The Abl pathway bifurcates to balance Enabled and Rac signaling in axon patterning in Drosophila

Ramakrishnan Kannan1,3, Jeong-Kuen Song1,4, Tatiana Karpova2, Akanni Clarke1, Madhuri Shivalkar1, Benjamin Wang1, Lyudmila Kotlyanskaya1, Irina Kuzina1, Qun Gu1 and Edward Giniger1*

1 National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
2 National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
3 Current address: Neurobiology Research Center (NRC), Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore-40, India
4 Current address: L&J Biosciences, 19 Fristfield Rd, Gaithersberg, MD 20878

*Corresponding author
NIH
Bldg 35, Rm 1C-1002
35 Convent Dr
Bethesda, MD 20892
Tel: 301-451-3890
FAX: 301-451-5368
email: ginigere@ninds.nih.gov

ORCID #: 0000-0002-8340-6158

Keywords:
Abl, Disabled, Rac, Trio, FRET, axon guidance

Summary statement:
We reveal the functional organization of the Abl signaling network, a highly-conserved and ubiquitous signaling system that controls cell morphology and motility throughout animal phylogeny.
Abstract

The Abl tyrosine kinase signaling network controls cell migration, epithelial organization, axon patterning and other aspects of development. While individual components are known, the relationships among them remain mysterious. We now use FRET measurements of pathway activity, analysis of protein localization and genetic epistasis to dissect the structure of this network in *Drosophila*. We find that the adaptor protein Disabled stimulates Abl kinase activity. Abl suppresses the actin regulatory factor Enabled, and we find that Abl also acts through the GEF Trio to stimulate the signaling activity of Rac GTPase: Abl gates the activity of the spectrin repeats of Trio, allowing them to relieve intramolecular repression of Trio GEF activity by the Trio N-terminal domain. Finally, we show that a key target of Abl signaling in axons is the WAVE complex that promotes formation of branched actin networks. Thus, we show that Abl constitutes a bifurcating network, suppressing Ena activity in parallel with stimulation of WAVE. We suggest that the balancing of linear and branched actin networks by Abl is likely to be central to its regulation of axon patterning.
Introduction:

During development of the nervous system, cell surface receptors regulate cytoskeletal dynamics to direct axon growth (Dickson, 2002; Song and Poo, 2001; Song and Poo, 1999; Tessier-Lavigne and Goodman, 1996). The transformation of extracellular cues into cytoskeletal dynamics is executed by cytoplasmic signaling networks. Among these, the Abl tyrosine kinase signaling pathway plays a leading role in regulation of the neuronal cytoskeleton (Bradley and Koleske, 2009; Krause et al., 2003; Lanier and Gertler, 2000; Moresco and Koleske, 2003). Components of the Abl pathway link to growth cone guidance receptors and actin regulatory proteins (Le Gall et al., 2008; Liebl et al., 2003; Rhee et al., 2002; Wills et al., 1999a; Wills et al., 1999b). Indeed, nearly all of the common, phylogenetically conserved families of axon guidance receptors signal through Abl. This includes receptors for Netrin, Slit, Semaphorin, Ephrin and others (Bashaw et al., 2000; Deinhardt et al., 2011; Forsthoefel et al., 2005; Garbe et al., 2007; Gupton et al., 2012; Hsouna et al., 2003; Yu et al., 2001). The mechanism of Abl signaling, therefore, is fundamental for understanding growth cone guidance by each of these receptors, as well as integration of signals from multiple receptors (Crowner et al., 2003; Kuzina et al., 2011; Wills et al., 1999a; Winberg et al., 1998).

Abl tyrosine kinase and its signaling pathway was among the first of the conserved signal transduction pathways to be identified, and many of its components have long been known (Dai and Pendergast, 1995; Gertler et al., 1995; Gertler et al., 1996; Henkemeyer et al., 1987; Howell et al., 1997; Liebl et al., 2000; Luo, 2000; Wang and Baltimore, 1983). A core set of pathway components cooperate with Abl in neurons, cultured fibroblasts and transformed cell lines (Bradley and Koleske, 2009; Hoffmann, 1991). Disabled (Dab) is an adaptor protein that associates directly with receptors that regulate motility and...
guidance (Howell et al., 1999a; Howell et al., 1999b; Le Gall et al., 2008). Trio is a guanine nucleotide exchange factor (GEF) that activates both Rac and Rho GTPase and is essential for neuronal morphogenesis (Awasaki et al., 2000; Newsome et al., 2000; Schmidt and Debant, 2014; Steven et al., 1998). Abi is a component of the WAVE complex that activates Arp2/3 to extend branched actin networks (Dai and Pendergast, 1995; Gautreau et al., 2004). Enabled extends and bundles linear actin filaments (Gertler et al., 1995; Gertler et al., 1996). Dab, Trio and Abi work synergistically with Abl in many contexts (Gertler et al., 1993; Luo, 2000), while Enabled activity is suppressed by Abl (Gates et al., 2007; Gertler et al., 1995; Grevengoed et al., 2003).

Despite the long history of studies of Abl, however, the functional organization of the pathway has remained obscure. Nearly every component has been linked, genetically, biochemically or both, to nearly every other component (Forsthoefel et al., 2005; Gertler et al., 1993; Hill et al., 1995; Liebl et al., 2000; Sonoshita et al., 2015). Many experiments have yielded contradictory pictures of the relationships among Abl signaling components, and of their roles in motility (Bashaw et al., 2000; Bear et al., 2000; Forsthoefel et al., 2005; Hsouna et al., 2003; Juang and Hoffmann, 1999; Krause et al., 2002; Liebl et al., 2003; Lin et al., 2009; Song et al., 2010; Trichet et al., 2008; Wills et al., 1999a; Wills et al., 1999b). Thus, as yet there is no clear and testable model of which components lie upstream or downstream of which other components, as is essential for us to interpret the extensive data linking Abl to growth cone motility and neuronal migration in culture and in vivo (Bradley and Koleske, 2009).

We therefore set out to establish the functional relationships among the core proteins of the Abl pathway in vivo in neurons, using direct measures of protein activity. We
deployed FRET (Fluorescence Resonance Energy Transfer) biosensor probes that allowed us to assay directly, in living cells, the activity of the two key outputs of the Abl pathway in axons, Rac GTPase signaling (Itoh et al., 2002; Wang et al., 2010) and Abl kinase activity (Sterne et al., 2015; Ting et al., 2001). We further validated the resulting model for the Abl pathway both by investigating how each component of the pathway regulates the subcellular localization of other components, and by using genetic epistasis to investigate the dependent relationships of mutations in genes encoding these proteins.

