Genetic Redundancy of GATA Factors in Extraembryonic Trophoblast Lineage Ensures Progression of both Pre and Postimplantation Mammalian Development

Pratik Home¹, Ram Parikshan Kumar², Avishek Ganguly³, Biswarup Saha⁴, Jessica Milano-Foster¹, Bhaswati Bhattacharya¹, Soma Ray¹, Sumedha Gunewardena⁴, Arindam Paul¹, Sally A. Camper⁵, Patrick E. Fields¹ and Soumen Paul¹*

¹ Department of Pathology and Laboratory Medicine and Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS USA.
² Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA.
³ North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
⁴ Department of Molecular and Integrative Physiology, Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA.
⁵ Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States.

*CORRESPONDING AUTHOR

Soumen Paul
University of Kansas Medical Center,
MS 3050, Kansas City, KS 66160, USA
Email: spaul2@kumc.edu (S.P.)

Key Words: Mammalian Development, GATA2, GATA3, Trophoblast Stem Cells, Placenta.
Abstract

GATA transcription factors are implicated in establishing cell fate during mammalian development. In early mammalian embryos, GATA3 is selectively expressed in the extraembryonic trophoblast lineage and regulates gene expression to promote trophoblast fate. However, trophoblast-specific GATA3 function is dispensable for early mammalian development. Here, using dual conditional knockout mice, we show that genetic redundancy of GATA3 with paralog GATA2 in trophoblast progenitors ensures the successful progression of both pre and postimplantation mammalian development. Stage-specific gene deletion in trophoblasts reveals that loss of both GATA genes, but not either one alone, leads to embryonic lethality prior to the onset of their expression within the embryo proper. Using ChIP-seq and RNA-seq analyses, we define the global targets of GATA2/GATA3 and show that they directly regulate a large number of common genes to orchestrate stem vs. differentiated trophoblast fate. Also, in trophoblast progenitors GATA factors directly regulate BMP4, Nodal and Wnt signaling components that promote embryonic-extraembryonic signaling cross-talk, essential for the development of the embryo proper. Our study provides genetic evidence that impairment of trophoblast-specific GATA2/GATA3 function could lead to early pregnancy failure.
Introduction

Extra-embryonic trophoblast cell lineage is unique to mammals and is essential for successful progression of mammalian reproduction. Trophoblast cells only exist during embryonic development and originate during the first cell fate decision in preimplantation embryos (Cockburn and Rossant, 2010; Pfeffer and Pearton, 2012; Roberts and Fisher, 2011; Rossant and Cross, 2001). Subsequently, trophoblast cells mediate implantation of the developing embryo to the maternal uterus and establish a maternal-fetal interface for vascular connection with the mother for nutrient and gas transport to the embryo (Rossant and Cross, 2001). Failure in the determination of the trophoblast lineage during preimplantation development leads to defective embryo implantation (Cockburn and Rossant, 2010; Pfeffer and Pearton, 2012; Roberts and Fisher, 2011; Rossant and Cross, 2001), which is a leading cause of infertility. After implantation, defective development and function of trophoblast progenitors lead to either early pregnancy failure or pregnancy-associated complications like intrauterine growth retardation (IUGR), preeclampsia (Myatt, 2006; Pfeffer and Pearton, 2012; Redman and Sargent, 2005; Rossant and Cross, 2001), or causes postnatal or adult diseases (Gluckman et al., 2008).

Development of the trophoblast cell lineage is a multi-step process (Fig. S1) and begins with the establishment of the trophectoderm (TE) in blastocysts. The TE mediates blastocyst implantation and is the source of trophoblast stem and progenitor cells (TSPCs). In an early postimplantation mouse embryo, TSPCs proliferate and differentiate to develop the extra-embryonic ectoderm (ExE). Later, ~embryonic day (E)7.0-E8.0, the ectoplacental
cone (EPC) and chorion are developed. Subsequently, lineage-specific trophoblast progenitors arise from TSPCs, which differentiate to specialized trophoblast subtypes leading to successful placentation. Thus, trophoblast lineage development relies upon proper spatial and temporal regulation of gene expression during (i) TE-development in preimplantation embryos; (ii) maintenance of self-renewal within TSPCs of an early postimplantation embryo; and (iii) subsequent differentiation of trophoblast progenitors to specialized trophoblast subtypes of a matured placenta.

Studies with gene knockout mice and mouse trophoblast stem cells (TSCs) implicated several transcription factors including GATA3, in regulation of the trophoblast lineage development (Barak et al., 1999; Hemberger et al., 2010; Home et al., 2009; Keramari et al., 2010; Nishioka et al., 2008; Ralston and Rossant, 2008; Russ et al., 2000; Strumpf, 2005; Yagi et al., 2007). Earlier, other laboratories and we reported that GATA3 is selectively expressed in extra-embryonic TE and TSPCs during early mouse development and is involved in TE-specific gene regulation (Home et al., 2009; Ralston et al., 2010). Also, ectopic expression of Gata3 in mouse embryonic stem cells (ESCs) or mouse fibroblasts could instigate trophoblast fate (Benchetrit et al., 2015; Kubaczka et al., 2015; Ralston et al., 2010). However, gene knockout studies in mice revealed that Gata3-null mouse embryos die at ~E11.5 due to defective neuroendocrine system development (Lim et al., 2000; Pandolfi et al., 1995) indicating that trophoblast-specific GATA3 function is not essential for mammalian development.
Like GATA3, GATA2 is also implicated in the regulation of a few trophoblast genes in the mouse placenta (Bai et al., 2011; Ma et al., 1997; Ray et al., 2009). Also, both GATA2 and GATA3 are selectively expressed in the TE of a preimplantation human embryo (Assou et al., 2012; Blakeley et al., 2015). However, Gata2-null mouse embryos die at ~E10.5 due to defective hematopoiesis (Tsai and Orkin, 1997), indicating that, like GATA3, trophoblast-specific GATA2 function is not essential for early mammalian development. Thus, although both GATA2 and GATA3 are implicated in gene regulation at different stages of trophoblast lineage development, individual functions of GATA2 or GATA3 is dispensable for this process.

As GATA factors often show functional redundancy in other tissue developments (Fujiwara et al., 2004; Peterkin et al., 2007), we hypothesized that GATA2 and GATA3 have functional redundancy in the developing trophoblast lineage and one GATA factor compensates for the loss of the other. To test this hypothesis, we established inducible gene knockout mice, in which Gata2 and Gata3 could be conditionally deleted individually or in combination. We discovered that combinatorial functions of GATA2 and GATA3 are important to establish trophoblast lineage development in both pre and postimplantation embryos. We found that both GATA2 and GATA3 target transcriptionally active and silent genes to orchestrate developmental stage-specific gene expression program in TSPCs, which in turn ensure both pre and early postimplantation mammalian development. Due to the lack of an early trophoblast phenotype in these gene knockout studies, it is still unknown whether trophoblast-specific functions of GATA2 and GATA3 are essential to assure the early development of mammalian embryos.
Results

GATA2 and GATA3 expression are confined within extraembryonic trophoblast cells during early mouse development

During preimplantation mouse development, Gata3 mRNA expression is induced at the 4-cell stage, and GATA3 protein expression is detectable during the 8- to 16-cell transition (Home et al., 2009; Ralston et al., 2010). However, in a matured blastocyst, GATA3 mRNA and protein expression becomes restricted only to the TE lineage (Home et al., 2009; Ralston et al., 2010). Recently, other studies showed that both Gata2 and Gata3 mRNAs are selectively expressed within the TE lineage of a human preimplantation embryo (Assou et al., 2012; Blakeley et al., 2015). However, GATA2 protein expression is not well documented during preimplantation development. So, we tested GATA2 protein expression at different stages of mouse preimplantation development. We found low levels of GATA2 protein expression in blastomeres of 2-16 cell embryos. However, GATA2 expression is upregulated in outer TE-lineage cells and is repressed in the inner cell mass during blastocyst maturation (Fig. 1A). In matured blastocysts, both GATA2 and GATA3 are only expressed within the TE lineage (Fig. 1B).

We also tested GATA2 and GATA3 protein expression in early postimplantation embryos. We found that up to Theiler stage 10c (~E7.25), expression of GATA2 and GATA3 are mostly confined in the extraembryonic trophoblast cells, including TSPCs within the EPC (Fig. 1C). Around E7.25-E7.5, a few cells of the extraembryonic yolk sac mesoderm also begin to express GATA2 protein (Fig. 1C). However, GATA2 and GATA3 proteins are not expressed in the embryonic cells prior to E7.5. Subsequently,
GATA2 and GATA3 expression are induced in the embryo proper and also maintained in trophoblast cells (Fig. 1D). Thus, our study confirmed a trophoblast-restricted expression pattern of GATA2 and GATA3 during blastocyst maturation and early postimplantation development in the mouse. We also tested expression of GATA2 and GATA3 within trophoblast progenitors of developing first-trimester human placenta and found that simultaneous expression of GATA2 and GATA3 in cytotrophoblast progenitors is a conserved event during early human development (Fig. 1E).

GATA factors are essential to establish functional TE lineage during preimplantation mouse development

To test the functional importance of GATA2 and GATA3 during early mouse development, we studied conditional knockout mice, in which Gata2 and Gata3 could be efficiently deleted individually (Gata2-KO or Gata3-KO) or in combination (Gata-DKO), by inducing the activity of a Cre-ERT2 recombinant protein with tamoxifen (Fig. S2). Given the fact that expression of both GATA factors are restricted within the developing trophoblast lineage of an early mouse embryo, this inducible gene knockout system allowed us to study the importance of trophoblast-specific GATA2/GATA3 functions at distinct stages of early mouse development.

Earlier, using RNAi strategy, we showed that GATA3 depletion in preimplantation mouse embryos partially impairs blastocyst maturation (Home et al., 2009). However, preimplantation mouse development in the absence of both GATA2 and GATA3 was never tested. Therefore, we began our study by testing the importance of individual as well as
combinatorial GATA2/3 function during preimplantation mouse development. We isolated fertilized embryos at E0.5, induced Gata deletion with tamoxifen and monitored preimplantation development ex-vivo (Fig. 2A-D). We found that GATA2 is dispensable for blastocyst maturation (Fig. 2B, C) and, similar to RNAi experiment, conditional deletion of Gata3 partially affected blastocyst maturation (Fig. S3A). Interestingly, combinatorial loss of both GATA factors also resulted in a mixed preimplantation phenotype. A large number of Gata-DKO embryos failed to form blastocysts. However, several of the Gata2f/f;Gata3f/f;UBC-cre/ERT2 embryos matured to the blastocyst stage (Fig. 2B, C) despite the fact that Cre-mediated gene excision resulted in the loss of both GATA proteins in those embryos (Fig. 2D).

