-NF1 transfected brains (n=3 brains, 3 sections from each brain; total: 8835 glia, 309 neurons), 69.3±1.1% were glia in pX330 (total: 2321 glia, 1028 neurons), 75.8±2.7% were glia in pX330-PTEN E8, (total: 2142 glia, 673 neurons), 75.3±3.0% were glia in pX330-PTEN E6 (total: 2327 glia, 756 neurons) and 66.6±0.4% were glia in pX330-P53 E6 transfected brains (total: 2321 glia, 1028 neurons) (n=3 brains, 3 sections from each brain). Statistical analysis revealed that there were significantly more labeled glia in pX330-NF1 transfected brains than in brains transfected with any of the other CRISPR constructs (One-way ANOVA, F=79.57, p=6.48e-10; followed by post hoc Tukey HSD test, pX330 vs. pX330-NF1:p=0.001, pX330-PTEN E8 vs. pX330-NF1 E1: p=0.001, pX330-PTEN E6 vs. pX330-NF1 E1: p=0.001, pX330-P53 E6 vs. pX330-NF1 E1: p=0.001). No significant difference was observed between pX330 transfected brains and brains transfected with P53 targeting CRISPR constructs (One-way ANOVA, F=15.68, p=0.07). However, compared to pX330 and pX330-P53 E6 transfected brains, there was increased labeling of glia in pX330-PTEN E6 and pX330-PTEN E8 transfected brains (One-way ANOVA, F=11.60, p=0.0003; followed by post hoc Tukey HSD test, pX330-PTEN E6 vs. pX330, p=0.042; pX330-PTEN E6 vs. pX330-P53 E6, p=0.0017; pX330-PTEN E8 vs. pX330, p=0.0025; pX330-PTEN E8 vs. pX330-P53 E6, p=0.048; pX330 vs. pX330-P53 E6,p=0.30). The increase in % of glial cells in the lineages targeted by pX330-NF1 corresponded to increases in the glia:neuron ratio: glia/neuron= 29.8±1.7 for pX330-NF1, 2.3±0.1 for pX330, 2.9±0.2, for pX330-PTEN E6, 2.9±0.2 for pX330-PTEN E8, and 1.9±0.1 for pX330-P53 E6 (Fig. 3J) (One-way ANOVA,
F=403.56, p=4.55e-15, followed by post-hoc Tukey HSD test, pX330 vs. pX330-NF1 E1: p=0.001, pX330-PTEN E6 vs. pX330-NF1 E1: p=0.001, pX330-PTEN E8 vs. pX330-NF1 E1: p=0.001, pX330-P53 E6 vs. pX330-NF1 E1: p=0.001). The shift in glia to neuron ratio is consistent with previous experiments using conditional knockout alleles showing a role for NF1 in glial and neuronal fates from progenitors in the subventricular zone of postnatal forebrain (SVZ) (Wang et al., 2012).

Multiplex CRISPR/Cas9 of PTEN, NF1, and P53 in neocortical progenitors leads to formation of glioblastoma multiforme tumors.

Somatic mutation of tumor suppressor genes have been implicated in several cancers (Watson et al., 2013), including tumors of the developing central nervous system, however it is not entirely certain which combinations of mutations in different progenitor types are required for tumor formation (Jacques et al., 2010; Visvader, 2011). We therefore tested whether CRISPRs targeting tumor suppressors alone or in combination in neocortical progenitors would lead to formation of tumors. CRISPR/Cas9 targeting P53 (Fig. S2A, S3C), NF1 (Fig.3, S3B) or PTEN (Fig.1, S2B, C, S3D) alone appeared insufficient to induce tumor formation by 19 days after birth (N=5 animals in each condition). In addition, we found no significant increase in the Ki67 mitotic index for transfected cells in the conditions targeting NF1, PTEN, or P53 alone relative to controls (Fig. S3F) (Ki67+ cell/mm²: pX330: 38.46±6.2, n=3 brains; pX330-PTEN E8: 18.37±6.7, n=3 brains; pX330-NF1 E1: 48.22±10.50, n=3 brains; pX330-P53 E6: 24.06±4.51, n=3; One-way ANOVA, F= 3.06, p= 0.056; followed by post hoc Tukey HSD test, pX330 vs. pX330-PTEN E8:p=0.25; pX330 vs. pX330-NF1 E1:p=0.90; pX330 vs. pX330- P53 E6: p=0.55). In contrast, when we transfected a combination of three tumor suppressor CRISPR constructs large tumors were found in every brain examined (N=11). The induced tumors were
aggressive and fatal in all animals transfected with combinations and allowed to survive past P60 (n=8) with all animals dying by P75. Upon postmortem analysis all such animals were found to have large cerebral tumors. A clinical histopathological analysis of paraffin sectioned tumor tissue revealed that tumors displayed histopathological features characteristic of human glioblastoma multiforme that included cells diffusely infiltrating into neighboring tissue (Fig. S5A, B) and glomeruloid vascular proliferation (Fig. S5B). Some regions of tumors showed large multinucleated cells suggesting the possible differential diagnosis of giant cell glioblastoma (Fig. S5C black arrow), but these multinucleated cells were infrequent. Tumor cells expressed a combination of markers typical of glioblastoma tumor cells including strong positivity for vimentin (Fig. S5D), GFAP (Fig. S5E) and MAP2 (Fig. S5F). In contrast, in normal brain tissue, antibodies against GFAP (Fig. S5G), and vimentin (Fig. S5H) marked astrocytes, while MAP2 antibodies specifically labeled neurons (Fig. S5I). Taken together, the histopathological features of CRISPR induced tumors are most similar to human glioblastoma multiforme (WHO grade IV). This highly malignant and aggressive type of tumor is consistent with the 100% lethality we observed.