We now reveal the functional relationships among the core components of the Abl signaling network in *Drosophila* neurons. We show that the adaptor protein Disabled (Dab) stimulates the kinase activity of Abl as well as regulating its subcellular localization. Consistent with this, Dab is found in a biochemical complex with Abl in *Drosophila* embryos. We further show that the kinase activity of Abl stimulates the signaling activity of Rac GTPase, primarily by acting through the GEF, Trio. We find that Abl does not act directly on the Rac GEF domain of Trio. Rather, Abl gates the action of the spectrin repeats of Trio, allowing them to counteract a repressive intramolecular interaction between the Trio N-terminal domain (NTD) and GEF1 domain, thereby allowing Trio to stimulate Rac. Finally, we find that, in parallel with the inhibition by Abl of the actin polymerization factor Enabled, the Abl-Trio-Rac pathway activates the Abi/WAVE complex that promotes extension of branched actin networks. We suggest that this combination of effects executes the Abl-dependent regulation of axon growth and guidance.
Results:

Disabled regulates Abl kinase activity

Previous experiments showed that Disabled (Dab) is a core component of the Abl pathway, and suggested that Dab is functionally upstream of Abl: *UAS-Abl* suppresses the phenotype of a *dab* mutant but *UAS-dab* cannot compensate for lack of *Abl* (Song et al., 2010). Moreover, Dab controls subcellular localization of Abl, but not vice versa (Song et al., 2010). We wondered, however, whether Dab also controls Abl kinase activity. We therefore expressed a FRET probe that measures Abl kinase activity *in vivo.*

We expressed in *Drosophila* a unimolecular, CFP/YFP FRET biosensor for Abl kinase activity that was originally constructed for use in mammalian cells, employing sequences from the mammalian CrkII protein (Sterne et al., 2015; Ting et al., 2001). Multiple lines of evidence demonstrate that FRET activity of this bioprobe faithfully reports Abl kinase activity in *Drosophila*:

- By ratiometric imaging, the reporter gives a FRET signal in cultured photoreceptor neurons (PRs) that is decreased in cells that are mutant for *Abl* and increased upon overexpression of WT Abl or expression of *Bcr-Abl* transgenes (Fig 1A, B).
- The FRET signal is inhibited acutely by treatment of PRs with the Abl-specific drug, STI-571 (Gleevec), and this inhibition is reversible upon washout of the drug (Fig 1C, D). The residual FRET signal in the presence of drug is slightly less than that in mutant PRs, likely because of perdurance of maternal Abl. We cannot rule out the possibility that the effect of STI-571 is incomplete since the FRET signal in treated *Abl* mutant cells appears to be slightly less than that in treated WT cells, but the difference is not statistically significant.
Measurement of FRET efficiency by photobleaching of the YFP acceptor reveals a FRET signal that is consistent with the FRET efficiency calculated by ratiometric imaging (Fig 1E).

A mutant of the reporter that lacks its phosphorylatable tyrosine (YF mutant) does not give a FRET signal (Fig 1E).

We next used the Abl FRET probe to test whether Dab modulates Abl kinase activity (Figure 2 A, B). We assayed PRs from WT or Dab mutant flies that express the Abl FRET probe and found that Abl kinase activity was suppressed in Dab mutant neurons (mean FRET ratio (MFR) = 1.55±0.1 in WT vs 0.93±0.2 in Dabmut; mean ± SEM in this and all reported FRET values below; (p<.01)). We also overexpressed Dab in photoreceptors bearing the probe and found that Abl kinase activity was stimulated (MFR = 2.1±0.1 in UAS-Dab; p<.01). Control Western analysis verifies that the Disabled genotype does not alter the level of Abl protein (not shown). Together, these data show that Dab enhances Abl kinase activity.

It has been suggested that the Abl and Disabled orthologs associate in mammalian cells (Sonoshita et al., 2015). We therefore tested Abl/Disabled association in Drosophila by co-IP from embryo extracts and found that immunoprecipitation of Abl co-precipitated Disabled (Figure 2C). Co-precipitation was also observed from extract of cultured S2 cells (not shown). A control documenting immunoprecipitation of Abl by anti-Abl antibody is in Supplementary Fig 1. These data demonstrate that Abl and Dab are associated in common complexes in vivo in Drosophila.
Abl Kinase regulates signaling activity of Rac GTPase

In neurons, Abl cooperates with Rho family GTPases, particularly Rac. However, it is not clear whether Rac and Abl are both downstream of a regulator that acts on both, or whether one of these proteins controls the other. We therefore deployed a second FRET probe to assay Rac activity in living cells. Raichu-Rac was developed as a FRET probe of Rac signaling in mammalian cells, and it was shown also to function in the Drosophila ovary (Itoh et al., 2002; Wang et al., 2010), so we validated the probe in Drosophila PRs and S2 cells. In photoreceptors, Rac biosensor activity decreased substantially in the background of mutations that inactivate the GEF, Trio (MFR = 0.8±0.12 in trio<sup>m89/trio¹; 0.9±0.1 in trio<sup>m89/trio⁹), or upon co-expression of a dominant-negative form of Rac (0.79±0.1 in UAS-Rac^{1N17}) compared to wild type controls (1.68±0.08; p<.001 in each comparison) (Fig 3 A, B). We further validated these results in a gain-of-function background by co-expressing the biosensor with either the GEF1 domain or the GEF2 domain of Trio in WT PRs. The GEF1 domain of Trio activates Rac signaling, while the GEF2 domain does not (Newsome et al., 2000). Consistent with this, co-expression of GEF1 gave a substantial increase in the FRET signal of the Rac bioprobe (MFR=3.04±0.12) compared to control (1.68±0.08), whereas co-expression of GEF2 had no effect (1.64±0.11; ns. Fig 3 B). These results verify the reliability of the Rac biosensor for reporting endogenous Rac activity in Drosophila PRs.