Next, we tested whether Gata-DKO blastocysts have altered expression of TE-specific genes. Our analysis confirmed that mRNA expression of several TE-specific genes, including Cdx2 (GATA target), Eomes (GATA target), and Elf5 (GATA target) were strongly downregulated (Fig. 2E) in Gata-DKO preimplantation embryos. In contrast, mRNA expression of Prl3b1 and Ascl2, which are predominantly expressed in differentiated trophoblast cells, were highly induced in Gata-DKO preimplantation embryos (Fig. 2E). Interestingly, except Cdx2 mRNA expression in Gata3-KO embryos, expression of all these genes were not significantly altered in either Gata2-KO or Gata3-KO embryos (Fig. 2E). Cdx2 expression was repressed by ~40% in Gata3-KO embryos. However, Cdx2 expression was reduced by >80% in Gata-DKO embryos. These results indicated that although a few Gata-DKO preimplantation embryos could mature to the blastocyst stage, the TE-specific gene expression is altered in those embryos.
Therefore, we next tested in-utero implantation efficiency of *Gata*-DKO blastocysts.

As continuous tamoxifen exposure could negatively affect implantation efficiency of a blastocyst (Dao et al., 1996), we used two different experimental strategies to test implantation efficiency of *Gata*-DKO blastocysts. First, we ectopically expressed CRE-recombinase in *Gata2*^{f/f};*Gata3*^{f/f} preimplantation embryos via lentiviral transduction (Fig. S3B). We found that ectopic CRE-mediated excision of *Gata* genes also resulted in a mixed phenotype and several *Gata*-DKO embryos matured to the blastocyst stage (Fig. S3B). However, those *Gata*-DKO blastocysts failed to implant when they were transferred to the uterine horns of pseudopregnant surrogate female mice (Fig. 2F).

In the second approach, we transiently cultured both wild type and *Gata2*^{f/f};*Gata3*^{f/f};UBC-cre/ERT2 preimplantation embryos with tamoxifen (Fig. S4). The transient tamoxifen exposure ensured *Gata*-genes deletion and defective blastocyst maturation in the majority of the *Gata2*^{f/f};*Gata3*^{f/f};UBC-cre/ERT2 embryos (Data not shown). We transferred transiently tamoxifen-exposed *Gata2*^{f/f};*Gata3*^{f/f};UBC-cre/ERT2 and wild type embryos, which matured to the blastocyst stage, to the uterine horns of pseudo-pregnant mice. We found that wild-type blastocysts with tamoxifen exposure readily implanted (Fig. S4), indicating that transient exposure to tamoxifen does not affect blastocyst implantation efficiency. However, blastocysts that were developed from *Gata2*^{f/f};*Gata3*^{f/f};UBC-cre/ERT2 (GATA-DKO blastocysts) after transient exposure to tamoxifen failed to implant (Fig. S4). Collectively, these results indicated that, although GATA2 and GATA3 functions are not essential for blastocoel cavitation, they are
required to maintain proper gene expression balance and implantation efficiency within the developing TE-lineage.

GATA2/GATA3 functions in trophoblast lineage are essential for postimplantation mammalian development

As GATA2 and GATA3 are selectively expressed in TSPCs of an early postimplantation mouse embryo (Fig. 1), we also tested the importance of TSPC-specific GATA2/GATA3 function during early postimplantation development. For this study, we started tamoxifen treatment at ~E5.5, as the presence of tamoxifen on or before E4.5 affects the implantation process (Bloxham and Pugh, 1977; Dao et al., 1996; Pugh and Sumano, 1982). Also, we crossed $Gata2^{fl};Gata3^{fl};UBC-cre/ERT2$ males with $Gata2^{fl};Gata3^{fl}$ females to confine $Gata$ genes deletion only within developing embryos.

Individual deletion of $Gata2$ and $Gata3$ induces mouse embryonic lethality after E10.5 (Pandolfi et al., 1995; Tsai et al., 1994). Therefore, after inducing $Gata2/Gata3$ deletion at E5.5, we monitored embryonic development on or before E9.5 (Fig. 3A). As expected, individual loss of GATA2 and GATA3 did not induce embryonic lethality by E9.5 (Table 1). However, combinatorial deletion of GATA2 and GATA3 at E5.5 prevented developments of most of the embryos, resulting in embryonic death/loss at implantation sites before E7.5 (Fig. 3B). Although a few embryos developed, they died at ~E7.5-E8.0 and none of them developed beyond Theiler stage 12a (~E8) (Fig. 3C). Furthermore, analysis of surviving $Gata$-DKO conceptuses revealed impaired placentation (Fig. 3C, D, E). ExE/EPC regions were not properly developed in $Gata$-DKO conceptuses and were
characterized by near complete loss of CDX2-expressing TSPCs (Fig. 3D). Similarly, when analyzed at E9.5, the Gata-DKO conceptuses revealed defective embryonic-extraembryonic attachment and were characterized by near-complete loss of trophoblast progenitors (Fig. 3E) at the maternal-fetal interface.

Next, we asked whether combinatorial functions of GATA2 and GATA3 are essential for the development of differentiated trophoblast subtypes. In a developing mouse embryo, progenitors for differentiated trophoblast subtypes arise within the EPC and the chorionic ectoderm at ~E8.0-E8.5 (Fig. S1). Therefore, to test the importance of GATA factors during trophoblast progenitor differentiation, we induced Gata2/Gata3 deletion at E7.5. At E7.5, GATA3 is not expressed in embryonic cells, and we were unable to determine GATA2 protein expression in the embryo proper before E7.5. Individual knockout of Gata2 or Gata3 induces mouse embryonic death on or after E10.5. So, we analyzed embryonic development on or before E10.5 (Fig. 4A). We found that deletion of both GATA factors at E7.5 induced embryonic death at an earlier stage (~E9.5) compared to individual knockouts (Fig. 4B). Placenta development was not overtly affected in either Gata2-KO or Gata3-KO embryos (Fig. 4B). In contrast, placentae in Gata-DKO embryos were significantly smaller with severely reduced labyrinth zones and significantly smaller junctional zones (Fig. 4C, D). Furthermore, junctional zones of Gata-DKO placentae were characterized by significant reduction of spongiotrophoblast (SpT) cells (Fig. 4E) without any significant loss in TGC population. Interestingly, complete loss of blood development (a more severe phenotype than Gata2-KO embryo) was also observed in Gata-DKO embryos and placentae (Fig.
Collectively, conditional gene deletions at distinct developmental stages revealed that GATA2 and GATA3 functions in extraembryonic trophoblast lineage are essential for both pre and postimplantation embryonic development.

GATA factors fine-tune gene expression to maintain trophoblast stem state

Trophoblast genes that are directly regulated by GATA2 and/or GATA3 are incompletely understood. An earlier study (Kidder and Palmer, 2010) used chromatin immunoprecipitation with DNA microarray hybridization analysis to investigate GATA3 binding at 28,000 promoter regions in mouse TSCs. However, global targets of GATA2, as well as GATA3 targets beyond the gene promoters, are not defined in trophoblast stem cells. Also, how GATA2 and GATA3 orchestrate different stages of trophoblast development is not well characterized. We hypothesized that being pioneer transcription factors (Chen and Dent, 2014; Zaret and Carroll, 2011), GATA2 and GATA3 could target both open and silent chromatin in trophoblast cells to instigate developmental stage-specific gene expression programs, thereby establishing stem/progenitors vs. differentiated cell fate. To test this hypothesis, we established TSCs, in which Gata2 and Gata3 could be conditionally deleted individually (Gata2-KO and Gata3-KO TSCs) or in combination (Gata-DKO TSCs) (Fig. 5A and Fig. S5A and B) and asked whether GATA factor-dependent transcriptional program is important to balance TSC self-renewal vs. differentiation. Our in vitro cell culture studies in TSC undifferentiated culture condition with Fibroblast Growth
Factor 4 (FGF4) and heparin showed that loss of GATA2 and GATA3 induced TSC differentiation leading to loss of stem state colony morphology (Fig. 5A). Furthermore, the Gata-DKO TSCs failed to form chimera with the developing TE lineage when they were injected into developing preimplantation mouse embryos (Fig. 5B, C). In contrast, TSCs with individual deletion of either Gata2 (Gata2-KO TSC) or Gata3 genes (Gata3-KO TSC) maintained their self-renewal ability, although they showed a relatively higher propensity for spontaneous differentiation compared to wild type control TSCs in standard TSC culture condition (Fig. S5A). These studies indicated that individual loss of either GATA2 or GATA3 is dispensable to maintain TSC stem-state. However, TSCs with the combinatorial loss of both GATA factors are unable to maintain trophoblast stem-state.

To validate that GATA factors directly regulate key trophoblast genes we performed ChIP-seq analysis in wild type control TSCs. We identified 12949 GATA2 binding and 5638 GATA3 binding regions at the mouse TSC genome (Tables S1A and S1B). We followed that with RNA-seq analysis in control vs. Gata-DKO TSCs and showed that loss of both GATA factors altered expression of 9775 genes by ≥1.5 fold (Table S2). A comparative analysis of ChIP-seq and RNA-seq data revealed that, ~68% among those 9775 genes are direct targets of either GATA2 (6667 target genes) or GATA3 (4746 target genes) and ~43% genes (4243 genes) have both GATA2 and GATA3 occupancy at their chromatin domains (Table S3, Fig. 5D). Thus, our global genomics analysis revealed that ~90% of GATA3 target genes (4243 genes out of 4746 genes) are also targets of GATA2 in TSCs, strongly supporting functional redundancy of these two GATA factors in gene regulation during early trophoblast development.
Our analyses showed altered expression of a large number of genes that are targeted by both GATA2 and GATA3 in TSCs (Fig. 5E) and revealed multi-modal biofunctions of dual GATA-regulated genes (Fig. 5F). Several of those GATA target genes are implicated in trophoblast and placenta development. For example, mRNA expression of *Elf5*, *Esrrb*, and *Bmp4*, which are direct targets of both GATA2 and GATA3 (Fig. 5G) and are implicated in TSC self-renewal, were strongly repressed in *Gata*-DKO TSCs (Fig. 5E). Our quantitative RT-PCR analyses also validated the RNA-seq data (Fig. S5C). In contrast, mRNA expression of *Prl3d1* (GATA target), *Prl2a1* (GATA target) that are only expressed in terminally differentiated TGCs and *Ascl2* (GATA target), which is induced in SpTs, were upregulated in *Gata*-DKO TSCs (Fig. 5G). Furthermore, ChIP-seq analyses confirmed that all these genes are direct targets of either GATA2 or GATA3 in TSCs (Fig. 5G). Thus, our ChIP-seq and RNA-seq analyses indicated that GATA2 and GATA3 mediate two important functions in undifferentiated TSCs; (i) maintain transcription of key genes that promote trophoblast stem state and (ii) suppress transcription of genes that promote TSC differentiation.

