Dose dependent transduction of Hedgehog relies on phosphorylation-based feedback between the GPCR Smoothened and the kinase Fused

Matthieu Sanial1§, Isabelle Bécam1§, Line Hofmann1,2, Julien Behague1,3, Camilla Argüelles1, Vanessa Gourhand1, Lucia Bruzzone1, Robert A. Holmgren4 and Anne Plessis1

1 Institut Jacques Monod, CNRS, UMR 7592, Univ. Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
2 Current address: Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
3 Current address: Institut Curie, 75005 Paris, France
4 Dept. of Mol. Biosci., Northwestern Univ., Evanston, IL 60208-3500, USA
§ equal contributors to this work

*Corresponding author:
Email: anne.plessis@ijm.fr
Tel: + 33 1 57 27 80 44,
Fax: + 33 1 57 27 80 24
SUMMARY STATEMENT

Nested positive feedback loops between the kinase Fused and the GPCR Smoothened enhance their activities and regulate high level HH signaling.

ABSTRACT

Smoothened (SMO) is a GPCR-related protein required for the transduction of Hedgehog (HH). The HH gradient leads to graded phosphorylation of SMO, mainly by the PKA and CKI kinases. How thresholds in HH morphogen regulate SMO to promote switch-like transcriptional responses is a central unsolved issue. Using the wing imaginal disc model in Drosophila, we identified novel SMO phosphosites that enhance the effects of the PKA/CKI kinases on SMO accumulation, its localization at the plasma membrane and its activity. Surprisingly, phosphorylation at these sites is induced by the kinase Fused (FU), a known downstream effector of SMO. In turn activation of SMO induces FU to act on its downstream targets. Together our data provide evidence for a SMO/FU positive regulatory loop nested within a multi-kinase phosphorylation cascade. We propose that this complex interplay amplifies signaling above a threshold that allows high HH signaling.

Keywords: Drosophila; signal transduction; Hedgehog; Smoothened; phosphorylation; Fused kinase, SNAP-tag labelling.
INTRODUCTION

The Hedgehog (HH) signaling pathway is critical for the growth and patterning of many metazoans (Lee et al., 2016). Its deregulation leads to developmental disorders and cancers (Pak and Segal, 2016). In many cases, HH acts as a morphogen: it spreads as a gradient across a field of receiving cells promoting dose-dependent discrete transcriptional responses (Vervoort, 2000).

HH signaling requires Smoothened (SMO), a member of the G-protein-coupled receptor (GPCR) family (Ayers and Therond, 2010). SMO is regulated by the transmembrane protein Patched (PTC) (Nakano et al., 1989), which acts both as a SMO antagonist and a HH co-receptor. Studies in fly show that in the absence of signal, PTC promotes SMO internalization and targeting to the lysosome for degradation (Fan et al., 2013; Li et al., 2012; Xia et al., 2012). These effects are blocked by HH, leading to accumulation of a hyperphosphorylated form of SMO at the plasma membrane. An important contribution to SMO hyperphosphorylation is the sequential action of the cAMP-dependent Protein Kinase (PKA) and Casein Kinase 1 (CKI) on three clusters of serines (S) and threonines (T) located in its C-terminal (C-term) cytoplasmic tail (cyto-tail) (Chen and Jiang, 2013). These phosphorylations are necessary and sufficient for SMO localization to the plasma membrane and activation. They induce SMO clustering and a conformational switch in its cyto-tail. The extent of phosphorylation of the PKA/CKI clusters depends on HH levels and controls in a graded manner SMO clustering, the degree of conformational change in its cyto-tail, its accumulation at the cell surface and its signaling activity (Fan et al., 2012; Su et al., 2011; Zhao et al., 2007). Moreover, CKIγ/Gilgamesh (Gish), G-protein-coupled receptor kinase 2 (GPRK2/GRK2), Casein Kinase II and atypical protein kinase C increase the ability of SMO to transduce high levels of HH by phosphorylating residues present in the membrane-proximal and central regions of the SMO cyto-tail (Jia et al., 2010; Jiang et al., 2014; Li et al., 2016; Maier et al., 2014). In Vertebrates, SMO phosphorylation has been reported to depend on GRK2 and CKIγ (Chen et al., 2004). However, the role of GRPK2/GRK2 has been recently called into question by a study in zebrafish (Zhao et al., 2016).