We next used the Abl and Rac FRET biosensors to perform parallel epistasis experiments that revealed that Abl kinase regulates Rac signaling activity, but that Rac does not regulate Abl kinase. We first assayed Abl kinase activity while we manipulated Rac activity in PRs (Fig 3C). In wild type PRs, Abl FRET activity is 1.6±0.2, and this remained unaltered in the background of different trio mutant alleles (1.7±0.14 in trio<sup>m89/trio⁸;
1.6±0.11 in trio^{n89/trio}), or upon co-expression of dominant negative UAS-Rac^{N17} (1.64±0.1) or UAS-trio (1.6±0.2). In contrast, altering endogenous Abl activity exerted a strong influence on endogenous Rac both in PRs and S2 cells (Fig 3 D, E). First, Rac biosensor activity diminished in Abl mutant photoreceptors (1.17±0.11; p<.01) and was hyperactivated by UAS-Abl (2.74±0.2; p<.001) compared to basal expression in controls (1.7±0.11). Acute inhibition of Abl kinase by STI-571 also suppressed Rac activity within minutes, both in cultured S2 cells (Rac MFR = 1.1±0.08 after 30 minutes of treatment with STI-571 vs 1.6±0.1 before treatment; p<.05; Fig 3D) and in PRs (Rac MFR = 1.1±0.16 after treatment vs 1.6±0.08 before treatment; p<.05; Fig 4A, Fig 3F). Note that absolute FRET ratio values measured in S2 cells should not be compared directly to those in PRs. These data demonstrate that Abl kinase activity is required to stimulate Rac. Moreover, the acute suppression of Rac by an Abl inhibitor argues against the hypothesis that suppression of Rac in an Abl mutant arises from indirect compensation for a chronic genetic manipulation, and rather suggests that the effect is relatively direct. For reasons we do not understand, in a small fraction of experiments suppression of Rac signal by Abl inhibition was not reversed by washout of the drug (Fig 3F, but compare Fig 4B). This was observed occasionally in both the wild type background and in the context of Abl overexpression.

Abl acts through Trio to stimulate Rac signaling in neurons

There are a number of Rac GEFs in *Drosophila*, but one in particular, Trio, behaves like a core component of the Abl signaling pathway. trio mutants produce axonal phenotypes that mimic Abl mutations and trio interacts genetically with Abl: heterozygous mutations of trio enhance the phenotype of Abl and vice versa, and ena heterozygotes suppress the trio phenotype (Awasaki et al., 2000; Bateman et al., 2000; Liebl et al., 2000; Newsome et
FRET experiments now show that Abl-dependent regulation of Rac in photoreceptors is mediated by Trio. Rac FRET activity is inhibited significantly either by inhibition of Abl, or mutation of trio, as shown above. Combining both, however, does not further depress Rac activity (MFR = 0.89 ± 0.1 in triom89/triom89 vs 0.86±0.2 in mutant + STI-571, and MFR = 0.82 ± 0.11 in triom89/trio1 vs 0.85±0.2 with STI-571; Figure 4A). This is clearest in a time course, where addition of STI-571 has no effect on the Rac FRET ratio in a trio mutant genetic background (Fig 4B). This demonstrates that Abl and Trio act serially, in a common pathway, and not in parallel. The failure to observe an additive effect of trio and STI-571 is not due to a limitation of the dynamic range of the assay, since other experimental paradigms do produce significantly lower Rac FRET ratios (Figure 5D, below).

We verified by genetic epistasis that Abl acts linearly upstream of trio. Abl and trio mutants each cause stalling of the ISNb motor nerve at the junction of muscles 6 and 13, with failure to innervate muscle 12, as reported previously (Bateman et al., 2000; Song and Giniger, 2011). We found, however, that overexpression of trio suppressed the ISNb phenotype of Abl mutants, but overexpression of Abl did not suppress trio (Fig 4C). Thus, trio1234/8 failed to innervate muscle 12 in 65% of hemisegments (n=290), and this frequency was nearly the same upon overexpression of Abl (78% stall, n=220). In contrast, whereas Abl4/4 mutants showed the ISNb stall phenotype in 80% of hemisegments (n=186), overexpression of trio reduced that to just 13% (n=288; p<<.001, χ^2), which is not significantly different from the % innervation of control embryos at this stage (trio1234/+, muscle 12 not yet innervated in 16% of hemisegments; n=194; p=.37). These data are consistent with a simple, linear dependent pathway with Abl upstream of Trio, as implied by the FRET results.
Abl gates derepression of the Trio GEF1 domain via the spectrin repeats of Trio

We wondered whether Abl stimulates Trio GEF activity directly through an effect on the Rac-specific GEF1 domain or by some other mechanism. Expression of Trio GEF1 by itself in WT photoreceptors increased the Rac FRET ratio from 1.7 ± .08 to 2.9 ± .19 (Fig 5A). Expression of Trio GEF1 in Abl mutant PRs, however, decreases this ratio only slightly (to 2.7 ± .23), consistent with Abl suppressing the endogenous Trio but not the expressed Trio; if the expressed GEF1 also required Abl, the reduction of the FRET ratio would have been far greater (Fig 5D). We therefore inferred that Abl does not regulate Trio via a direct effect on the GEF1 domain.

To map the region of Trio that mediates the effect of Abl we analyzed Trio derivatives by co-expressing them with the Rac bioprobe in S2 cells. To provide an ideal control, each trio mutation was introduced in parallel into two backbones, one bearing a point mutation that inactivates the Rac-specific GEF1 domain (trio mGEF1) or the same amino acid change but in the Rho-specific GEF2 domain (trio mGEF2). trio mGEF1 provides a negative control backbone that should be unable to activate Rac FRET activity regardless of other mutations; trio mGEF2 provides a backbone that is fully active for Rac FRET activity and is therefore appropriate for assaying the effects of modifications to other domains, but bears the identical amino acid change in the GEF2 domain to control for nonspecific effects of the GEF mutation through unrelated mechanisms (Shivalkar and Giniger, 2012; Song and Giniger, 2011). It also rules out any background contributions of GEF2 to the Rac FRET signal.
Rac FRET analysis now revealed, first, that the SH3 domain is required for all activity of full-length Trio, second, that the N-terminal domain (NTD) of Trio represses Rac GEF activity of Trio in the absence of Abl kinase, and third, in the presence of Abl kinase, the Trio spectrin repeats relieve that NTD-dependent repression. As described above, the Rac bioprobe gave a baseline FRET ratio of 1.6±.1 in S2 cells, and addition of STI-571 suppressed this to 1.1±.08 (Fig 3D). Expression of trio mGEF2 in cells bearing the Rac FRET biosensor enhanced the Rac FRET ratio to 2.8±.2 in the absence of drug, and addition of STI-571 suppressed that FRET signal to 1.5±.11 (p<.001 for +/- drug comparison). This establishes the dynamic range of the assay.