We also applied a multicolor clonal labeling approach based on the piggyBac transposon plasmid system (Chen et al., 2014a; Siddiqi et al., 2014) to visualize tumor clonal boundaries. This system works by the stochastic integration and varied expression of three different fluorescent protein reporters delivered by a mixture of fluorescent protein encoding donor plasmids (Chen et al., 2014a; Siddiqi et al., 2014). Clonally related cells inherit the same set of integrated fluorescent reporters, and thus will be labeled with the fluorescent proteins (Chen et al 2014a). By P19, in brains transfected with the mixture of CRISPR constructs and the multicolor labeling plasmids at E14 large masses of uniformly colored cells were frequently observed (N=8
brains) (Fig. 4A,B). We found a significant increase in the Ki67 positive index in these unicolor masses indicating increased proliferation in the tumors (Fig.S3 E-G) (Ki67+ cell/mm\(^2\) in pX330-PTEN E8/P53 E6/NF1 E1 transfected brains: 1,112.36±289.79; One-way ANOVA, F=6.93, p=0.0023; followed by post hoc Tukey HSD test, pX330 vs. pX330-PTEN E8/P53 E6/NF1 E1=0.018; pX330-PTEN E8 vs. pX330-PTEN E8/P53 E6/NF1 E1= 0.008; pX330-P53 E6 vs. pX330-PTEN E8/P53 E6/NF1 E1= 0.008; pX330-NF1 E1 vs. pX330-PTEN E8/P53 E6/NF1 E1= 0.019). Transfections by IUE are unilateral and yet tumor cells and masses were often (6 of 6 brains examined) found in contralateral cerebral hemispheres suggesting that transformed cells were migratory and invasive. Tumors contralateral to the transfection location were either in single colored clusters (Fig. 4C), or in mixed color clusters (Fig. 4D) indicating further that invasive tumors could be derived from single or multiple clones. Large singly colored masses of cells were never observed in brains transfected with the multicolor piggyBac system and CRISPR targeting Tyrosinase (pX330-Tyr1) (Fig. S6A, B) (N=3) or pX330-NF1 E1 (Fig.S6C,D) (N=3) suggesting that the large clonal clusters are dependent on the formation of tumors.

Mutagenesis and off targets in CRISPR induced tumors

In order to identify the CRISPR/Cas9 induced mutations in the targeted regions of the tumor suppressor genes, we sorted GFP labeled cells by FACS, amplified and subcloned genomic regions of PTEN, NF1, and P53 that were targeted by sgRNAs, and then sequenced by Sanger sequencing the resulting clones. We sequenced a total of 25 bacterial clones containing plasmids with inserts amplified from exon 8 of PTEN, 28 from exon 6 of P53, and 18 from exon 1 of NF1, and found a total of 37 with mutations in the targeted regions Fig. 5A-C. The mutations included insertions, deletions, and substitutions (Fig. 5A-C) in the vicinity of the predicted Cas9 cleavage site. Of the 37 mutations identified, 23 were out of frame mutations creating premature stop
codons (Fig. 5D), and 14 were in-frame missense mutations. Interestingly, no mutation occurred twice in this data set suggesting an even larger diversity of existing mutations in the tissue. For this analysis we isolated cells from the entire population of transfected cells at P30 from 4 brains, a time prior to the formation of clearly developed and easily separable tumor masses. Given the diversity of mutations identified, and the relatively early time in oncogenesis that we isolated cells for this assay, it could be interesting in future studies to determine whether over time and tumor maturation there is a selection for different mutations.