To further confirm GATA-mediated regulation of stem-state genes, we studied gene expression in primary TSPCs. We established ex-vivo explant cultures with ExEs/EPCs from early postimplantation mouse embryos (Fig. 6A). These explant cultures contain nearly pure (≥97%) primary trophoblast cells (Fig. 6B) and could be maintained in stem/progenitor states in the presence of FGF4 and heparin containing
TSC culture condition (Fig. 6A). Also, in the absence of FGF4/Heparin, TSPCs in the explant culture undergo differentiation (Fig. 6A).

We performed gene expression analysis with these primary TSPCs after maintaining them in TSC culture condition. We found that loss of both GATA factors often impairs expansion of primary TSPCs (Fig. 6C) and represses mRNA expression of several TSC/TSPC-specific genes, including $Esrrb$, $Elf5$, and $Cdx2$ (Fig. 6D). Also, expression of $FoxD3$ (GATA target), which is important for TSPC self-renewal (Tompers et al., 2005), was strongly down-regulated in Gata-DKO TSPCs. In contrast, expression of these genes either not altered or only marginally altered in the $Gata2$-KO or $Gata3$-KO TSPCs (Fig. 6D). Interestingly, we noticed that mRNA expression of $Ets2$ (GATA target) and $Tfap2c$, which are also implicated in the maintenance of TSPCs in an early postimplantation embryo (Choi et al., 2012; Georgiades and Rossant, 2006; Kuckenberg et al., 2012), were not significantly altered in Gata-DKO TSPCs (Fig. 6D). Collectively, our studies in Gata-DKO TSCs and primary TSPCs strongly indicated that functional redundancy of GATA2 and GATA3 ensures gene expression balance to promote self-renewal and expansion of TSPCs during early postimplantation mammalian development.

In TSPCs GATA factors regulate key signaling components that mediate embryonic-extraembryonic signaling cross-talk

How does the loss of GATA2 and GATA3 in extraembryonic trophoblast lineage impair embryonic development at an early postimplantation stage? Postimplantation
embryonic development depends on BMP4 and Nodal signaling cross-talk between TSPCs and cells of the embryo proper (Beppu et al., 2000; Brennan et al., 2001; Kimura et al., 2000; Mishina et al., 1995; Rodriguez et al., 2005; Soares et al., 2005; Soares et al., 2008; Tam and Loebel, 2007; Winnier et al., 1995). TSPCs produce BMP4, which is required for primitive streak development (Murohashi et al., 2010; Streit et al., 1998). TSPCs also express convertase enzymes, PCSK3, and PCSK6, which process Nodal precursors to ensure proper embryo patterning (Guzman-Ayala et al., 2004). In addition to Nodal and BMP4, TSPCs could produce other factors that regulate the Wnt signaling pathway to control postimplantation development. For example, secretory protein Dickkopf-1 (Dkk1), which negatively regulates the Wnt/βcatenin pathway, is required for gastrulation (Peng et al., 2008). Also, TSPCs express porcupine homolog (Porcn), which is necessary for palmitoylation and secretion of functional Wnt molecules (Biechele et al., 2013). RNA-seq analysis confirmed that along with Bmp4 (GATA target), expression of Pcsk6 (GATA target) and Dkk1 (GATA target) are repressed in Gata-DKO TSCs (Table S2), whereas, Porcn (GATA target) is very lowly expressed in both control and Gata-DKO TSCs. As the loss of GATA factors strongly down-regulated Bmp4, Pcsk6 and Dkk1 expression in TSCs, we tested whether loss of GATA factors also impairs their expression in primary TSPCs of a postimplantation embryo. Our gene expression analysis confirmed that loss of GATA factors strongly represses Bmp4, Pcsk6 and Dkk1 expression in TSPCs (Fig. 6E). In contrast, Porcn expression is induced in Gata-DKO TSPCs (Fig. 6E). These results strongly indicate that GATA2 and GATA3 regulate expression of BMP4, Nodal and Wnt signaling components in TSPCs, thereby facilitating embryonic-extraembryonic signaling cross-talk during early
GATA factors promote trophoblast differentiation by activating differentiation-specific genes.

In mice, attachment of chorion to the allantois gives rise to GCM1 (Basyuk et al., 1999) and DLX3 (Morasso et al., 1999) expressing labyrinth trophoblast progenitors (LTPs), which differentiate to syncytiotrophoblasts within the labyrinth zone (Fig. S1). On the other hand, in the EPC, ASCL2⁺, PRDM1⁺ and TPBPA⁺ progenitors (Mould et al., 2012; Simmons et al., 2007; Tanaka et al., 1997) arise. These progenitors subsequently differentiate to specialized trophoblast subtypes of the junctional zone, which contains trophoblast giant cells (TGCs), Spongiotrophoblast cells (SpT) and Glycogen trophoblasts (GlyT) (Fig. S1). As Gata2/Gata3 deletion in E7.5 embryos leads to defective development of both the labyrinth and the junctional zones, we asked whether GATA factors mediate differentiation stage-specific function by promoting transcription of key genes during trophoblast progenitor differentiation.

Global transcriptome profile in TSCs revealed that GATA factors occupy chromatin domains of key trophoblast genes that are transcriptionally repressed in TSCs but are critical to induce trophoblast lineage differentiation (Table S4). For example, we identified GATA factor occupancy at the chromatin domains of Gcm1 (GATA target), Dlx3 (GATA target) and Prdm1 (GATA target), which are implicated in the development of syncytiotrophoblasts and TGCs (Basyuk et al., 1999; Berghorn et al., 2005; Hughes et al., 2004; Morasso et al., 1999; Mould et al., 2012). These genes
are transcriptionally silent in TSCs (Table S4). However, their expression are induced in differentiated cultures of TSCs (Fig. 7A and Fig. S5D).

We asked whether Gcm1, Dlx3, Prdm1, and other trophoblast differentiation markers are induced in Gata-DKO TSCs in FGF4-free differentiating culture condition. In particular, we wanted to test whether genes like Ascl2, Prl3d1, and Prl3b1, which are expressed at higher level in Gata-DKO TSCs in standard TSC culture condition, changes in differentiating culture condition. Intriguingly, gene expression analyses revealed that differentiation potential is impaired in Gata-DKO TSCs (Fig. 7A and Fig. S5D). Gcm1, Dlx3, and Prdm1 remained suppressed in Gata-DKO TSCs, when cultured in differentiating condition for multiple days (Fig. 7A and Fig. S5D). Also, mRNA expression of Ascl2, Prl3d1, and Prl3b1 were not further induced. However, Hand1 (GATA target), a gene that promotes TGC differentiation (Hemberger et al., 2004), were upregulated in Gata-DKO TSCs. Collectively, these results indicated that GATA2 and GATA3 promote trophoblast differentiation by directly regulating expression of key differentiation genes.

To further validate the importance of GATA-mediated gene regulation during differentiation of trophoblast progenitors to specialized trophoblast cells, we tested gene expression in Gata-DKO TSPC explants. For gene expression analysis in the differentiating TSPCs, we isolated ExE/EPC explants from E7.5 embryos. We cultured them in differentiating culture condition and induced Gata gene deletion with tamoxifen (Fig. 7B). Our gene expression analyses confirmed that the presence of either GATA2 or
GATA3 is sufficient for induction of key trophoblast differentiation genes, namely Ascl2, Prdm1, Gcm1, and Dlx3 (Fig. 7B). However, the loss of both GATA2 and GATA3 impaired induction of these genes during differentiation of TSPCs to specialized trophoblast cells (Fig. 7B). Furthermore, analysis of their chromatin domains in TSPCs revealed that loss of both GATA factors impaired RNA Polymerase-II recruitment and maintained repressive histone marks at those gene loci (Fig. 7C, D).

We also assessed gene expression in differentiated trophoblast cells of Gata-DKO placentae (Fig. 7E). Similar to the TSPC explant cultures, we noticed strong repression of Gcm1, Prdm1, Dlx3, and Ascl2 in Gata-DKO placentae (Fig. 7E). We also noticed that loss of GATA factors strongly inhibits expression of other TGC-specific genes Prl3b1, Prl3d1 and Prl2c2 (Fig. 7E), an observation earlier reported with individual Gata-knockout placentae (Ma et al., 1997). Expression of syncytin-A (Syna) and syncytin-B (Synb), which are essential for labyrinth trophoblast syncytialization (Dupressoir et al., 2005; Dupressoir et al., 2009; Dupressoir et al., 2011), were also strongly repressed in Gata-DKO placentae. However, similar to Gata-DKO TSCs, expression of Hand1 was not significantly altered in Gata-DKO placentae.

In summary, gene expression analysis in the TE, TSCs, and primary trophoblast populations provided developmental snapshots of gene regulatory mechanisms by GATA2 and GATA3 during trophoblast lineage development. The loss of function analysis in Gata-DKO TSCs, TSPCs and placentae showed that functional redundancy of GATA2 and GATA3 not only maintain trophoblast stem state genes in TSPCs, they are also
important to induce expression of key trophoblast genes that initiate trophoblast progenitor differentiation to specialized trophoblast cells during placentation.