Next, we tested the functions of various Trio domains by deletion (Fig 5D; constructs diagrammed in Fig 5B; mean, SEM and N for each condition tabulated in Supplementary Table 1). First, expression of trioΔSH3 (in the mGEF2 backbone) did not enhance the Rac FRET ratio (MFR = 1.7±.07; p>.4 vs no trio control). This shows that the SH3 domain is essential for Trio activity. Second, expression of trio mGEF2ΔNTD (MFR = 2.4±.19) increased Rac activity nearly as much as does trio mGEF2 itself (MFR = 2.8±.2; difference not significant; p>.1), showing that the NTD domain is not needed for activation of Rac. Strikingly, however, addition of STI-571 did not affect the Rac signal of trio mGEF2ΔNTD (MFR = 2.3±.23; p>.8 for +/- drug comparison), showing that this derivative no longer requires Abl kinase for activity. A plausible explanation for this observation came from analyzing the effects of deleting the spectrin repeats. Expression of trio mGEF2Δspec, which deletes only the spectrin repeats, abolished GEF activity (MFR = 1.6±.06, not different from no transgene control; p>.8). In contrast, expressing a derivative that lacked both the spectrin repeats and the NTD, trio mGEF2Δ(NTD+spec), yielded as much activity (MFR=2.4±.17) as does trio mGEF2Δ(NTD) itself (p>.8). The simplest hypothesis,
therefore, is that in the native protein, the NTD suppresses GEF activity in the absence of Abl kinase, and in the presence of Abl, this suppression is counteracted by a mechanism that employs sequences within the spectrin repeat region. Consistent with this hypothesis, trio mGEF2Δ(NTD+spec) was also largely insensitive to Abl (MFR = 1.8±.12 in the presence of STI-571, reflecting inhibition of the endogenous Trio but little effect on the expressed protein). Potential molecular mechanisms for these effects will be considered in the Discussion. In these experiments, all trio derivatives were expressed at similar levels (Fig 5C).

Trio/Rac acts in parallel to Enabled, downstream of Abl

Enabled is a direct regulator of actin organization that functions downstream of Abl (Gates et al., 2007; Gertler et al., 1995; Grevengoed et al., 2003; Kannan et al., 2014), but it was not known whether Trio acts between Abl and Ena, in a single, linear pathway, or in parallel to Ena. We have shown previously that loss of Abl or Disabled causes Ena protein to coalesce in large aggregates at the most basal part of the soma of photoreceptor neurons (Kannan et al., 2014). If this is mediated via Trio then a trio mutant should show the same phenotype. We therefore examined Ena localization in trio mutant eye discs and found that Ena protein remains distributed throughout the cytoplasm of the cell soma, it does not settle at the axon exit site of the PR soma (Fig 6). This excludes the hypothesis that Trio is upstream of Ena in a simple, linear dependent pathway, and instead argues that the signaling network bifurcates downstream of Abl, with suppression of Ena and activation of Trio/Rac forming parallel branches.
Rac interacts with WAVE to controls ISNb axon patterning

Rac has many biochemical targets, but one of its key effectors is the WAVE complex. In the absence of Rac activity, the VCA motif of WAVE protein (called SCAR in *Drosophila*) is sequestered (Chen et al., 2010; Gautreau et al., 2004). Binding of SCAR to GTP-Rac releases that interaction, allowing recruitment of Arp2/3, and promotion of branched actin networks (Blanchoin et al., 2000; Machesky and Insall, 1998; Marchand et al., 2001). We therefore performed genetic interaction tests and discovered that Trio/Rac interacts functionally with WAVE components to control *Drosophila* axon patterning. We knocked-down *scar* expression by RNAi (Zallen et al., 2002) in neurons and found that this produced the ISNb stalling phenotype characteristic of *Abl* pathway mutants: ISNb stalls in 24% of RNAi-expressing hemisegments (n=377) vs 7% in control (n=177; p<.001 (χ^2)) Fig 7B, C; quantified in F). This is supported by analysis of embryos doubly-heterozygous for both a *scar* mutation and a mutation in another core component of WAVE complex, Abl-interacting protein 1 (*Abi-1*): the doubly heterozygous embryos displayed the same axon stalling phenotype in 79% of hemisegments (n=214) vs 16% stalling for *scar*-37/+ (n=210) and 31% stalling for *abi*-KO/+ (n=256; p<.001 in comparison to either heterozygous mutation alone; χ^2)(Fig 7A, D, F). The high stall frequency in *abi* heterozygotes was unexpected, but it was observed with two independent *abi* alleles and in multiple genetic backgrounds. Apparently, *abi* is partly haploinsufficient for ISNb extension. In ISNb extension, SCAR evidently interacts intimately with Trio and Rac, as embryos that are doubly heterozygous for mutations in *trio* and *scar* also show a strongly synergistic ISNb stalling phenotype (*trio*123.4/++; *Df(scar)/*+ -> 67% stall (n=86) and *trio*123.4/++; *scar*-37/+ -> 51% stall (n=187), vs (*trio*123.4/+ -> 16% stall (n=254); in each case p<.001; χ^2) (Fig 7E, F). Together, these data show that the functional interaction of
Trio/Rac with the WAVE complex is essential for a characteristic Abl-dependent axon guidance decision.

Discussion

We show here that Abl tyrosine kinase and its interacting cofactors form a bifurcating protein network that controls axon patterning in *Drosophila* (Fig 7G). Disabled, which associates with guidance and motility receptors, is an upstream regulator of Abl localization and activity. Abl, in turn, regulates the localization and suppresses the activity of the actin regulator, Enabled. Abl also stimulates Rac GTPase signaling through regulation of the Rac guanine exchange factor (GEF), Trio. Trio GEF activity is repressed by its own N-terminal domain (NTD) in the absence of Abl, but in the presence of Abl, the spectrin repeats of Trio relieve that NTD-dependent repression. Finally, a key target of Abl-dependent Rac activity in axon patterning is a second actin-regulatory complex, WAVE: Trio/Rac interacts genetically with WAVE components, including WAVE/SCAR itself and the Abl-interacting protein Abi-1, to promote Abl-dependent axon patterning. Together, these interactions allow the Abl signaling network to control a wide variety of axon patterning decisions throughout animal phylogeny, perhaps by coordinating the Ena-dependent dynamics of linear actin bundles with the WAVE-dependent dynamics of branched actin networks.