To evaluate mutation efficiency and potential off targets in tumors induced by TRIPLEX CRISPR, we performed SURVEYOR assays using genomic DNA isolated and amplified from acutely dissected tumor tissue. As shown in Fig. S7A, PTEN exon 8, P53 exon 6 and NF1 exon 1 showed an indel% of 47%, 81% and 24% respectively. To investigate the specificity of CRISPR/Cas9 system, we evaluated 7-8 potential off targets for each target by SURVEYOR. The potential off targets were predicted using a CRISPR design algorithm (http://crispr.mit.edu/) (Hsu et al., 2013) and based on sequence similarity to designed sgRNAs, of between 1 and 4 mismatches (Table S1). Unlike the targeted genomic regions that matched sgRNAs precisely, SURVEYOR detected no mutations at the evaluated potential off target sites with 1-4 mismatches (Fig. S7B-F). Although we did not perform a genome wide assessment of potential off targets, our evaluation of 22 potential off targets, and failure to detect mutation at these sites is consistent with previous reports of low off target rates of CRISPR/Cas9 in rats (Ma et al., 2014), and zebra fish (Hruscha et al., 2013).
Discussion

The CRISPR/Cas9 system can introduce mutations \textit{in vivo} at targeted genomic loci and abolishes gene expression with remarkably high efficiency (Incontro et al., 2014; Straub et al., 2014). Our results showed that sgRNAs targeting two different exons of PTEN (exon 6 and 8) reduced PTEN expression at similar levels, 86±3.8 % and 82±5.2% of labeled neurons transfected at E14-15 and assessed at P19 were immuno-negative for PTEN (Fig.1C,D). This level of lost expression is consistent with recent reports that more than 90% of CRISPR/Cas9 induced mutations were out of frame insertion or deletions (Incontro et al., 2014) in post mitotic neurons. The high out of frame mutation rate might be due to the fact that the persistent Cas9/sgRNA complex in post mitotic neurons could continue to generate DSB until NHEJ repair abolishes the sgRNA binding site (Incontro et al., 2014). In contrast to post mitotic neurons, we found that the out of frame mutation rate in the highly dividing tumor cells was 62% (Fig. 5), and similarly, we found that the efficiency of sgRNAs targeting NF1 and P53 in neurons was lower compared to the PTEN mutation rates. The differences may be due to both the loss of the Cas9/sgRNA expressing plasmids in mitotic tumor cells, and to differences in the efficiency of targeting different genomic loci. For inducing higher rates of loss of function, it may be desirable to increase the out frame mutation rate. A recent study has suggested that selecting target sequences near microhomology domains can increase the rate of indels that cause out of frame mutations (Bae et al., 2014). When we examined the 3 target regions we have sequenced in this study (PTEN E8, NF1 E1, and P53 E6) we found that sgRNA (PTEN E8) whose targeted region had these microhomology domains had an out frame indel frequency of 71%, whereas sgRNAs whose targeted regions didn’t have microhomology domains had the out frame indel frequency of 61% (P53 E6) and 60% (NF1 E1) respectively.
Genome wide binding assays of Cas9 in mammalian cells have shown that dCas9 (mutant Cas9) is able to bind to genomic DNA even without the presence of sgRNA (Wu et al., 2014). It is possible that Cas9 interaction with genomic DNA, could cause experimental artifacts without a sgRNA. While we have not performed a genome wide study, we measured several properties of neuronal development in cells that were induced to overexpress Cas9 without sgRNA, i.e pX330 blank vector transfection. We found that several sensitive electrophysiological and developmental outcomes were unaffected by expression of wild type Cas9 by pX330. These unaffected outcomes relative to fluorescent protein expression alone included resting membrane potential and input resistance, frequency of synaptic events (Fig. 2), neuronal migration (Fig. 1D, E) and ratio of neurons:glia (Fig. 3J). These results suggest that expression of wild type Cas9 without sgRNA fails to cause functional developmental changes in developing neurons.

The system of plasmids described here extends the application of the CRISPR/Cas9 system to assessments of modified lineages of mutated neural progenitors. We showed that loss of NF1 function caused an apparent neural progenitor fate switch and resulted in increased gliogenesis. We further demonstrated the multiplex CRISPR/Cas9 via transfection with sgRNAs targeting multiple tumor suppressors results in GBM formation. Our results are entirely consistent with, and extend, the recent work by Gronych and colleagues (Zuckermann et al., 2015) who showed that simultaneously targeting PTEN, P53 and NF1 with CRISPR/Cas9 delivered via in utero electroporation induced GBM formation in mice. In our study, we combined the tumor inducing CRISPR/Cas9 constructs with the multicolor piggyBac transposon system to label both the lineage of transformed cells and to distinguish clonal boundaries (Fig. 5). This approach should be useful for molecular profiling experiments and to determine whether tumor clones with different mutations contribute to tumor heterogeneity. Our study was also performed in rat and
with different sgRNA sequences than those used by Zukerman et al. (2015), demonstrating both the utility of CRISPR for modeling human disease in multiple species and also the potent effect of triple mutations in PTEN, P53 and NF1. We also showed, similar to Zukerman et al. (2015), that while P53, NF-1 and PTEN targeting alone do not result in tumors, distinct neuropathologies do result after NF-1 or PTEN alone are targeted."