Discussion

Recently, multiple studies implicated GATA2 and GATA3 in orchestrating gene expression patterns during trophoblast development (Bai et al., 2011; Home et al., 2009; Ma and Linzer, 2000; Ma et al., 1997; Ralston et al., 2010; Ray et al., 2009). However, due to lack of an overt phenotype in gene knockout studies, the importance of trophoblast cell-specific GATA function during early mammalian development was hard to understand. Here, by studying a dual gene knockout model, we show that trophoblast-specific GATA2 and GATA3 functions are essential at multiple stages of early embryonic development. Our analyses also revealed that both GATA2 and GATA3 directly regulate a large number of trophoblast genes. These findings strongly support a complementary role of GATA2 and GATA3 during trophoblast development and explain the lack of overt trophoblast phenotype in individual knockout studies.

Unlike Gata2-KO preimplantation embryos, Gata3-KO preimplantation embryos show a partial defect in blastocyst maturation, which is surprising as ChIP-seq analyses revealed that ~90% of the GATA3 target genes in TSCs are also GATA2 targets. However, ChIP-seq studies in TSCs provided snapshots of GATA factor binding at their chromatin targets in a large cell population. Thus, it is possible that during blastocyst maturation GATA3 and GATA2 have dynamic chromatin occupancy with more genes
being bound by GATA3. Alternatively, a few genes that are selectively regulated by GATA3 may have more importance for blastocyst maturation. Nevertheless, blastocyst formation in most of the Gata2-KO and majority of Gata3-KO preimplantation embryos supports functional redundancy of GATA2 and GATA3 during blastocyst maturation.

Developmental snapshots of gene expression in Gata-DKO TSCs and TSPCs showed that temporal fine-tuning of gene expression by GATA2/GATA3 regulates distinct stages of trophoblast development. For example, expression of Prl3b1 and Ascl2 are induced in Gata-DKO TE. In contrast, these genes are repressed in Gata-DKO differentiated trophoblast cells. These findings imply that GATA2 and GATA3 orchestrate trophoblast lineage development by ensuring developmental stage-specific gene expression patterns. How GATA factors fine-tune temporal gene expression in trophoblast cells is a subject of further study. One hypothesis is, in response to different cellular signaling, GATA2/GATA3 form distinct protein-protein complexes at different chromatin domains, leading to the alternative transcriptional outcome. Also, pioneer transcription factors are known for Pol II recruitment at both poised and transcribed genes (Hsu et al., 2015). Thus, it will be interesting to identify how GATA-dependent mechanisms regulate trophoblast chromatin at different stages of development and whether those mechanisms are conserved in multiple mammalian species, including human.

Interestingly, unlike the labyrinth trophoblast and SpTs, development of TGCs, including parietal TGCs that separate the developing placenta from the maternal
decidua, was not overtly affected in Gata-DKO placentae. Studies with mouse TSCs indicated that TGC development might be a default pathway as withdrawal of FGF4 and other TSC self-renewal factors promote spontaneous differentiation of TSCs to TGCc (Tanaka et al., 1998). Also, expression of HAND1, a factor implicated in TGC development (Hemberger et al., 2004), is not dependent upon GATA factors. Thus, TGC development during mouse placentation is not absolutely dependent on GATA factor function. However, GATA2 and GATA3 are expressed in TGCs and regulate expression of TGC-specific genes Prl2c2, Prl3d1 and Prl3b1 (Ma et al., 1997). Thus, GATA factors might be important to maintain proper TGC functions that include the production of placental hormones and other secretory molecules to ensure the progression of pregnancy. Also, GATA2/GATA3 function might be important to develop other TGC subtypes, including the invasive trophoblast population. Thus, future studies with TGC-specific GATA2/GATA3 deletion will provide more in-depth information regarding their importance in TGCs.

Another interesting finding is a complete lack of blood development in Gata-DKO placenta and embryo when gene deletion is induced at E7.5. The placenta is a major site of hematopoiesis and the placental hematopoiesis in mice begins after E9.0, when definitive multilineage progenitors appear (Alvarez-Silva et al., 2003). In contrast, mature hematopoietic stem cells in the embryo proper are found around E10.5 (Gekas et al., 2005; Ottersbach and Dzierzak, 2005). Although previous studies (Minegishi et al., 1998; Shi et al., 2014) reported that Gata2 mRNA and protein are expressed in the lateral mesoderm of a ~E7.5-E8.0 mouse embryo, we found that ~E7.5 both GATA2 and GATA3 proteins
are mainly expressed in trophoblast cells (Fig. 1C). At this stage, no hematopoietic cell exists in the embryo proper or in the placenta. Also, the Gata-DKO embryos under that experimental condition do not mature beyond E9.5, a developmental stage before the augmentation of definitive hematopoiesis in the embryo proper. Thus, it is possible that trophoblast cell-specific GATA function is required for proper hematopoiesis during embryonic development. Only future studies with GATA gene deletion in specific trophoblast cell types will address the importance of trophoblast cell-specific GATA factor function in hematopoietic development.
Materials and Methods

Derivation of mouse TSC lines

$Gata2^{f/f};Gata3^{f/f};UBC-cre/ERT2^{+/+}$ TSCs were established from 3.5 days post coitum (E3.5) blastocysts according to the protocol (Tanaka et al., 1998) and culture in the condition described above. $Gata2$ and $Gata3$ floxed alleles were efficiently excised from $Gata2^{f/f};Gata3^{f/f};UBC-cre/ERT2$ TSCs by culturing the cells in the presence of tamoxifen (1 μg/ml).

$Gata2^{f/f}$ and $Gata3^{f/f}$ TSCs were established in a similar fashion. Gene deletions were induced in these cell lines by transient transfections with Puro.Cre empty vector (Addgene Plasmid #17408) (Kumar et al., 2008) according to a protocol described earlier (Home et al., 2009).

All cell lines were tested negative for contamination and were validated using experiments described.

Generation of conditional knockout mice strains

All procedures were performed after obtaining IACUC approvals at the Univ. of Kansas Medical Center. Female $Gata2^{flox/flox}$ ($Gata2^{f/f}$) mice (Charles et al., 2006) were mated with B6;129S-Tg(UBC-cre/ERT2)1Ejb/J male (JAX Lab, Stock 007001) (Ruzankina et al., 2007) in order to generate $Gata2^{f/+};UBC-cre/ERT2$. In the next step, $Gata2^{f/+};UBC-cre/ERT2$ female mice were bred with $Gata2^{f/+};UBC-cre/ERT2$ males to generate $Gata2^{f/f};UBC-cre/ERT2$. Similarly female $Gata3^{flox/flox}$ ($Gata3^{f/f}$) mice (Zhu et al., 2004) were used to generate $Gata3^{f/f};UBC-cre/ERT2$. Again, $Gata2^{f/f};UBC-cre/ERT2$ and $Gata3^{f/f};UBC-cre/ERT2$ mice were crossed to generate $Gata2^{f/+};Gata3^{f/+};UBC-cre/ERT2$.
Later *Gata2*^{+/−};*Gata3*^{+/−};UBC-cre/ERT2 males and females were crossed to generate *Gata2*^{−/−};*Gata3*^{−/−};UBC-cre/ERT2 strain.

Gata gene deletion in postimplantation embryos

Mating were set between *Gata2*^{−/−};UBC-cre/ERT2 male with *Gata2*^{−/−} female, *Gata3*^{−/−};UBC-cre/ERT2 male with *Gata3*^{−/−} female and *Gata2*^{−/−};*Gata3*^{−/−};UBC-cre/ERT2 male and *Gata2*^{−/−};*Gata3*^{−/−} female. Once copulation plugs were confirmed, intraperitoneal injections of 200 µl Tamoxifen solution (10mg/ml) in corn oil were administered at desired day points in each of the females.

Collection and culture of preimplantation embryos

All procedures were performed with IACUC approvals at Univ. of Kansas Medical Center. One-cell stage mouse embryos were harvested according to the protocol (Home et al., 2012; Saha et al., 2013) and were cultured in KSOM (Millipore) in presence or absence of 1µg/ml tamoxifen at 37°C in a humidified chamber, maintained at 5% CO₂ and 5% Oxygen level.

Additional materials and methods are described in the Supplementary Information.
Acknowledgement

This study was supported by NIH grants HD062546, HD075233, HD079363 and American Heart Association Postdoctoral Fellowship 13POST14330014. We thank Drs. James Douglas Engel, Michael J. Soares and Damayanti Chakraborty for providing reagents and valuable comments.

Competing interests

The authors declare no competing interests.

Author contributions

PH and SP planned, performed experiments, analyzed data and wrote the manuscript. RP, AG, BS, JMF, BB, SR performed experiments. SG, AP analyzed data. SC, PF provided reagents.

Data availability

Datasets will be uploaded on a public database upon the acceptance of the manuscript.
References

Fig. 1. GATA2 and GATA3 are selectively expressed in trophoblast cells of preimplantation and early postimplantation mammalian embryos.

(A) Immunofluorescence images showing GATA2 expression at different stages of preimplantation mouse development. During blastulation, GATA2 is induced in outer TE lineage (yellow arrows) but is repressed in the inner cell mass lineage (red arrows). (B) A mouse blastocyst showing that both GATA2 and GATA3 are selectively expressed within the TE lineage. (C) ~E7.5 mouse implantation sites showing pan-Cytokeratin, GATA2, (left), GATA3 (right) and nuclei (DAPI). White areas show EPC and embryonic tissue; other structures are marked with white arrows. (D) E10.5 mouse implantation sites showing pan-Cytokeratin, GATA2 (left), GATA3 (right) and nuclei (DAPI). At this stage, GATA2 and GATA3 are expressed in both embryonic cells (white arrows) and extraembryonic tissues. (E) Immunohistochemistry showing both GATA2 (left) and GATA3 (right) are selectively expressed within trophoblast cells [both cytotrophoblast progenitors (red arrows) and syncytiotrophoblasts (green arrows)] of a first-trimester (8 weeks) human placenta.
Fig. 2. Combinatorial loss of GATA2 and GATA3 impairs functional TE development.