The relationship of Dab to Abl has long been controversial (Gertler et al., 1993; Howell et al., 1997; Liebl et al., 2003; Song et al., 2010; Sonoshita et al., 2015). For some time, it was unclear whether Disabled is even a core component of the Abl pathway, though more recently we established the central role of Dab in Abl pathway function (Liebl et al., 2003; Song et al., 2010). Moreover, a recent report suggested that Dab can
co-IP with Abl out of mammalian cells (Sonoshita et al., 2015), whereas previous investigators only detected binding by \textit{in vitro} pull-down assays (Gertler et al., 1993; Howell et al., 1997). We reinvestigated this question and found that, indeed, Dab and Abl co-IP out of both cultured \textit{Drosophila} S2 cells and wild type embryo lysates. We also found that Dab enhances the kinase activity of Abl \textit{in vivo}, as assayed by FRET, in addition to controlling Abl subcellular localization. These data provide a potential biochemical basis for the functional interaction of these proteins.

Here we demonstrate that Disabled physically associates with Abl, and we have shown previously that Disabled associates with Trio (Le Gall et al., 2008). The most parsimonious interpretation, therefore, is that Abl, Dab and Trio form a single, trimeric complex. We have as yet been unable, however, to show direct interaction of Abl with Trio or co-IP of Abl and Trio from tissue or cell lysates. While we cannot exclude the possibility that Disabled forms separate complexes with Abl and with Trio, we think it more likely that this reflects technical limitations of the experiment. It may be that the trimeric complex is labile \textit{in vitro}, preventing us from detecting co-precipitation of Abl with Trio.

It is unclear how Abl kinase induces the Trio spectrin repeats to relieve repression of Trio GEF1 activity by the Trio NTD. A previous study reported direct binding between specific Abl and Trio domains \textit{in vitro}, as assayed using pulldowns with protein fragments (Forsthoefel et al., 2005). We were unable to confirm this by co-IP of the full-length proteins from cell or embryo lysates, but that could reflect insufficient sensitivity of the assay, particularly if association with specific, activated receptors is necessary for complex formation. Previous studies have also failed to provide rigorous evidence of
direct phosphorylation of Trio by Abl (Forsthoefel et al., 2005). Our FRET results, however, are consistent with the idea that there may be an additional protein involved in the stimulation of Trio by Abl, one that can be titrated into inactive complexes by expression of non-inducible Trio derivatives (Fig 5D). It may be, for example, that this hypothetical third component is the direct target of Abl kinase, and then associates with Trio, or signals to it. Isolation of such a putative cofactor will be essential to test this hypothesis. In addition, while our data show a strong requirement for Abl kinase activity in Trio activation, we cannot rule out the possibility that Abl also has a scaffolding role that is separate from its kinase activity (Hoffmann, 1991; Rogers et al., 2016). We could not use transgenic overexpression of Abl derivatives to query possible non-kinase functions of Abl, or to challenge the trio-dependence of activation of Rac FRET by Abl, since overexpression of Abl caused non-physiological activation of other Rac GEFs, including SOS (RK and EG, unpublished observations).

It is striking that conceptually analogous, but molecularly very different, interactions have now been observed between Abl and Trio in different contexts. In experiments here, we show that Abl interacts functionally with Trio to stimulate Rac signaling, and this requires Abl kinase activity. Analogously, in mammalian tumor cells, Abl phosphorylates the C-terminal portion of Trio to stimulate its Rho GEF activity, and this promotes metastasis (Sonoshita et al., 2015). The domain of mTrio that becomes phosphorylated by Abl in the mouse tumor model, however, and by Fyn in mouse neurons (DeGeer et al., 2013), does not exist in Drosophila Trio. Moreover, previous experiments have shown that the Rho GEF domain of Trio is dispensable for axon and dendrite development in Drosophila and C. elegans, and that it is the Rac GEF activity of Trio that controls neuronal morphogenesis (Iyer et al., 2012; Shivalkar and Giniger, 2012; Song and Giniger, 2011;
Steven et al., 1998). Nonetheless, it is remarkable that in both contexts Abl acts through stimulation of Trio to control motility events that depend on Rho family GTPases, albeit by different molecular mechanisms.

Enabled and Rac/WAVE are two key outputs of the Abl pathway for regulation of the neuronal cytoskeleton. Enabled regulates actin via three activities (Krause et al., 2003; Trichet et al., 2008). It promotes actin polymerization, bundles actin filaments through its multimerization domain, and prevents capping of the actin barbed end. Mutant analysis suggests that all three activities contribute to Ena-dependent axon patterning. For example, mutation of the dimerization domain generates a null ena allele in Drosophila, and mutation of capping protein β can suppress ena phenotypes (Gates et al., 2009). Together, the different activities of Ena conspire to extend and bundle parallel actin filaments, as are found in filopodia. WAVE is the core component of a large protein complex, comprising WAVE, Sra1, Nap1, Abi, and HSPC300 (Chen et al., 2010; Gautreau et al., 2004). This complex promotes branched actin networks by recruiting the Arp2/3 complex to the side of an existing actin filament and stimulating its ability to nucleate a daughter filament at a 70° angle to the mother filament (Blanchoin et al., 2000; Machesky and Insall, 1998). The WAVE complex is initially inactive, and must be activated by association with GTP-Rac (Eden et al., 2002). Once activated, WAVE complexes extend branched actin networks, for example in lamellipodia. The contrasting activities of Ena and Rac/WAVE can be seen in their effects on cell morphology, where overexpression of Ena promotes a spiky, filopodial morphology, whereas activation of Rac produces a broad, lamellar morphology (Insall and Machesky, 2009; Lacayo et al., 2007; Rogers et al., 2003).
Our data, therefore, demonstrating that Abl simultaneously suppresses the activity of Enabled, but stimulates WAVE/Rac, reveals that the structure of the Abl network intrinsically introduces an antagonism between the two major classes of actin structures in the cell (Burke et al., 2014; Chen et al., 2014). A receptor that evokes the activity of the Abl pathway will automatically induce a default balance between the two major classes of actin structures in the growth cone, linear actin bundles and branched actin networks. Receptors that modulate the two legs of the pathway separately, in contrast, will modify that balance. It is attractive to speculate that the ability of Abl to automatically balance, and rebalance, the different kinds of actin structures in the cell may be why so many motility and guidance receptors have evolved to signal through the Abl network (Bradley and Koleske, 2009; Lanier and Gertler, 2000).