The wing imaginal disc has been instrumental in studying the morphogenetic effects of HH. In this epithelium, HH is produced in the posterior (P) compartment and spreads toward the anterior (A) region. The dose of HH controls the fate of Cubitus interruptus (CI), a zinc finger transcription factor of the GLI family (Aza and Kornberg, 1999; Wang and Holmgren, 2000). In absence of HH, CI undergoes partial degradation leading to a truncated repressor form (CI-R). Toward the A/P boundary, the progressive suppression of CI processing by increased
doses of HH leads to the gradual decrease of CI-R associated with a progressive accumulation of full-length CI (CI-FL). Thus, in presence of low levels of HH, CI processing is blocked which promotes *decapentaplegic (dpp)* expression. In presence of intermediate levels of HH, the levels of CI-FL are increased, leading to *ptc* and *collier (col)* expression. Finally, in the A cells that abut the P compartment HH producing cells, CI-FL is turned into a hyperactive state (CI-A) which enables *engrailed (enl)* expression.

How is the graded phosphorylation of SMO transduced to the intracellular components of the pathway that regulate CI fate? In the fly wing imaginal disc, responses to high levels of HH rely on the protein kinase Fused (FU) and the kinesin Costal2 (COS2) (Alves et al., 1998; Ho et al., 2005; Ohlmeyer and Kalderon, 1998). Both proteins are part of a SMO-bound large cytoplasmic complex which controls CI-FL processing, nuclear entry and activation (Jia et al., 2003; Monnier et al., 1998; Monnier et al., 2002; Ogden et al., 2003). The relationships between SMO, FU and COS2 are very complex. SMO directly recruits FU to the plasma membrane, promotes its clustering and its trans-autophosphorylation, each event being sufficient to promote FU activation (Claret et al., 2007; Shi et al., 2011). COS2 and FU control each other levels and activity (Ruel et al., 2007; Zhou and Kalderon, 2010; Zhou and Kalderon, 2011) and also feedback on SMO (Claret et al., 2007; Liu et al., 2007; Ranieri et al., 2014). Thus, in absence of HH, COS2 binding to SMO inhibits its phosphorylation by PKA/CKI and its accumulation at the cell surface while, in response to HH, FU activity is essential for the accumulation of SMO at the plasma membrane and full phosphorylation. It has been proposed that positive feedback by FU on SMO could be due to FU opposing the negative effect of COS2. However, FU could control SMO fate by directly promoting its phosphorylation on novel sites.

Here, we report the identification of four novel clusters of S/T in the most C-term part of SMO cyto-tail near where FU binds. These sites are required for the full hyperphosphorylation of SMO in response to HH. Their phosphorylation depends on SMO binding to FU and on FU kinase activity, arguing that FU may directly phosphorylate SMO. By preventing or mimicking their phosphorylation, we show that they enhance the effects of the phosphorylation of SMO by the PKA/CKI, resulting in high levels of HH signaling. Finally, phosphorylation of these sites is important for FU to phosphorylate its targets COS2 and SU(FU) and to promote high CI-FL activation. We propose that in response of high levels of HH signal, SMO and FU engage in a complex positive feedback loop in which they mutually enhance each other’s activation. This multikinase phosphorylation cascade would result in an amplification of HH signaling that reaches a threshold promoting “high HH” specific responses.
RESULTS

Phosphorylation at sites near the C-term of SMO is required for HH-induced hyperphosphorylation