These results are consistent with the "multiple hit" theory of tumorigenesis, accumulation of multiple mutations is required for tumorigenic transformation (Knudson, 1971). In many cases, tumor suppressor genes act in a cooperative manner to prevent development of tumors (Zhu et al., 2005; Kwon et al., 2008; Gregorian et al., 2009). As we showed here, loss of a single tumor suppressor was insufficient for tumor formation. The ease with which CRISPR/Cas9 can be multiplexed should be particularly valuable in studies of the formation of glial tumors in the developing brain.

Off target effects of CRISPR/Cas9 remains a concern. We used two sgRNAs targeting different exons of PTEN, and showed that neurons transfected with the two different sgRNAs exhibited the same phenotype, suggesting that the resultant phenotype is not due to an off-target effect. We also showed that PTEN null neurons exhibited phenotypes similar to those generated in PTEN knockout or RNAi knock down neurons (Kwon et al., 2001; Fraser et al., 2004; Luikart et al., 2011). Though we tested only one sgRNA targeting NF1, we showed that the specific phenotype caused by NF1 sgRNA was similar to that observed in NF1 knockout studies (Wang et al., 2012). We further evaluated via SURVEYOR assay the top potential off target sites of sgRNAs used to induce GBM, and found no mutations in those 22 evaluated sites. Limitations of using the SURVEYOR assay, however, to evaluate potential off targets should be considered. Due to the relatively low sensitivity of the SURVEYOR assay, relative to NGS approaches, not
all off target mutations including those that may occur infrequently would be detected (Wang et al., 2015). Recent studies using whole genome sequencing approach to detect CRISPR off targets revealed off target sites not predicted by sequence similarity to target or by CHIP (Ran et al., 2015; Tsai et al., 2015). These off targets sites include sites containing mismatches to the guide as well as insertion and deletion mismatches in the guide target heteroduplex (Ran et al., 2013; Bae et al., 2014; Lin et al., 2014). Using integrase defective lentiviral vectors, Wang et al detected Cas9 off target sites with 1 to 13 base pair mismatches between single sgRNA and its genomic targets (Wang et al., 2015). These results underline the need to better understand the mechanism of Cas9 activity, and for the importance of adequate controls. Whole genome sequencing also confirmed that using either truncated sgRNA (Tsai et al., 2015), nickase paired design (Frock et al., 2015) and modified sgRNA design may greatly reduce off targets (Cho et al., 2014) (Kim et al., 2015).

Despite the concern of off target effect, CRISPR/Cas9 for most experimental purposes is quite specific, and is likely much less prone to off targets than RNAi or shRNA treatments that can interfere with endogenous miRNA and siRNA systems. Kim and colleagues used Digenome-seq to profile CRISPR/Cas9 off target effects genome wide in human cells and found that Cas9 nuclease was quite specific, inducing off target mutations at merely several rather than thousands of sites in the genome (Kim et al., 2015). Hruscha et al. (2013) reported that the mutation rates at potential off target sites were between 1.11-2.5% in zebra fish (Hruscha et al., 2013), and Ma et al. (2014) found only one off target mutation in 39 transgenic rats created using CRISPR/Cas9 (Ma et al., 2014). Most recently, Gronych and colleagues showed by whole genome sequencing of medulloblastoma induced by CRISPR targeting of Ptc1 that there were no detectable off target effects (Zuckermann et al., 2015). Such high specificity makes CRISPR/Cas9 a valuable
tool for inducing somatic mutations in developing cells. When combined with lineage labeling, the high efficiency of gene silencing, specificity, and multiplex possibilities make this approach a particularly valuable tool for studying mechanisms of normal and abnormal development of the neocortical neural progenitors.

Materials and Methods:

Plasmids and sgRNA sequences

Guide RNA sequences were designed using an on-line program (crispr.mit.edu) as described in (Hsu et al., 2013). Guide sequences were cloned into pX330 vector (Addgene plasmid 42230) (Cong et al., 2013) following normal cloning procedure. The guide sequences are as follows; PTEN exon 6 forward: 5'-GATATACATAGCGCCTCTGAC-3'; PTEN exon 6 reverse: 5'-GTCAGAGGCCTATGTATATC-3'; PTEN exon 8 forward: 5'-ATTGGAGAGAAGTATCGGT-3'; PTEN exon8 reverse: 5'-ACCGATACTCTGCTCCAAAT-3'; NF1 exon 1 forward: 5'-GGTCAGCCGCTTCGACGAGC-3';NF1 exon 1 reverse 5'-GCTCGTCGAAGCGGCTGACC-3'; P53 exon 6 forward: 5'-CTTCCACCCGGGATAATGCGCTCCGACC-3'; P53 exon 6 reverse: 5'-ACATCTTTATCCGGGTGGAAGC-3'; Tyr1 forward: 5'-GTGCGGCCAGCTTTCAGGCAG-3'; Tyr1 reverse: 5'-CTGCCTGAAAGCTGGCCGCAC-3'.