(A) Experimental strategy to define the importance of GATA factors during mouse preimplantation development. (B) Micrographs show that the loss of GATA2 is dispensable for blastocyst maturation, whereas loss of both GATA2 and GATA3 result
in a partial defect in blastocyst formation. (C) The plot shows the percentage of preimplantation embryos that matured to the blastocyst stage upon loss of GATA factors (mean ± SE; n = 3, p≤0.01). (D) Immunofluorescence confirmed the loss of GATA2 expression in Gata2-KO blastocysts and loss of both GATA2 and GATA3 expression in Gata-DKO blastocysts. (E) Analysis of mRNA expression showing significant changes in TE-specific genes in Gata-DKO embryos compared to Gata2-KO or Gata3-KO embryos (Expression level of a gene in control embryos were considered 1, mean ± SE; n = 3, p≤0.001). (F) Images of uterine horns from E7.5 pseudopregnant female mice transferred with either control (left) or Gata-DKO (right) blastocysts. Gata-DKO blastocysts showed implantation failure.
A: Tamoxifen injection at E5.5
Analysis of embryos up to E9.5

C: Embryo
Floxed control
Gata DKO
Floxed-control
Gata-DKO

D: CDX2/Nuclei
Floxed-control
Gata-DKO

E: Defective embryonic-extraembryonic attachment and inhibition of Trophoblast progenitor expansion.
Fig. 3. Concurrent loss of GATA2 and GATA3 impairs early postimplantation development.

(A) Mating strategy to define the importance of GATA2 and GATA3 during early postimplantation mouse development. (B) An E7.5 Gata-DKO conceptus without the developing embryo inside. (C) Control and Gata-DKO conceptuses were isolated at ~E9.5 and tested for embryonic morphology (left) and placentation (right). The image of the Gata-DKO embryo is the representative of a few embryos that developed to Theiler stage 12a. None of the Gata-DKO embryos developed beyond this stage. (D) Fluorescence images showing loss of CDX2 (green) expressing TSPCs but the presence of Proliferin (PLF also known as PRL2C2, red)-expressing TGCs within the prospective EPC region of an E7.5 Gata-DKO conceptus. (E) Placentation at the control and Gata-DKO implantation sites were analyzed ~E9.5 (images are not in the same scale). Sections were immunostained with pan-Cytokeratin (green) and TGC marker PLF (red). The maternal-fetal interface in Gata-DKO embryo lacks the presence of trophoblast progenitors (insets, white arrows in control) but contain the primary TGC layer (yellow arrows). Also, unlike control, the developmentally arrested Gata-DKO embryo proper is attached to the placentation site.
Tamoxifen injection at E7.5 and analysis of embryo at E10.5

Figure A

- **Development**
 - **Advance article**

Figure B

- **Embryo**
 - Floxed-control
 - Gata2-KO
 - Gata3-KO
 - Gata-DKO

- **Placenta**
 - Floxed-control
 - Gata2-KO
 - Gata3-KO
 - Gata-DKO

Figure C

- **Cytokeratin/Vimentin**
 - Floxed-control
 - Gata-DKO

Figure D

- Thickness (µm)
 - Labyrinth Zones
 - Junctional Zone

- *p<0.001
- *p<0.02

Figure E

- Cell density (%)
 - TGCS
 - SpTs

- *p<0.01
Fig. 4. GATA2 and GATA3 ablations in differentiating trophoblast cells impair placental development and induce early embryonic lethality.

(A) Experimental strategy to define the importance of GATA factors during differentiation of trophoblast progenitors to specialized trophoblast cells. (B) E10.5 embryos along with placentae showing severe developmental defects in Gata-DKO compared to individual Gata-KO and control embryos. (C) Immunofluorescence analyses showing a severe reduction of the labyrinth zone in the Gata-DKO placenta compared to the control. Pan-cytokeratin was used to mark the trophoblast layers, while Vimentin was used to differentiate the junctional zone from the labyrinth zone and the uterine tissue. Insets show magnified regions of junctional zones with the presence of TGCs (white arrows). (D) Quantitative plots showing the width of the labyrinth and junctional zones in control and Gata-DKO placentae. (E) Quantitative plot showing junctional zone in the Gata-DKO placentae contain a similar number of TGCs but is associated with significantly less number of spongiotrophoblast cells (SpTs).
A. Images showing wild type control TSC, Gata-floxed TSC, and Gata-floxed TSC with tamoxifen.

B. EGFP inserted Gata-floxed TSC cultured with or without tamoxifen followed by microinjection into preimplantation embryo.

C. Bar graph showing % of blastocysts showing TE-integration of injected TSCs.

D. Venn diagram showing GATA2 and GATA3 target genes.

E. Scatter plot showing Log2 FPKM (Gata-DKO TSC) vs Log2 FPKM (control TSC) with annotations for different fold changes.

F. Bar chart showing significant biofunctions of GATA-regulated genes with (-)log10(p-value).

G. Table showing gene fold change and ChIP-seq results:

<table>
<thead>
<tr>
<th>Gene</th>
<th>Fold Change (RNA-seq)</th>
<th>ChIP-seq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esrrb</td>
<td>(-) 2.5</td>
<td>YES</td>
</tr>
<tr>
<td>Elf5</td>
<td>(-) 1.9</td>
<td>YES</td>
</tr>
<tr>
<td>Bmp4</td>
<td>(-) 3.5</td>
<td>YES</td>
</tr>
<tr>
<td>Prl3d1</td>
<td>(+) 32.9</td>
<td>YES</td>
</tr>
<tr>
<td>Prl2a1</td>
<td>(+) 18</td>
<td>NO</td>
</tr>
<tr>
<td>Ascl2</td>
<td>(+) 9.0</td>
<td>No</td>
</tr>
</tbody>
</table>
Fig. 5. Loss of GATA factors impair stem state gene expression program in TSCs and primary TSPCs.

(A) Micrographs of control and Gata2\(^{fl/fl}\);Gata3\(^{fl/fl}\);UBC-cre/ERT2 (Gata-Floxed) TSC colonies in standard TSC culture condition. Unlike wild type TSCs (left), Gata-Floxed TSCs that were cultured with tamoxifen to delete Gata genes (Gata-DKO, right) lost stem-state colony morphology. Gata-Floxed TSCs that were cultured without tamoxifen (Floxed-control, middle) maintained stem-state colony morphology. (B) TE-Chimerism analyses of TSCs. Micrographs show that unlike Floxed-control TSCs, Gata-DKO TSCs failed to integrate into the TE and stayed within the blastocoel cavity. (C) Quantitative plot of TE-chimerism analyses (mean ± SE; n = 3, p≤0.001). (D) Venn diagrams showing a number of genes that are direct targets of GATA2/GATA3 and also showed significant changes in their mRNA expression in Gata-DKO TSC. (E) The scatter plot shows fold change in mRNA expression of common GATA2 and GATA3 target genes, including TSC-specific genes, Bmp4, Esrrb, and Elf5, in control vs. Gata-DKO TSCs. (F) Ingenuity Pathway Analysis showing major biofunctions associated with GATA2/GATA3 regulated genes in TSCs. (G) The table shows downregulation of TSC-specific genes and upregulation of differentiated trophoblast markers in Gata-DKO TSCs. These representative genes are also direct targets of GATA2 and/or GATA3.
Fig. 6. GATA factors are required to activate developmental stage-specific gene expression in trophoblast progenitors to ensure differentiation and embryonic-extraembryonic crosstalk.

(A) ExE/EPC explant cultures, maintained in the presence of FGF4 and Heparin, showed the presence of CDX2 expressing TSPCs (white arrows). Explants, cultured in the absence of FGF4, undergo differentiation. In this condition, TSPCs differentiate into multiple cell types, including TGCs with (red arrows) or without (yellow arrows) expression of proliferin (Plf/ Prl2c2), a marker of parietal TGCs. (B) Fluorescence-activated cell sorting (FACS) using intracellular Cytokeratin labeling shows ExE/EPC explant culture consists of a high percentage of trophoblast cells. (C) Micrographs show ex vivo primary TSPC culture from floxed-control and Gata-DKO embryos with tamoxifen in the absence of FGF4. The Gata-DKO samples often showed reduced cell number indicating abnormal proliferation of TSPCs. (D) Analysis of mRNA expression showing significant reduction of several trophoblast stem and progenitor specific genes in the Gata-DKO TSPCs compared to Gata2-KO and Gata3-KO (Expression level of a gene in control TSPCs were considered as 1, mean ± SE; n = 3, p≤0.001). (E) Analysis of mRNA expression in control and Gata-DKO TSPCs showing altered expression of BMP4, Nodal and Wnt signaling genes that are implicated in successful gastrulation (mean ± SE; n = 3, p≤0.01).
Fig. 7. Functional redundancy of GATA2 and GATA3 ensure proper gene expression during trophoblast progenitor differentiation.

(A) Control and Gata-DKO TSCs were cultured for 4 days in TSC differentiation culture condition, and mRNA expression of trophoblast differentiation genes were tested by qRT-PCR (mean ± SE; n = 3, p≤0.001). The plot shows that except Hand1, mRNA induction of trophoblast differentiation markers were impaired in Gata-DKO TSCs. (B) Schema of gene expression analyses in differentiating TSPCs. The plot shows impaired induction of key differentiation genes in Gata-DKO TSPCs. (C) RNA Pol II recruitment at promoters of key trophoblast genes in differentiating control and Gata-DKO TSPCs (mean ± SE; n = 3, p≤0.01). (D) The plot shows maintenance of repressive histone marks at the promoter regions of key trophoblast genes in differentiating Gata-DKO TSPCs. (E) Schema of gene expression analyses in Gata-DKO placentae. The plot shows relative mRNA expression of different trophoblast genes in control and Gata-DKO placentae (mean ± SE; n = 3 individual experiments, *, p≤0.01).
Contents