PKA and CKI act on three clusters of S/T (Fig. 1A). Blocking the phosphorylation of these residues (by replacing the PKA sites by Alanines (A), SMO^{PKA-SA}) did not totally prevent SMO phosphorylation in response to HH (Fig. 1B). Four C-terminal (Ct) blocks (GI to GIV) of S or T residues located between aa 916 and 1036) are conserved among *Drosophila* species (Fig. 1A). To assay their phosphorylation we transiently expressed wild-type SMO (SMO^{wt}) or SMO^{Ct-SA} (all the Ct-sites replaced by A) -both HA tagged- in HH responsive C18 cells (Fig. 1B). In presence of HH, SMO^{Ct-SA}-HA phosphorylation levels were significantly reduced compared to that of SMO^{wt}-HA. Mutation of both the PKA/CKI and the Ct-sites (SMO^{PKA-SA Ct-SA}-HA) almost totally suppressed SMO phosphorylation.

We conclude that, under these conditions, the Ct and PKA/CKI sites are the major contributors to the HH-induced SMO hyperphosphorylation.

Activated FU promotes the phosphorylation of the SMO Ct-sites

Downregulation of FU kinase activity reduces the hyperphosphorylation of SMO induced by HH (Liu et al., 2007) and FU is able to induce SMO phosphorylation (Claret et al., 2007). This latter effect depends on FU kinase activity and is enhanced with GAP-gFU, a constitutively active form of FU. GAP-gFU also induces the phosphorylation of SMO^{PKA-SA-HA} (Fig. 1C, S1A), showing that its target sites are outside the known PKA/CKI targets. The Ct clusters are at or near the FU binding region (59 most C-term aa) and as shown in Fig. 1C,D, GAP-gFU could not induce SMO^{Ct-SA-HA} (nor SMO^{PKA-SA Ct-SA}) phosphorylation, indicating that the Ct-sites are targeted by activated FU. Note that each Ct group separately impacted the SMO phosphorylation induced by GAP-cFU to various degrees mutation (Fig. S1B), indicating that they all contribute to it.

Moreover, GAP-gFU^{DANA}, a kinase-dead form of GAP-gFU, which acts in a dominant negative manner (Claret et al., 2007), reduces the HH-induced phosphorylation of SMO^{PKA-SD}, but not of SMO^{PKA-SD Ct-SA} (Fig. 1E). Finally, induction of SMO^{wt} phosphorylation by GAP-gFU was suppressed with a form of SMO lacking its FU binding region (SMO^{Δ978-HA}) (Fig. S1C).

These data argue that activated FU can promote the phosphorylation of the Ct-sites involved in the HH-induced hyperphosphorylation of SMO and show that this effect is FU kinase activity and interaction dependent.
Phosphorylation of the PKA/CKI sites favors the phosphorylation of the Ct clusters

We next studied whether the phosphorylation of the PKA/CKI and Ct clusters influenced each other. As shown above, phosphorylation of the PKA sites is not required for that of the Ct-sites induced by GAP-gFU. We also tested SMO^{PKA-SD-HA}, in which the PKA and CKI phosphorylation sites have been replaced by Aspartic acids (D) to mimic their phosphorylation. SMO^{PKA-SD-HA} was constitutively phosphorylated in absence of HH (Figs 1F, S1A), likely due to the phosphorylation of the Ct clusters as it disappeared with SMO^{PKA-SD Ct-SA-HA}. In contrast, SMO^{Ct-SD-HA} (Ct-sites replaced by D to mimick their phosphorylation) displayed no sign of phosphorylation in absence of HH but was further phosphorylated in presence of HH, likely on its PKA sites as this was not the case for SMO^{PKA-SA Ct-SD-HA} (Fig. S1D,E).

Finally, we analyzed the effect of Ct-sites on SMO phosphorylation in vivo. The smo transgenes (smo^{wt}, smo^{Ct-SA}, smo^{Ct-SD}) were inserted at the same locus to ensure comparable expression levels and expressed throughout the wing primodium. As seen in Fig. 1G, blocking the phosphorylation of the Ct-sites (smo^{Ct-SA}) reduced its levels of phosphorylation while mimicking it (smo^{Ct-SD}) led to its increase.