Animals

Pregnant Wistar rats were obtained from Charles River Laboratories, Inc. (Wilmington, MA) and maintained at the University of Connecticut vivarium on a 12 h light cycle and fed *ad libitum*. Animal gestational ages were determined via palpation prior to and confirmed during
surgery. Both male and female subjects were used for tumor induction. All procedures and experimental approaches were approved by the University of Connecticut IACUC.

In utero electroporation

In utero electroporation was performed as previously described (Chen et al., 2014b). Briefly, electroporation was performed at embryonic day 14 or 15 (E14 or E15) and gestation age was confirmed during surgery.

Image acquisition

Multi-color imaging was performed as previously described (Chen et al., 2014a) using Zeiss Axio imager M2 microscope with Apotome with 488/546/350 nm filter cubes and the X-Cite series 120Q light source and Leica SP5 confocal microscope. All the images were further processed in Adobe Photoshop CS3 software (San Jose, CA).

Immunohistochemistry

Animals were deeply anesthetized with Isoflurane and perfused transcardially with 4% paraformaldehyde/PBS (4% PFA). Samples were post fixed overnight in 4% PFA. For immunofluorescence, brains were sectioned at 65 µm thickness on a vibratome (Leica VT 1000S). Sections were processed as free-floating sections and stained with PTEN (Cell Signaling, 9559), NF1 (Santa Cruz, Sc-30918), Oligo2 (Millipore MABN 50) P53 (Cell signaling 2524), S100B (DAKO), Ki 67 (Abcam, ab16667) antibody. Images were acquired and processed as previously described (Chen et al., 2014a; Siddiqi et al., 2014).

For histological analysis, immunohistochemistry and H&E staining were carried out on paraffin embedded 4µm sections as described in (Schick et al., 2007a; Schick et al., 2007b) using
GFAP (DAKO, Z0334), MAP2c (Sigma, M4403), S100B (DAKO, Z0311), and Vimentin (DAKO, M0725) antibody.

SURVEYOR assay

For *in vitro* SURVEYOR assay, rat neuroblastoma B104 cells were transfected with CRISPR constructs using lipofectamine 2000 (Invitrogen) according to manufacturer’s instruction. Two days post transfection, cells were harvested, and genomic DNA was extracted using Blood and Tissue DNA easy kit (Qiagen). Genomic region flanking targeting sites were PCR amplified and SURVEYOR assay was performed using a SURVEYOR assay kit (Transgenomics) according to manufacturer’s instruction. For *in vivo* SURVEYOR assay, we freshly removed the brain and carefully dissected out transfected cortical region under fluorescent dissection microscope. Brain tissues were chopped into small pieces and genomic DNA was extracted using Blood and Tissue DNA easy kit (Qiagen). Primers for SURVEYOR assays are: PTEN exon 6 Forward: CATCCATGTGAGGAACCCTGGGTG; PTEN exon 6 Reverse: CACTTACTGCAAGTTCCGCC; PTEN exon 8 Forward: CCACAAGGTGTGGTGCCCTTCA; PTEN exon 8 Reverse: CTCGAGATCCAAAGGCATTG; NF1 exon 1 Forward: GACGTCACCTCCAGGAGGAC; NF1 exon 1 Reverse: TGGGATAAAGGGGATGGAGG; P53 exon 6 Forward: CCCACTTTGACCCCTTGATCC; P53 exon 6 Reverse: CAGGCACAAACACGAACCTC. Indel% was calculated as previously described (Cong et al., 2013).
Statistical analysis

Statistical analysis was performed using KaleidaGraph version 4.0 (Synergy Software 2006). A confidence interval of 95% (P < 0.05) was required for values to be considered statistically significant. All data are presented as means and SEM.

FAC sorting and sequencing

Transfected areas from 4 animals (P30, no obvious presence of tumor) transfected with PBCAG-eGFP, GLAST-PBase together with multiplex CRISPRs targeting PTEN, P53 and NF1 were acutely dissected under fluorescent dissection microscope and enzymatically dissociated into single cell suspension. FAC sorting was performed on BD FACSARia Flow Cytometer. Sorted cells were pelleted by centrifugation, and genomic DNA of sorted cells was extracted using Blood and Tissue DNA easy kit (Qiagen). Targeted genomic areas flanking sgRNA binding sites were PCR amplified using Platinum® Taq DNA Polymerase High Fidelity (Invitrogen, 11304-011). PCR products were ligated into pCR™4-TOPO® vector (Invitrogen, K4530-20) for sequencing. Primers used for targeted sequencing were as follows: PTEN exon 8 Forward: CCACAAGGTGTGTTGCCTTCA; PTEN exon 8 Reverse: CTGAGATCCAAAGGCATTG; NF1 exon 1 Forward: GGGAGGACATGGCCGCACACAGGC; NF1 exon 1 Reverse: GCTCCTTCTCCCTACCCACCACCGTC; P53 exon 6 Forward: CCCACTTTGACCCCTTGATCC; P53 exon 6 Reverse: CAGGCACAAACACGAACCTC.
Acknowledgement

The authors thank Dr. Feng Zhang (MIT) for sharing the pX330 construct and Dr. Akiko Nyshiyama (University of Connecticut) for providing the Oligo2 antibody. This work is supported by grants from NIH (RO1HD055655 and R01MH056524, to J.J. LoTurco).