<table>
<thead>
<tr>
<th>Items</th>
<th>General Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. S1</td>
<td>Schematic diagram of different stages of mouse trophoblast lineage development along with stage-specific markers.</td>
</tr>
<tr>
<td>Fig. S2</td>
<td>Genotyping data confirming Gata gene deletion upon tamoxifen treatment.</td>
</tr>
<tr>
<td>Fig. S3</td>
<td>Experiments showing preimplantation embryonic development in Gata3-KO and Gata-DKO mice.</td>
</tr>
<tr>
<td>Fig. S4</td>
<td>Experiments showing the importance of GATA2 and GATA3 functions in embryo implantation.</td>
</tr>
<tr>
<td>Fig. S5</td>
<td>Experiments showing importance of GATA2 and GATA3 functions in differentiation of TSCs.</td>
</tr>
<tr>
<td>Supplementary Materials and Methods</td>
<td>Describes additional materials and methods, details of bioinformatics analysis of ChIP-seq and RNA-seq data.</td>
</tr>
<tr>
<td>Supplementary References</td>
<td>Lists references mentioned in the Supplementary Materials and Methods.</td>
</tr>
<tr>
<td>Table S5</td>
<td>Primer List: Oligonucleotides used in the study.</td>
</tr>
<tr>
<td>Table S6</td>
<td>Antibodies used in the study.</td>
</tr>
</tbody>
</table>
Fig. S1. Schematic presentation of different stages of trophoblast lineage development in mouse. Developmental stage-specific markers are indicated in red. In the preimplantation embryo, trophoblast development starts with the specification of TE-lineage, which mediates embryo implantation. In an early postimplantation embryo, trophoblast stem and progenitor cells (TSPCs) arise. Both TE cells and TSPCs express stem-state markers, like CDX2, EOMES and ELF5. GATA3 is also implicated in gene regulation within the TE. Later, TSPCs within the EPC and chorion differentiate into the specific trophoblast progenitor populations. PRDM1+, ASCL2+ and TPBPA+ junctional zone progenitors arise in the EPC, whereas GCM1+ and DLX3+ labyrinth trophoblast progenitors (LTPs) arise upon chorio-allantoic attachment. Finally, specialized trophoblast subtypes like trophoblast giant cells (TGCs), Spongiotrophoblast cells (Sp-T), Glycogen cells (Gly-C), and Synciotrophoblasts I. and II (SynTII) arise to form a mature placenta.
Fig. S2. (A) Schematic diagram showing part of the Gata2 and Gata3 loci on chromosome 6 and chromosome 2 respectively. Gata2 exons 3, 4, 5 and 6 are shown on the diagram where exon 5 is flanked by loxP sites (blue triangle). Similarly, Gata3 exons 3 and 4 are shown on the diagram where exon 4 is flanked by loxP sites (blue triangle). (B) Genotyping data confirming tamoxifen treatment induces deletion of floxed Gata2 and Gata3 alleles in the Cre expressing mouse embryos. PCR products corresponding to Gata2+, Gata3+, Gata2 flox, Gata3 flox, Gata2−, Gata3− are indicated. (C) Exon-specific RT-PCR analyses of the embryonic tissues showing efficient Cre-mediated excision of Gata2 and Gata3 floxed alleles.
Fig. S3. (A) Schematic presentation of isolation and culture of one-cell stage Gata3f/f;UBC-cre/ERT2 mouse zygotes in the presence of tamoxifen results in the partial impairment of trophectoderm development. While several embryos did not develop beyond morula (black arrow), other embryos matured to the blastocyst stage (white arrows). (B) Transduction of Gata2f/f;Gata3f/f one-cell stage mouse embryos with Cre recombinase expressing lentiviral particle results in the partial impairment of trophectoderm development but several of them matured to the blastocyst stage (white arrows). Almost all control embryos, transduced with lentiviral particles containing empty vector, matured to the blastocyst stage.
Fig. S4. Experimental strategy showing the importance of GATA2 and GATA3 function in blastocyst implantation. Wild type and Gata2^{fl/fl};Gata3^{fl/fl};UBC-cre/ERT2 1-cell embryos were treated with tamoxifen. At 4-cells stage, embryos were transferred to KSOM medium without tamoxifen and allowed to develop ex vivo for blastocyst maturation. In addition, Gata2^{fl/fl};Gata3^{fl/fl};UBC-cre/ERT2 embryos without tamoxifen exposure were used as control. Although, transient exposure to tamoxifen impaired blastocyst development in the majority of Gata2^{fl/fl};Gata3^{fl/fl};UBC-cre/ERT2 embryos, several of them developed to the blastocyst stage. Blastocyst developments were unaffected in wild type embryos upon transient tamoxifen exposure. Finally, matured blastocysts from each experimental condition were transferred into uterine horns of pseudopregnant mice. Images show impaired implantation efficiency of Gata2^{fl/fl};Gata3^{fl/fl};UBC-cre/ERT2 blastocysts that were developed after tamoxifen exposure. In contrast, blastocysts from tamoxifen exposed wild type embryos and Gata2^{fl/fl};Gata3^{fl/fl};UBC-cre/ERT2 embryos without tamoxifen exposure readily implanted.
Fig. S5. (A) Micrographs show colony morphologies of Gata2-KO and Gata3-KO TSCs that were maintained in standard TSC culture condition. Both Gata2-KO and Gata3-KO TSCs largely maintains stem-state colony morphology (white arrows). However, both have higher propensities for spontaneous differentiation as revealed by the presence of colonies with differentiated cells (red arrows). (B) Genotyping shows Gata genes deletion in TSCs. (C) qRT-PCR analyses shows that mRNA expression of trophoblast stem state genes are strongly repressed in Gata-DKO TSCs. The plot shows that tamoxifen treatment does not alter gene expression in wild type control TSCs (black bars). The starting TSC population for Gata-DKO TSCs [Gata floxed TSCs (–) tamoxifen (yellow bars)] and wild type TSCs (white bars) have similar levels of gene expression. mRNA expression of Esrrb, which is a target gene of both GATA2 and GATA3, are repressed by ~50% in both Gata2-KO (green bars) and Gata3-KO (blue bars) TSCs. However, Esrrb, as well as other stem state genes were more strongly repressed in Gata-DKO TSCs (red bars). The expression level of a gene in wild type TSCs was considered as 1 (mean ± SE; n = 3). (D) qRT-PCR analyses showing mRNA expressions of trophoblast differentiation markers in wild-type and Gata-DKO TSCs when they were cultured in TSC differentiation culture condition different time interval. Representative genes of syncytiotrophoblast (SynT), spongiontrophoblast (SpT) and trophoblast giant cells (TGC) were analyzed. The expression level of a gene in wild type TSCs at day 4 of differentiation was considered as 1 (mean ± SE; n = 3).
Supplementary Materials and Methods

Cell culture and reagents
Mouse trophoblast stem cells (TSCs) were cultured with FGF4, Heparin and MEF-conditioned medium (CM) according to the protocol (Tanaka et al., 1998). To induce differentiation, Fibroblast Growth Factor 4 (FGF4), Heparin, as well as CM, were withdrawn from the culture and cells were allowed to grow. ExE/ EPCs were harvested from ~E7.0-E7.5 pregnant female mouse and were grown in the presence of FGF4, Heparin, and CM (to maintain undifferentiated state) or in mouse TSC media only (for differentiation) at the normoxic condition. For time course analysis differentiation was induced, and cells were harvested at different day point for RNA analysis.

Gene deletions in preimplantation embryos
For lentiviral-mediated Cre expression, 1-cell stage embryos were harvested from superovulated females. These embryos were subjected to perivitelline space microinjection, (Home et al., 2012), with concentrated lentiviral particles prepared from Puro.Cre empty vector expressing Cre recombinase. Injected embryos were allowed to grow in KSOM as described above. PCR confirmed successful expression of Cre recombinase and subsequent gene deletions.

For implantation efficiency experiments, wild type and Gata2fl/fl;Gata3fl/fl;UBC-cre/ERT2 1-cell embryos were treated with tamoxifen. At 4-cells stage, embryos were transferred to KSOM medium without tamoxifen and allowed to develop ex vivo for blastocyst maturation. In addition, Gata2fl/fl;Gata3fl/fl;UBC-cre/ERT2 embryos without tamoxifen exposure were used as control. Matured blastocysts were transferred to surrogate females following earlier described procedures (Saha et al., 2013)
Tissue collection from postimplantation embryos

Injected animals were euthanized on at desired day points as indicated in the main text. Uterine horn and conceptuses were photographed. Conceptuses were dissected to isolate embryos, yolk sacs, and placentae. All embryos, yolk sacs, and placentae were photographed at equal magnification for comparison purposes. Uteri containing placentation sites were dissected from pregnant female mice on E7.5, E9.5, E11.5, E13.5, and E18.5 and frozen in dry ice-cooled heptane and stored at −80°C until used for histological analysis. Tissues were subsequently embedded in optimum cutting temperature (OCT) (Tissue-Tek) and were cryosectioned (10µm thick) for immunohistochemistry (IHC) studies using Leica CM-3050-S cryostat.

Flowcytometry

96 hours explant cultures of mouse ectoplacental cones were trypsinized. Single cell suspension was formaldehyde fixed and permeabilized using BD Cytofix/Cytoperm Fixation and Permeabilization solution (BD Biosciences, #554722) according to the manufacturer’s protocol. All washings were done using saponin containing wash buffer. A standard protocol for doing FACS staining & analysis was followed using anti-wide spectrum Cytokeratin antibody (Abcam) to analyze Cytokeratin-positive placental trophoblast populations in a BD LSR II flow cytometer.

Genotyping

Genomic DNA was prepared using tail tissue from mouse using REDExtract-N-Amp Tissue PCR kit (Sigma-Aldrich). Genotyping was done using REDExtract-N-Amp PCR ReadyMix (Sigma-Aldrich) and respective primers. Genomic DNA from individual blastocysts was prepared
by the following technique using REDExtract-N-Amp Tissue PCR kit (Sigma-Aldrich). Each blastocyst was collected into separate PCR tubes and was lysed with 4 µl of Extraction buffer and 1µl of Tissue Prep buffer. Briefly, they were incubated at 42°C for 10 mins followed by heat inactivation at 98°C for 3 mins and neutralization with 4µl of Neutralization buffer. 4µl of this genomic DNA was used for a 20µl PCR reaction. For genotyping in embryos, part of the yolk sac or embryo proper from each conceptus was used to prepare genomic DNA as described above. Respective primers are listed in the Table S5.

Quantitative RT-PCR
Total RNA from cells was extracted with RNeasy Mini Kit (Qiagen) with on-column DNaseI digestion. Purified RNA was used to prepare cDNA using cDNA preparation kit. All these samples were analyzed by qRT-PCR following procedures described earlier (Dutta et al., 2008). For expression analysis in preimplantation embryos, total RNA was isolated from embryos using PicoPure RNA isolation kit (Thermo Fisher Scientific) and processed as described earlier (Home et al., 2012). Primers, used for qRT-PCR analysis, are listed in the Table S5.