For more than two decades, the Abl signaling cassette has been one of the key systems used to interrogate axon growth and guidance and neuronal migration (Goodman and Shatz, 1993; Hoffmann, 1991; Lanier and Gertler, 2000; Wills et al., 1999a). Its explanatory value, however, has been severely limited by the lack of a molecular schema for interpreting the interactions among its components. The results we report here provide a detailed molecular model for the Abl signaling network in neurons that can now be used to design and interpret cellular and molecular studies of the mechanisms of neuronal morphogenesis and motility.
Materials and Methods

Drosophila stocks

Drosophila bearing *P[UAS Rac FRET]* were obtained from D. Montell (UC Santa Barbara, Santa Barbara, CA); *P[UAS BCR-p210]* and *P[UAS BCR-p185]* were from M. Peifer (UNC-Chapel Hill, Chapel Hill, NC); *abi* mutants were from J-L. Juang (NHRI, Taipei, Taiwan); *P[UAS-SCAR RNAi]* was from J. Zallen (MSKCC, New York, NY). All other fly stocks were described previously (Kannan et al., 2014; Song and Giniger, 2011; Song et al., 2010), or obtained from the Bloomington *Drosophila* Stock Center.

Construction of Abl FRET biosensor and generation of *Drosophila* transgenics

Plasmid for mammalian CFP-YFP Abl biosensor (GenBank accession number AF440203, 2334bp) was obtained from Dr. Roger Tsien (UCSD, San Diego, CA). Site-directed mutagenesis was performed to construct a Y221F mutation as a negative control. cDNA of both the WT and Y221F biosensors were subcloned into pUAS-T with BamH1/XhoI, and transgenic fly lines were generated by Bestgene, Inc.

Drosophila S2 cells growth conditions and transfection protocol

Drosophila S2 cells (E. Serpe NIH, Bethesda, MD) were cultured in Schneider’s medium (Gibco, Thermo Fisher, Waltham, MA) with 10% heat inactivated Fetal Bovine Serum (JRH Biosciences, Lenexa KS) and 1% Penicillin-Streptomycin (1: 100; Gibco). Medium was filter sterilized and cells grown at 23-25°C. S2 cell transfection was by standard methods, using DDAB reagent (Sigma, St Louis, MO) + 0.7 - 4μg plasmid DNA. Transgene expression was driven with *actin-GAL4 (pRK241)*. For FRET experiments, measurements were performed 48h after transfection.
Drosophila photoreceptor neuronal culture

Culture of larval photoreceptors was performed by published methods (Newsome et al., 2000). 100-150 eye-antennal imaginal discs were dissected from 3rd instar larvae in S2 cell culture media, and the eye portion of each was isolated with a tungsten needle and transferred to a microcentrifuge tube using a silanized pipet. Discs were incubated 30’ (room temperature) in 400μL collagenase + 100μl liberase I, then triturated to homogeneity. Cells were pelleted 5’ at 5000rcf, washed 3 times with culture media, suspended in 100 μl of culture media in a MatTek dish coated with poly L-lysine and conconavalin-A, and incubated at 25°C in the dark in a moist chamber.

Ratio FRET imaging in S2 and PR neurons

Ratiometric FRET imaging was carried out by the method of (Koga et al., 2006). Images were collected using a DeltaVision microscope with 60X, 1.42 NA lens, 2X zoom and 2x2 binning (PR cells) or Zeiss LSM510 confocal microscope using 63X, 1.4 NA, 2X zoom (S2 cells). On DeltaVision, stacks of ~ 50-75 z-sections were acquired with 0.150 μm step size sequentially in YFP, CFP, FRET, and DIC. On LSM 510, a 405nm laser was used to excite and a stack of ~14 z-sections was collected simultaneously in CFP and FRET. Measurements were performed from z-projections of the image stack. Regions of interest (ROI) were drawn manually in MetaMorph (Molecular Devices, LLC, Sunnyvale, CA) and average intensity values for the same ROI in CFP (I_{cfp}) and FRET (I_{fret}) were exported into Excel. Background average intensity values (I_{bg-cfp} and I_{bg-fret}) were measured from the same images. The FRET ratio (R_f) was calculated as R_f = (I_{cfp} - I_{bg-cfp})/(I_{fret} - I_{bg-fret}). CFP/FRET ratio images were presented for display purposes in the intensity modified display mode (Wang et al., 2005). 23-38 cells were imaged for each value reported, except for STI-571 time course experiments (n=17-20).
Acceptor photobleaching for Abl FRET

FRET measurement by acceptor photobleaching was performed as described (Karpova et al., 2003). Single plane sequential images in CFP, then YFP, were collected (Zeiss LSM780; 63X, 1.46 NA objective, 4X zoom). GaASP detector was adjusted to eliminate cross talk and optimize dynamic range. Photobleaching of the whole cell was performed with 514 nm laser. We collected three reference images before photobleach and five images after. Circular ROIs encompassing the whole cell were drawn manually in background-subtracted CFP-channel images to measure average intensity values (I_n) before and after photobleach. FRET efficiency (E_f) was calculated as $E_f = (I_6 - I_5) \times 100 / I_6$, where I_n represents average intensity at nth time point. As a control, we performed mock photobleach with the laser switched off without changing other FRET imaging parameters.

STI571 preparation and treatment in PR neuronal and S2 cell cultures

100mg pills of STI571 (NIH Clinical Center pharmacy) were dissolved in 20 ml of PBS for final 10mM concentration, and aliquots were stored at -20°C. STI571 was added to media at time of imaging. Washout was initiated with de-oxygenated culture media using an automatic pump.

Trio mutant constructs

Equivalent domain deletions were introduced into UAS-Trio mGEF1 and UAS-Trio mGEF2 backbones by PCR using Expand high-fidelity PCR Taq-DNA polymerase (Roche, USA) and sequence-verified.
Immunostaining and antibodies

Larval eye disks

Third instar larval eye discs with brain lobes attached were dissected, fixed, mounted in Vectashield (Vector Labs, Burlingame, CA) and imaged by standard methods (Kannan et al., 2014). Z-sections were acquired using a Zeiss LSM 510 confocal at 63X magnification and deconvoluted using AutoQuant.