Author Contribution

F.C and J.J.L designed the experiments. F.C, J.R, A.C and A.B performed the experiments. F.C, J.R, A.C, A.B and J.J.L analyzed the data. F.C and J.J.L wrote the manuscript.

References

Fig. 1 CRISPR/Cas9 knocks out PTEN expression in vivo

A, sgRNA sequences used in this study.

B, Schematic of *in utero* electroporation. Plasmids DNA were injected into lateral ventricle of E14-15 rat embryos followed by electroporation. Analyses were performed at various postnatal times.

C, Representative images of PTEN antibody staining on brains sections from pX330 (top), pX330-PTEN E6 (middle) and pX330-PTEN E8 (bottom) transfected brains. CRISPR constructs
targeting PTEN exon 6 and 8 abolished endogenous PTEN expression in post mitotic neurons. In utero electroporation was performed at E14 and brains were analyzed at P19. Arrow heads indicate GFP labeled PTEN positive neurons. Asterisks indicate GFP labeled PTEN negative neurons.

D, Representative images from P19 brains transfected with, CAG-mRFP, pX330, pX330-PTEN E6 and pX330-PTEN E8. Small fraction of PTEN targeting CRISPR constructs transfected neurons showed disrupted migration. In utero electroporation was performed at E14 and brains were analyzed at P19.

E, Quantification results of neuronal migration. Cerebral cortex was divided into 5 bins with bin 1 close to white matter and bin 5 close to pial surface. About 10% of PTEN targeting CRISPR transfected neurons failed to migrate to their normal laminar position (One way ANOVA. * p<0.05, *** p<0.001, ns, no significant difference). WM, white matter.
Fig. 2 PTEN null neurons were hypertrophic and exhibited altered membrane properties

A. Representative images of P19 neurons transfected at E14 with CAG-mRFP, pX330, pX330-PTEN E6 and pX330-PTEN E8.

B and C Neurons transfected with PTEN targeting CRISPR were hypertrophic. PTEN targeting CRISPR transfected neurons had increased soma size (B) and thickened primary dendrite (C).

D-I. PTEN targeting CRISPR transfected neurons showed altered neurophysiological properties. Representative traces from CAG-mRFP, pX330 and PTEN targeting CRISPR transfected neurons representing voltage responses to -300, -250, -200, -150, -100, -50, -20, 50 pA step current injections were shown in D. CAG-mRFP, empty CRISPR construct pX330 and PTEN targeting CRISPR transfected neurons showed similar resting membrane potential (E). However, PTEN targeting CRISPR transfected neurons demonstrated markedly decreased input resistance (F), increased miniature EPSC (G) and spontaneous EPSC (I). Representative traces of spontaneous EPSCs were shown in H. *p < 0.05; **p < 0.01; ***p < 0.001; ns, p > 0.05.
Fig. 3 Loss of NF1 expression and increased gliogenesis

A-B. Representative images of P19 rat brains transfected with either control empty pX330 (A, A’) or pX330-NF1 E1 (B, B’). In utero electroporation was performed at E14 with the piggyBac transposon system (GLAST-PBase and PBCAG-mRFP) to track the lineage of transfected neural progenitors. A and B are representative images of transfected hemispheres. A’ and B’ are representative images of transfected neocortex. In brains transfected with pX330, astrocytes (C)
and oligodendrocytes (D) were labeled in neocortex. However in brains transfected with pX330-NF1 E1, mRFP labeled astrocytes (E, F) and oligodendrocytes (G,H) were frequently found in neocortex (E,G), hippocampus (F) and striatum (H). The density of mRFP labeled cells in neocortex (I) as well as the glia to neuron ratio of mRFP labeled cells (J) were significantly higher in pX330-NF1 E1 transfected brains (n=3, One-way ANOVA, followed by post hoc Tukey HSD ,*** p<0.001, ns, no significance).
Fig. 4 Multiplex CRISPR induced tumors