Immunofluorescence
For immunostaining, preimplantation embryos were fixed with 4% paraformaldehyde, permeabilized in 0.25% Triton X-100, and blocked with 10% fetal bovine serum and 0.1% Triton X-100 in phosphate-buffered saline (PBS) for 1 h at room temperature. Embryos were incubated with antibodies (1:100 dilution) overnight at 4 °C, washed with 0.1% Triton X-100 in PBS. After incubation (1:400, 1 hour, room temperature) with conjugated secondary antibodies, embryos were washed and mounted using anti-fade mounting medium (Thermo Fisher Scientific) containing DAPI and viewed in LSM 5 Laser Scanning Microscope (Carl Zeiss Microimaging). For IHC with mouse tissues, slides containing cryosections were thawed and fixed with 4% PFA.
followed by permeabilization with 0.25% Triton X-100 and blocking with 10% fetal bovine serum and 0.1% Triton X-100 in PBS. Sections were incubated with primary antibodies overnight at 4 °C, washed with 0.1% Triton X-100 in PBS. After incubation (1:400, 1 h, room temperature) with conjugated secondary antibodies, sections were washed, mounted using anti-fade mounting medium (Thermo Fisher Scientific) containing DAPI and visualized using Nikon Eclipse 80i fluorescent microscope. To test expression of GATA3 in postimplantation embryos, Gata3-LacZ knock-in mice (Pandolfi et al., 1995) were used. Staining was done using placentation sites from pregnant Gata3^{+/−} female mice (lacZ knock-in). Anti-β Galactosidase antibody was used to stain β Galactosidase in the GATA3 expressing cells. Antibodies, used for immunofluorescence analyses are mentioned in Table S6.

Immunohistochemistry

Paraffinized placental sections were processed for immunostaining according to the protocol described by Holets et al. (Holets et al., 2006). Briefly, 10-µm tissue sections were cut from paraffinized first-trimester placentas. Sections (10µm thick) were placed onto slides, rehydrated and were subjected to heat mediated antigen retrieval using citrate based Reveal buffer (BioCare Medical). Non-specific immunoglobulin binding was blocked with 10% normal goat serum (Thermo Fisher Scientific). The primary antibody or its isotype-specific control (IgG1) was incubated with the tissue sections for 4°C overnight. Secondary antibody (biotinylated goat anti-mouse/ rabbit IgG) (Vector Laboratories) incubation was followed by endogenous peroxidase depletion using 3% H₂O₂. Reactivity was detected using the streptavidin-peroxidase (Thermo Fisher Scientific) and DAB reagent kit (Dako) and tissues were counterstained with Mayer’s hematoxylin (Sigma-Aldrich). Positive staining was confirmed as a brown coloration under the microscope.
Quantitation of trophoblast cell population

Tissue sections from three individual placentation sites were used to quantitate trophoblast giant cell (TGC) and spongiosotrophoblast (SpT) numbers in Floxed-control and Gata-DKO embryos. Cell populations at three different areas of equal size within the junctional zone of each tissue sections were counted for TGCs and SpTs. The data was plotted as a relative percentage considering the average cell number/area in control embryos as 100%.

Statistical analyses

We used at least 3 independent cultures for the experiments with single KO or double KO analyses and indicated those numbers with "n" in the legends. Similarly, at least 3 biological replicates were used for the analyses with blastocysts, ExE/ EPC explant cultures, placentae and conceptuses.

ChIP and ChIP-Seq

Quantitative ChIP analysis was performed following published protocols (Home et al., 2009; Home et al., 2012). TSCs, homogenized EPCs, and homogenized placentae cells were cross-linked by with 0.4% formaldehyde (Sigma) for 10 mins at room temperature with gentle rotation. Chromatin crosslinking were stopped with glycine (125mM). These samples were sonicated. Chromatin fragments were immunoprecipitated with different antibodies. Quantification of the precipitated DNA was performed using qPCR amplification. A list of the primers used for ChIP analysis and the antibodies used for ChIP analysis are mentioned in the Table S5 and S6. For ChIP-seq in TSCs, immunoprecipitated chromatin fragments from three independent
experiments were pooled. Libraries were sequenced in Illumina Genome Analyzer II using TruSeq SBS kit v5-GA chemistry and in Illumina HiSeq using TruSeq SBS v2-HS chemistry (Illumina, San Diego, CA) to generate 35 bp single-end reads. Binding of the nonspecific immunoglobulin G (IgG) antibody was used as the negative control for eliminating false positive peaks.

Sequences were aligned using ELANDv2 (CASAVA 1.7) to the mouse reference genome (NCBI37/mm9) using default parameters. Peak detection was performed using the Model-based Analysis of ChIP-Seq (MACS) software (Zhang et al., 2008). MACS was run with the peak detection p-value cutoff set at 1e-5 (default). Highly enriched peaks were selected from the two experiments based on a false discovery rate (FDR) cutoff of 1% for GATA2 sites and 15% for GATA3 sites. We further searched for the GATA2 and GATA3 consensus sequence in their respective ChIP-Seq targets within a 250 bp region from either side of the peak center using a weight-matrix match with at least 80% similarity. The weight matrices were obtained from the JASPAR database (Sandelin et al., 2004). A substantial proportion of the highly enriched GATA2 and GATA3 ChIP-Seq binding sites consisted of at least one instance of the consensus motif. All raw data for ChIP-seq analyses are submitted to the GEO database (http://www.ncbi.nlm.nih.gov/gds), with accession number GSE92295.

RNA-Seq analysis

The changes in gene expression as a result of the double knockout of GATA2 and GATA3 was measured by whole transcriptome sequencing (RNA-Seq) of control and Gata-DKO TSCs. Sequencing was performed on an Illumina HiSeq 2000 sequencing machine (Illumina, San Diego, CA) at a 50 bp single-end resolution. Sequence reads were mapped to the mouse reference genome (GRCm38) using STAR (Dobin et al., 2013) with default parameters. Transcript abundance estimates were generated using Cufflinks (Trapnell et al., 2010) and
differential gene expression calculated using Cuffdiff (Trapnell et al., 2013) with default parameters. Approximately, 44.3 and 41.1 million reads were generated of which around 96.7% and 96.6% were mapped to the genome for the control and Gata-DKO TSC samples respectively. In the absence of replicate samples, Cuffdiff uses a heuristic approach to generate a significance p-value (adjusted for false discovery by the Benjamini and Hochberg method (Benjamini and Hochberg, 1995) giving a q-value) where the variance is measured across conditions under the assumption that most transcripts are not differentially expressed. While these p-values do not substitute for a p-value derived with biological replicates, they form a reasonable statistic to filter the gene list. Genes with an absolute fold change ≥ 1.5 fold and a q-value ≤ 0.05 were deemed significant for further analysis. All raw data for RNA-seq analyses are submitted to the GEO database (http://www.ncbi.nlm.nih.gov/gds), with accession number GSE92295.

Combining ChIP-Seq and RNA-Seq data
Genes with a highly enriched GATA2 and GATA3 binding site within 50,000 bp upstream from the 5 prime end or downstream from the 3 prime end or overlapping the gene were selected. These genes were further filtered to include genes that were significantly differentially expressed or remained silent in the Gata-DKO sample. Ingenuity Systems Pathway Analysis software (IPA, Ingenuity Systems, www.ingenuity.com) was used to identify the biological functions that are associated with significantly differentially expressed genes (from the Gata-DKO samples) that contained both an enriched GATA2 and GATA3 site in its vicinity. IPA performs this task with the aid of its knowledge base which has curated information from the literature of genes and gene products that interact with each other. IPA use the right-tailed Fisher’s exact test to calculate a significance p-value of the overlap between these genes and genes associated with a particular biological function. A p-value less than or equal to 0.05 is considered significant. The IPA database contains information from the literature on the relative
direction of a gene’s expression in relation to a biological function. Using this information, IPA calculates an activation z-score for a biological function in relation to a set of genes (with expression information) indicating whether the function is activated or inhibited, based on the directionality of expression of the genes (Kramer et al., 2014). A positive activation z-score signifies an increase in the biological function's activity and a negative score signifies a decrease in its activity. Biological functions with an absolute activation z-score greater than or equal to 2 were considered significant.

Supplementary References

gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. *Nature genetics* 11, 40-44.

Table S1A

Click here to Download Table S1A

Table S1B

Click here to Download Table S1B

Table S2

Click here to Download Table S2
Table S3

Click here to Download Table S3

Table S4

Click here to Download Table S4
Table S5. Primer list

Primers used for genotyping

<table>
<thead>
<tr>
<th>Species</th>
<th>Gene</th>
<th>Forward 5’</th>
<th>Reverse 3’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse</td>
<td>Gata2-floxed and Gata2-null</td>
<td>GCCTGCGTCCTCCACAACCTCTAA</td>
<td>TCCGTGGGACCTGTTTCTTA C</td>
</tr>
<tr>
<td>Mouse</td>
<td>Gata3-flox</td>
<td>CAGTCTCTGGTATTTCTCCTCTT</td>
<td>GTGCAGCAGGAGCCACTGAT</td>
</tr>
<tr>
<td>Mouse</td>
<td>Gata3-null</td>
<td>TCAGGGCACTAAGGGTTGTTAACCTT</td>
<td>GTGCAAGCGAGGAGGCAAACCTC</td>
</tr>
<tr>
<td>Cre</td>
<td></td>
<td>AAAATTTGCGCTGCATTACC</td>
<td>ATTCTCCACCGTCAGTACG</td>
</tr>
</tbody>
</table>