Embryo staining for ISNb motor axon defects

Embryo fixation, staining, imaging and quantification of ISNb phenotypes were as described previously (Song and Giniger, 2011; Song et al., 2010). Abdominal hemisegments 2-7 of early stage 17 embryos were scored by Nomarski microscopy for presence or absence of a neuromuscular junction on muscle 12. Data from independent experiments was pooled for each genotype to derive the number of hemisegments in which ISNb did, or did not, form the muscle 12 NMJ. Significance was assessed by χ² test (Statistical methods, below).

Antibodies

The following antibodies were used in this study. Mouse anti-Ena (5G2; 1:50), rat anti-Elav (7E8A10; 1:20), anti-Fasciclin2 (1D4 concentrate, 1:100), anti-Disabled (P4D11, for immunoprecipitation, and P6E11, for Western analysis) and anti-Trio (9A; 1:50) were from the Developmental Studies Hybridoma Bank (Iowa City, IA). Rabbit anti-Disabled and rabbit anti-Abl were described previously (Song et al., 2010). Mouse anti-Drosophila Abl polyclonal serum was prepared by the Antibody Development Laboratory of the Fred Hutchinson Cancer Research Center, using the same immunogen as for rabbit anti-Abl. Specificity was verified by staining of Abl null mutant imaginal discs. Rabbit anti-β-
galactosidase (1:10,000) was from Cappel (Malvern, PA). Secondary antibodies (1:250) were from Jackson ImmunoResearch (West Grove, PA). Alexa 488 conjugated phalloidin (Life Technologies, Grand Island, NY) was used at 1:300.

Biochemical methods

Co-IP experiments were done as described previously (Le Gall, et al., 2008).

Western blotting

Western blotting was performed by standard methods. Signals were visualized using secondary antibodies coupled with IR-Dye 700 or 800 and scanned with Odyssey infrared imaging system (Li-Cor Biosciences, Lincoln, NE), or using peroxidase-coupled secondaries and ECL using Lumigen (Southfield, MI).

Image preparation

Image adjustments, including brightness, contrast, gamma and color balance were applied to entire figure panels, as necessary. DIC embryo images were montaged from multiple focal planes and in some cases an unsharp mask was applied to the final image to clarify anatomical features.

Statistical methods

Numerical data in all experiments were corrected for multiple testing by the Bonferroni method. For embryo axonal phenotypes, statistical significance of planned comparisons between genotypes was assessed by a two-class (innervated vs non-innervated) χ^2-squared test with one degree of freedom, with p-value calculated in Excel (chitest), followed by Bonferroni correction.
Acknowledgements

We are grateful to everyone who gave us advice, assistance and reagents for these experiments. We particularly thank Roger Tsien and Alice Ting for the mammalian Abl FRET probe, and Denise Montell and members of her lab for DNA and flies bearing the Rac FRET probe. In addition to the members of our lab, especially Ginger Hunter and Josh Spurrier for comments on the manuscript, we are particularly grateful to Chi-Hon Lee, Ela Serpe and the members of their labs for many helpful discussions and for invaluable assistance, and to Steven Vogel and Clare Waterman for advice on FRET. We also thank Stephen Wincovitch of the NHGRI Microscopy Core for much help with imaging, and Kory Johnson of the NINDS Biostatistics Core for assistance with statistical analysis. These experiments were supported by the BNP of the NINDS Intramural Research Program, Grant Z01-NS003013 to EG. RK was supported in part by a DBT Ramalingaswami re-entry fellowship from the Government of India.

Competing Interests

No competing interests declared

Author Contributions

References

Figures

Fig 1. Validation of Abl FRET biosensor

A CFP-YFP unimolecular FRET biosensor for Abl kinase activity was expressed in Drosophila photoreceptor neurons under control of GMR-GAL4, and FRET was imaged and quantified in cultured primary photoreceptors. Scale bar (A, C): 10 microns.

A. Single optical section of 1-2 photoreceptors showing biosensor distribution (YFP; top) and FRET (bottom) in cells from larval eye discs of the indicated genotypes. Quantified cell is outlined in red, and the pseudocolor scale for FRET signal is
shown with limiting values indicated, in this and all other FRET images. Note that the WT photoreceptor in (A) is the 30’ (pre-drug) image from (C).

B. Mean FRET ratio for each genotype. Bars are labeled with SEM and number of cells imaged for this and all FRET figures below; statistical significance is indicated with asterisks (*p<.05; ** p < .01; ***p< .001; in all cases two-tailed t-test, with Bonferroni correction for multiple testing).

C. Single photoreceptor showing Abl FRET probe distribution and time course of FRET channel upon treatment for the indicated time with the Abl kinase inhibitor STI-571, and drug washout.

D. Time course of Abl inhibition by STI-571 and washout (n=32). Mean FRET ratio has been normalized to 1 at time 0. SEM is indicated.

E. Quantification of Abl reporter FRET by YFP photobleaching for the indicated genotypes. Display of SEM, n and significance are as described above.
Fig 2. Disabled stimulates Abl kinase activity

A. Cultured photoreceptors of the indicated genotypes expressing the Abl FRET bioprobe. Left panel in each pair shows probe distribution (YFP); right panel
shows FRET. Area used for quantification is outlined and pseudocolored activity key is shown. Scale bar: 10 microns.

B. Mean Abl FRET ratio for each genotype. SEM, n and significance are indicated.

C. Anti-Dab western of wild type embryo lysates. Disabled runs as a family of 2-3 products of ~250-280 Kd (arrows). Molecular weight markers are indicated. Similar results were obtained in six independent experiments, and in extract of S2 cells (not shown).
Fig 3. Validation of Rac FRET probe and Abl/Rac epistasis
Abl-responsive or Rac-responsive CFP-YFP unimolecular FRET probes were expressed in *Drosophila* under control of GMR-GAL4 and ratiometric FRET was imaged and presented as above.

A. Single cultured photoreceptors of the indicated genotypes expressing the Raichu-Rac FRET probe. Top panel in each pair shows probe distribution (YFP), bottom panel shows pseudocolored FRET channel with color scale. Length scale bar: 10 microns.