A, Representative images of P19 brain transfected with CRISPR targeting PTEN, P53 and NF1. Densely packed GFP labeled cells were frequently found throughout transfected cerebral hemisphere. B, Representative image from postmortem P63 rat brains transfected with CRISPR targeting PTEN, P53 and NF1 together with multicolor piggyBac system. C, Magnified view boxed area in B shows two different colored tumor clusters suggesting clonal separation. D, Magnified view of boxed area in B shows mixing of three different colored tumor clusters.
Fig. 5 Induced mutations at targeted loci in sorted tumor cells

A-C, Indels at PTEN (A), P53 (B) and NF1 (C) locus in induced GBM. Wild type (WT) sequences are listed at the top of each figure. sgRNA sequence is marked in green and PAM sequence is underlined. Identified mutations are shown in red. “-” denotes deletions and “+” denotes insertions. S stands for substitution. Numbers in red indicate number of nucleotides that have changed. D, Bar graph summarizes the mutation type (Indel in frame, Indel out frame and amino acids substitution) introduced at PTEN, P53 and NF1 loci.
Supplementary Methods

Electrophysiology

P21-P30 rats were deeply anesthetized with isoflurane and then decapitated. Brains were rapidly removed and immersed in ice-cold oxygenated (95% O2 and 5% CO2) dissection buffer containing (in mM): 83 NaCl, 2.5 KCl, 1 NaH2PO4, 26.2 NaHCO3, 22 glucose, 72 sucrose, 0.5 CaCl2, and 3.3 MgCl2. Coronal slices (400 µm) were cut using a vibratome (VT1200S, Leica), incubated in dissection buffer for 40 min at 34°C, and then stored at room temperature for reminder of the recording day. All slice recordings were performed at 34°C unless otherwise specified. Slices were visualized using IR differential interference microscopy (DIC) (E600FN, Nikon) and a CCD camera (QICAM, QImaging). Individual cells were visualized with a 40x Nikon Fluor water immersion (0.8 NA) objective, and transfected neurons were identified with MERCUY-100W (CHIU TECHNICAL CORPORATION).

For all whole-cell recordings, external recording buffer was oxygenated (95% O2 and 5% CO2) and contained (in mM): 125 NaCl, 25 NaHCO3, 1.25 NaH2PO4, 3 KCl, 25 dextrose, 1 MgCl2, and 2 CaCl2. Patch pipettes were fabricated from borosilicate glass (N51A, King Precision Glass, Inc.) to a measured tip resistance of 2-5 MΩ when pipettes were filled with an internal solution containing (in mM): 125 potassium gluconate, 10 HEPES, 4 Mg-ATP, 0.3 Na-GTP, 0.1 EGTA, 10 phosphocreatine, 0.05% biocytin, adjusted to pH 7.3 with KOH and to 278 mOsm with double-distilled H2O. Signals were amplified with a Multiclamp 700A amplifier (Molecular Devices), digitized with an ITC-18 digitizer (HEKA Instruments Inc.) and filtered at 2 KHz. Data were monitored, acquired and in some cases analyzed using Axograph X software. Series resistance was monitored throughout the experiments by applying a small test voltage step.
and measuring the capacitive current. Series resistance was 5~25 MΩ and only cells with <20% change in series resistance and holding current were included for analysis. Liquid junction potential was not corrected.

Resting membrane potentials (RMPs) were measured within first 20 s of break-in with no holding current. Spontaneous excitatory postsynaptic currents (sEPSC) were measured in the presence of the GABAA receptor blocker SR-95531 (Gabazine, 5µM, Ascent Scientific), and tetrodotoxin (TTX, 1µM, Ascent Scientific) was added in addition to measure miniature EPSCs (mEPSC). To detect events, a variable amplitude template was slid through the 180 s chart recordings (Clements and Bekkers, 1997) The parameters of the template, including amplitude, 10-90% rise time, and decay time, were determined based on an average of real events as well as previously reported values. The detection threshold was 5 to 7 times of the noise standard deviation, and events with large baseline error were rejected additionally. Data analysis was performed using Axograph X built-in analysis and IGOR Pro software (Wavemetrics) on a Macintosh computer. Statistics were performed using Prism 6 software (Graphpad), and graphs were generated in IGOR Pro software. Statistical significance was determined using ordinary one-way ANOVA (indicated by p values in legends as well as results). For multiple comparisons tests following ANOVA, multiplicity adjusted p values were reported (indicated on graphs with asterisks, *p < 0.05; **p < 0.01; ***p < 0.001; ns, P > 0.05). Significance was based on p values < 0.05. Means and standard errors were reported for all results unless otherwise specified.
Supplementary Figures

Fig. S1 In vitro and in vivo SURVEYOR assay for PTEN targeting CRISPR and validation of CRISPRs targeting P53 and NF1

A, sgRNAs targeting PTEN exon 6 and 8 introduced mutations at PTEN locus in rat neuroblastoma B104 cells.
B, sgRNA targeting PTEN exon 6 introduced mutations at PTEN locus in neural cells.