Primers used for quantitative RT-PCR analysis

<table>
<thead>
<tr>
<th>Species</th>
<th>Gene</th>
<th>Forward 5’</th>
<th>Reverse 3’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse</td>
<td>Gata3 Ex3/4</td>
<td>CGGGTTGGAGTAAAGTTGA</td>
<td>GTAGAGGGTCGCCCGCAGT</td>
</tr>
<tr>
<td>Mouse</td>
<td>Gata2 Ex5</td>
<td>CAGACGACACCACCACCT</td>
<td>GCTTGATAGGAGGCAACAGG</td>
</tr>
<tr>
<td>Mouse</td>
<td>Gata2 Ex6</td>
<td>GGAAGATGGCCAGGAAAT</td>
<td>TGGAGAGCTCCTCCGAAACAT</td>
</tr>
<tr>
<td>Mouse</td>
<td>Cdx2</td>
<td>GCAGTCCCTAGGAAAGGCA GTGA</td>
<td>CTCTCGGAGAGCCAGGATGTG</td>
</tr>
<tr>
<td>Mouse</td>
<td>Hand1</td>
<td>GGCAGCTACGCACATCATCA</td>
<td>CCTGGCATCGGGGACCACAT</td>
</tr>
<tr>
<td>Mouse</td>
<td>Prl3d1</td>
<td>ACATTTATCTGGCCGCAAGATG</td>
<td>TTTAGTTTCTGTGAACTTCCTCTGAT</td>
</tr>
<tr>
<td>Mouse</td>
<td>Prl3b1</td>
<td>GGGGCACTCCTGTGGCTTGCA</td>
<td>GGAACCGTCTGCTTCTTCTG GA</td>
</tr>
<tr>
<td>Mouse</td>
<td>Elf5</td>
<td>ATGTTGGACTCCTCGAACCAT</td>
<td>GCAGGAGTAGTAGGCTCTCATTG CT</td>
</tr>
<tr>
<td>Mouse</td>
<td>Ascl2</td>
<td>AAGTGGAACGTTTGCACTTCA</td>
<td>AAGCACACCTTGACTGGTAGC</td>
</tr>
<tr>
<td>Mouse</td>
<td>Gcm1</td>
<td>CTGACTCGGTTCAGGAGCTG</td>
<td>TGTCGTCCGAGCTGATAGT</td>
</tr>
<tr>
<td>Mouse</td>
<td>Prl2c2</td>
<td>GACCATCCTCATTGCACA</td>
<td>TCCTGGAGACTGCTCTACTA CT</td>
</tr>
<tr>
<td>Mouse</td>
<td>Prdm1</td>
<td>TCAAGCCAGGCATCTCCTA C</td>
<td>AGCGTCTCCCTCCGTAAGT</td>
</tr>
<tr>
<td>Mouse</td>
<td>Esrrb</td>
<td>AGTACAAGCGGCAGGCTGG</td>
<td>CCTAGTAGTGAGAGCAGATC TTAGTCA</td>
</tr>
<tr>
<td>Organism</td>
<td>Gene</td>
<td>Forward Primer</td>
<td>Reverse Primer</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Mouse</td>
<td>Tfap2c</td>
<td>ATCCCTCACCTCTCCTCTCC</td>
<td>CCAGATGCAGTAATGGTG</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dlx3</td>
<td>CACTGACCTGGGCTATTACAG</td>
<td>GAGATTGAACCTGGTG</td>
</tr>
<tr>
<td>Mouse</td>
<td>Foxp1</td>
<td>GGTCTGAGACAAAAAGTACGGA</td>
<td>CGCAGTCTAGTAAAGTG</td>
</tr>
<tr>
<td>Mouse</td>
<td>Bmp4</td>
<td>GACTTCGAGGCGACACTTCTA</td>
<td>GAATGACGGCGCCTT</td>
</tr>
<tr>
<td>Mouse</td>
<td>Foxd3</td>
<td>ACCACGTGCTCATCAAGTGC</td>
<td>GCACCTATGATTTTCT</td>
</tr>
<tr>
<td>Mouse</td>
<td>Ets2</td>
<td>ACGGGGCTTGGATTTCTGTCT</td>
<td>TGAGCAGAGGCGAGCT</td>
</tr>
<tr>
<td>Mouse</td>
<td>Pcsk3</td>
<td>TCGGTGACTATTACACTTCTGG</td>
<td>CTCTTGATACACGT</td>
</tr>
<tr>
<td>Mouse</td>
<td>Pcsk6</td>
<td>CAGGCAGGACTGACTTCTC</td>
<td>GGAGCAGCACTGGT</td>
</tr>
<tr>
<td>Mouse</td>
<td>Porcn</td>
<td>GCATGCTTCAGGTAAGACG</td>
<td>CCATCTGCTTCGCT</td>
</tr>
<tr>
<td>Mouse</td>
<td>18s rRNA</td>
<td>AGTTCCAGCACATTTTGCG</td>
<td>TCACCCCTCAGTGG</td>
</tr>
<tr>
<td>Mouse</td>
<td>Gapdh</td>
<td>TGCCCCCATGTTGTGTAGT</td>
<td>TGTGGTCATGAGCC</td>
</tr>
</tbody>
</table>

Primers used for quantitative ChIP analyses

<table>
<thead>
<tr>
<th>Organism</th>
<th>Gene</th>
<th>Forward Primer</th>
<th>Reverse Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse</td>
<td>Prdm1 promoter</td>
<td>CGAAGTACGTCGGATCTCTG</td>
<td>GGGGACTCTCTCTAAAAA</td>
</tr>
<tr>
<td>Mouse</td>
<td>Gcm1 promoter</td>
<td>TGATGGGACAGGTGCAGAAG</td>
<td>AAGTGGTCGCTGTCCT</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dlx3 promoter</td>
<td>TCCTCCACAAACAACCCTAT</td>
<td>GGTGGGCTTAGGTGA</td>
</tr>
<tr>
<td>Mouse</td>
<td>Ascl2 promoter</td>
<td>GAGAGCCTGGCTAAGGTG</td>
<td>TTGCCCAGCTGAGAAT</td>
</tr>
</tbody>
</table>
Table S6. Antibody list

<table>
<thead>
<tr>
<th>Primary antibodies</th>
<th>Species raised in</th>
<th>Vendor</th>
<th>Catalog number</th>
<th>Batch/ Lot number</th>
<th>Dilutions used</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-GATA2</td>
<td>Rabbit</td>
<td>Abcam</td>
<td>ab109241</td>
<td>GR143635-2</td>
<td>1:100 (IF/IHC), 6µg/10 million cells for ChIP</td>
</tr>
<tr>
<td>anti-GATA3</td>
<td>Mouse</td>
<td>BD Biosciences</td>
<td>558686</td>
<td>5288632</td>
<td>1:100 (IF/IHC), 6µg/10 million cells for ChIP</td>
</tr>
<tr>
<td>anti-β-Galactosidase</td>
<td>Mouse</td>
<td>Promega</td>
<td>Z3781</td>
<td>0000125058</td>
<td>1:200 (IF)</td>
</tr>
<tr>
<td>anti-CDX2</td>
<td>Rabbit</td>
<td>Abcam</td>
<td>EPR2764Y</td>
<td>GR133702-8</td>
<td>1:100 (IF)</td>
</tr>
<tr>
<td>anti-Oct-3/4</td>
<td>Mouse</td>
<td>Santa Cruz Biotechnology</td>
<td>sc-5279</td>
<td>G1610</td>
<td>1:100 (IF)</td>
</tr>
<tr>
<td>anti-wide spectrum Cytokeratin</td>
<td>Rabbit</td>
<td>Abcam</td>
<td>ab9377</td>
<td>GR218349-5</td>
<td>1:100 (IF)</td>
</tr>
<tr>
<td>anti-pan Cytokeratin</td>
<td>Mouse</td>
<td>Abcam</td>
<td>ab7753</td>
<td>GR185314-12</td>
<td>1:100 (IF)</td>
</tr>
<tr>
<td>anti-Vimentin</td>
<td>Mouse</td>
<td>Santa Cruz Biotechnology</td>
<td>sc-373717</td>
<td>K2713</td>
<td>1:100 (IF)</td>
</tr>
<tr>
<td>anti-Proliferin</td>
<td>Goat</td>
<td>Santa Cruz Biotechnology</td>
<td>sc-47347</td>
<td>K1212</td>
<td>1:75 (IF)</td>
</tr>
<tr>
<td>anti-trimethyl Histone H3 (Lys9)</td>
<td>Mouse</td>
<td>Millipore</td>
<td>05-1242</td>
<td>NG1698976</td>
<td>6µg/10 million cells for ChIP</td>
</tr>
<tr>
<td>anti-trimethyl Histone H3 (Lys27)</td>
<td>Rabbit</td>
<td>Millipore</td>
<td>CS200603</td>
<td>1987188</td>
<td>6µg/10 million cells for ChIP</td>
</tr>
<tr>
<td>anti-trimethyl Histone H3 (Lys4)</td>
<td>Rabbit</td>
<td>Millipore</td>
<td>CS200580</td>
<td>DAM1612220</td>
<td>6µg/10 million cells for ChIP</td>
</tr>
<tr>
<td>Anti- RNA Pol II (H5)</td>
<td>Mouse</td>
<td>BioLegend</td>
<td>MMS-129R</td>
<td>14862302</td>
<td>6µg/10 million cells for ChIP</td>
</tr>
<tr>
<td>Secondary antibodies</td>
<td>Species raised in</td>
<td>Vendor</td>
<td>Catalog number</td>
<td>Batch/ Lot number</td>
<td>Dilutions used</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------</td>
<td>--------</td>
<td>----------------</td>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Alexa Fluor 568 anti-rabbit IgG</td>
<td>Donkey</td>
<td>Thermo Fisher Scientific</td>
<td>A10042</td>
<td>1606268</td>
<td>1:400 (IF)</td>
</tr>
<tr>
<td>Alexa Fluor 488 anti-mouse IgG</td>
<td>Donkey</td>
<td>Thermo Fisher Scientific</td>
<td>A21202</td>
<td>1562298</td>
<td>1:400 (IF)</td>
</tr>
<tr>
<td>Alexa Fluor 647 anti-goat IgG</td>
<td>Donkey</td>
<td>Thermo Fisher Scientific</td>
<td>A21447</td>
<td>1661244</td>
<td>1:400 (IF)</td>
</tr>
<tr>
<td>Biotinylated anti-mouse IgG</td>
<td>Goat</td>
<td>Vector Labs</td>
<td>BA-9200</td>
<td>W0206</td>
<td>10µg/ml (IHC)</td>
</tr>
<tr>
<td>Biotinylated anti-rabbit IgG</td>
<td>Goat</td>
<td>Vector Labs</td>
<td>BA-1000</td>
<td>X0212</td>
<td>10µg/ml (IHC)</td>
</tr>
</tbody>
</table>