B. Mean Rac FRET ratio for each genetic background. SEM, n and significance are indicated.

C. Mean Abl FRET ratio in genotypes that alter *trio* or *rac* activity.

D. Mean Rac FRET ratio in genotypes that alter Abl activity, either genetically or +/- 30 minute treatment with STI-571.

E. Single cultured photoreceptors expressing the Raichu-Rac FRET bioprobe. Left image of each pair shows probe distribution (YFP), right image is pseudocolored FRET.

F. Time course of Raichu-Rac FRET signal in photoreceptors expressing UAS-Abl upon treatment with the Abl inhibitor STI-571 and washout. Signals are normalized to FRET ratio at start of experiment; error bars indicate SEM (n= 18).
Fig 4. Abl regulation of Rac is mediated through Trio

A. Mean Rac FRET ratio for the indicated genotypes, +/- 30 minute treatment with Abl inhibitor STI-571. SEM, n and significance are indicated.
B. Time course of Raichu-Rac FRET signal of the indicated genotypes upon treatment with STI-571 and washout. FRET signals for the time courses are not normalized to the starting values, to allow comparison of trio mutant to control. Error bars indicate SEM.

C. Nomarski images showing 3 hemisegments of stage 17 embryos of the indicated genotypes, immunostained with anti-Fas2 and filet-mounted to reveal ISNb motonerve. Black arrows indicate muscle 12 neuromuscular synapses; red arrows indicate positions of missing synapses (“stall” phenotype). Scale bar: 10 μm.

D. Quantification of ISNb stall phenotypes (failure to innervate muscle 12). Asterisks indicate significance (χ^2, with Bonferroni correction; *** p<.001).
Fig 5. Structure/function analysis of Trio and its regulation by Abl

A. Mean Rac FRET ratio in cultured photoreceptors for the indicated genotypes. SEM, n and significance are indicated.

B. Schematic of *Drosophila* Trio protein domain structure and the deletions tested here. Deleted codons are indicated. “SR” denotes spectrin repeats.

C. Anti-Trio Western of *Drosophila* S2 cells expressing the indicated Trio derivatives. Endogenous wild type Trio is seen in all lanes (white arrow). Deleted derivatives are visible in lanes 4-7 (yellow bracket); derivatives bearing point mutations (lanes 2 and 3) cannot be distinguished from the endogenous protein.
D. Mean Rac FRET ratio assayed after co-transfection of Raichu-Rac reporter into S2 cells with the indicated transgenes. Gray bars show FRET activity after 30 minute treatment with STI-571; purple bars show FRET activity after 30 minute mock treatment. WT refers to results of transfection with FRET reporter transgene + carrier DNA, but no trio transgene. SEM and n are indicated, as is significance of relevant comparisons. Note that the data for control +/- STI-571 (top two bars) were also presented in Fig 3D, above.
Fig 6. Ena and Trio act in parallel downstream of Abl

A – C’. Eye imaginal discs were isolated from third instar larvae of the indicated genotypes, stained with anti-Ena (green) and phallloidin (red), and imaged by confocal microscopy. (A – C) Ena channel. (A’ – C’) Ena and phallloidin. Arrows highlight the disc-like appearance of Ena immunoreactivity associated with cis-Golgi, distributed throughout the photoreceptor soma in (A, A’) wild type and (C, C’) trio. (B, B’) Ena immunoreactivity in the dab mutant concentrates in a single, large blob at the most basal point in the soma of each photoreceptor. Scale bar: 5 μm.
Fig 7. Genetic interaction of Trio/Rac with WAVE components and model for the Abl pathway

A - E. Nomarski images showing 3 hemisegments of stage 17 embryos of the indicated genotypes, immunostained with anti-Fas2 and filet-mounted to reveal ISNb motonevme. Black arrows indicate muscle 12 neuromuscular synapses; red arrows indicate positions of missing synapses (“stall” phenotype). Scale bar (E): 10 μm.

F. Quantification of ISNb stall phenotypes (failure to innervate muscle 12). Asterisks indicate significance by χ² for relevant comparisons (with Bonferroni correction; *** p<.001).

G. Model for the functional organization of the Abl signaling pathway. Arrow indicates a stimulatory interaction, T indicates an inhibitory interaction, dotted line indicates a physical association (co-IP) without specifying epistatic directionality.
Supplementary Fig 1. Anti-Abl antibody immunoprecipitates Abl protein

Aliquots of the embryo lysate used for the experiment of Fig 2C were subjected to IP, PAGE and Western blotting. Molecular weight markers are indicated; non-imm indicates control non-immune IgG.
Suppl. Table 1: Quantitative data for Figure 5D, Structure/function dissection of Trio

<table>
<thead>
<tr>
<th>Background</th>
<th>Genotype</th>
<th>STI-571</th>
<th>mean</th>
<th>SEM</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rac biosensor</td>
<td></td>
<td>1.61</td>
<td>.10</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Rac biosensor</td>
<td>+STI-571</td>
<td>1.08</td>
<td>.08</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Rac biosensor</td>
<td>UAS-Trio mGEF2</td>
<td>2.85</td>
<td>.20</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Rac biosensor</td>
<td>UAS-Trio mGEF2 +STI-571</td>
<td>1.46</td>
<td>.11</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Rac biosensor</td>
<td>UAS-Trio mGEF2 Δ(NTD)</td>
<td>2.39</td>
<td>.19</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Rac biosensor</td>
<td>UAS-Trio mGEF2 Δ(NTD) +STI-571</td>
<td>2.34</td>
<td>.23</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Rac biosensor</td>
<td>UAS-Trio mGEF2 Δ(spectrin repeats)</td>
<td>1.58</td>
<td>.10</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Rac biosensor</td>
<td>UAS-Trio mGEF2 Δ(spectrin repeats) +STI-571</td>
<td>.68</td>
<td>.08</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Rac biosensor</td>
<td>UAS-Trio mGEF2 Δ(NTD+spectrin)</td>
<td>2.44</td>
<td>.17</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Rac biosensor</td>
<td>UAS-Trio mGEF2 Δ(NTD+spectrin) +STI-571</td>
<td>1.80</td>
<td>.12</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Rac biosensor</td>
<td>UAS-Trio mGEF2 Δ(SH3)</td>
<td>1.70</td>
<td>.07</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Rac biosensor</td>
<td>UAS-Trio mGEF2 Δ(SH3) +STI-571</td>
<td>.53</td>
<td>.06</td>
<td>38</td>
<td></td>
</tr>
</tbody>
</table>