C, sgRNAs targeting P53 E6 (pX330-P53 E6) and NF1 E1 (pX330-NF1 E1) induced mutations at targeted genomic locus in rat neuroblastoma B104 cells.

D-G, sgRNAs targeting NF1 and P53 abolished NF1 (F) and P53 (G) expression in P19 post mitotic neurons while in control pX330 transfected brains most of post mitotic neurons expressed NF1 (D) and P53 (F). In utero electroporation was performed at E14. Transfected brains were analyzed at P19.
Fig. S2 Tracking lineage of progenitors transfected with different CRISPR constructs

A-F, Representative images of P19 rat brain hemispheres transfected with CRISPR targeting P53 exon6 (A), PTEN exon6 (B), PTEN exon8 (C). Images of transfected cortex of P53 exon6 (A), PTEN exon6 (B), PTEN exon8 (C) transfected brains were shown in A’, B’ and C respectively. PiggyBac transposon system was used to track the lineage of mutant neocortical progenitors. In utero electroporation was performed at E15.
Fig. S3 Ki 67 staining of brains transfected with single or multiplex CRISPR

A-E, Representative image of Ki67 antibody staining in pX330 (A), pX330-NF1 E1 (B), pX330-P53 E6 (C), pX330-PTEN E8 (D) and multiplex CRISPR (E) transfected brains. F,
Quantification of density of Ki67 positive cells in single or multiplex CRISPR transfected brains.

G. Quantification of percentage of fluorescently labeled cells that were Ki67 positive in single or multiplex CRISPR transfected brains. Multiplex CRISPR transfected brains had highest Ki67+ cell density as well as highest percentage of fluorescently labeled cells that were Ki67 positive. In utero electroporation was performed at E15 and brains were analyzed at P19 (One way ANOVA followed by post hoc Tukey HSD test n=3, *** p<0.001).
Fig. S4 Neurons and glia show distinct morphology

A, Representative image of a rat P21 brain in utero electroporated at E15 with piggyBac transposon system: PBCAG-eGFP and GLAST-PBase. piggyBac in utero electroporation labeled cells in neural progenitor lineage including neurons (NeuN+, B), astrocytes (S100B+, C) and oligodendrocytes (Oligo2+, D).
Fig. S5 Histopathological features of tumors induced by loss of function of PTEN, P53 and NF1

A) Diffusely infiltrating glial tumor with changing cellular densities and mitotic figure as sign of frank malignancy (black arrow).

B) Pleomorphic diffusely infiltrating tumor with a process rich matrix and glomeruloid vascular proliferate (black arrow).

C) Several multinucleated large cells are visible in the tumor, suggesting the differential diagnosis of giant cell glioblastoma (black arrow). However, this cellular pattern was only occasionally observed, arguing against this differential diagnosis.
D) Tumor cells are strongly expressing vimentin in a process rich pattern.

E) Tumor cells with characteristic expression of glial fibrillary acidic protein (GFAP) in a process-oriented pattern.

F) Tumor cells in parallel show a similar expression pattern for MAP2.

G, In normal brain tissue, antibodies against GFAP mark occasional preexisting astrocytes with delicate processes (arrow) as well as astrocyte end-foot processes encasing the capillary wall (asterisk).

H, Preexisting astrocytes with delicate processes (arrow) capillaries (asterisk) bind antibodies against vimentin.

I, MAP2 antibodies strongly mark neurons including particularly dendritic structures in preexisting cortex (arrow). Scale bar: 100 µm A-F; 50 µm G-I.
Fig. S6 Large clonal related clusters were missing in brains transfected with CRISPR targeting mouse Tyrosinase and rat NF1

A, Representative image of P21 brain transfected with CRISPR targeting Tyrosinase together with multicolor piggyBac lineage tracer. Image of representative cortex is shown in B. C, Representative image of P19 brain transfected with CRISPR targeting NF1 together with multicolor piggyBac lineage tracer. Image of representative cortex is shown in C. In utero electroporation was performed at E14.
Fig. S7 Tumor SURVEYOR assay and off target analysis

A. SURVEYOR assay of on target sites for each sgRNA using genomic DNA from acute dissected GBM tissue. sgRNAs targeting PTEN, P53 and NF1 introduced mutation at targeted sites with high efficiency.
B, SURVEYOR assay of top potential off target (OT) sites for each sgRNA using genomic DNA from induced GBM. Each off target site was either digested (Cut) or not (Uncut) with SURVEYOR enzyme.

C, PTEN OT1 and OT2 sites, SURVEYOR assay was further performed with genomic DNA either from tumor tissue or normal tissue.

D-F, SURVEYOR assay of additional off target (OT) sites for sgRNA targeting PTEN (D), P53 (E), and NF1 (F). GC control is the positive control for SURVEYOR assay. Each off target site and GC control was either digested (Cut) or not (Uncut) with the SURVEYOR enzyme.

Reference

Tables S1

Click here to Download Table S1