In summary, the phosphorylation of the Ct-sites of SMO is neither necessary for the phosphorylation of the PKA/CKI sites in response to HH nor sufficient to promote it in the absence of HH. In contrast, phosphorylation of the PKA/CKI sites favors the phosphorylation of the Ct-sites, but is not required for their phosphorylation by activated GAP-FU, suggesting that it acts by activating FU.

Phosphorylation of the Ct-sites controls the levels of SMO

Our data indicate that the phosphorylation of the Ct-sites upregulates SMO levels (Figs 1, S1). To quantify this, we fused SMO N-term to an enzymatic self-labelling tag called SNAP that enables direct detection and quantification of the tagged protein after electrophoresis (Tirat et al., 2006). After checking the functionality of SNAP-SMO in vivo (Fig. S2), we analyze the effects of HH and the Ct-sites on its levels in Ci8 cells. As shown in Fig. 2A-C (and Fig.S3) HH promoted a more than twofold increase in SNAP-SMO levels. SNAP-SMO^{Ct-SA} basal levels were not affected but its HH-induced accumulation was reduced by around 30%. Conversely, SNAP-SMO^{Ct-SD} basal levels were significantly upregulated (by threefold), an effect strongly increased (sevenfold compared to SNAP-SMO^{wt}) in response to HH. Moreover, compared to SNAP-SMO^{PKA-SD}, SNAP-SMO^{PKA-SD Ct-SA} levels were downregulated by about twofold both in presence and absence of HH, while SNAP-SMO^{PKA-SD Ct-SD} was constitutively accumulated at very high levels, reaching almost fourfold those of SNAP-SMO^{PKA-SD}.
We therefore conclude that the phosphorylation of the Ct-sites strongly enhances the stabilizing effects of the phosphorylation of PKA/CKI sites induced by HH.

Phosphorylation of the Ct-sites increases SMO localization at the plasma membrane

We then examined whether SMO subcellular localization was regulated by the phosphorylation of its Ct-sites. The cell surface and intracellular pools of SNAP-SMO were differentially marked by sequentially using membrane impermeable and permeable SNAP substrates carrying different fluorophores (Figs 2D-F, S3). As expected, HH stimulation led to SNAP-SMOwt accumulation at the plasma membrane. This initial experiment also revealed two important features. First, all the hyperphosphorylated forms of SMO are at the cell surface and reciprocally, the intracellular pool of SMO lacks extensive phosphorylation. Second, HH stimulation mainly induced an increase in the levels of SNAP-SMOwt at the cell surface while intracellular levels were almost unaffected. By contrast with SNAP-SMOwt, SNAP-SMOCt-SA stayed intracellular even in presence of HH. Moreover, in absence of HH, SNAP-SMOCt-SD displayed a weak but significant increased (twofold) localization to the plasma membrane which is strongly enhanced by HH (fifteen fold). As expected, SNAP-SMOPKA-SA remained intracellular in presence of HH while SNAP-SMOPKA-SD was mostly at the plasma membrane even in the absence of HH. This latter effect was suppressed in SNAP-SMOPKA-SD Ct-SA but was further increased in SNAP-SMOPKA-SD Ct-SD.

We conclude that phosphorylation of the Ct-sites is required for the accumulation of high levels of SMO at the cell surface promoted by the phosphorylation of the PKA/CKI clusters in response to HH.

Phosphorylation of SMO Ct-sites controls its apico-basal distribution

SNAP labelling was then used to analyze the effects of Ct-site phosphorylation on the subcellular distribution of SMO \textit{in vivo}. Wing imaginal discs expressing SNAP-tagged forms of SMO in the dorsal compartment were labelled with a membrane impermeable SNAP ligand. The ventral compartment served as an internal negative control. Labelled SNAP-SMO thus corresponds to molecules that were -at least transiently- present at the plasma membrane during the labelling time. In agreement with the Ci8 data, labelled SNAP-SMOwt, was at higher levels both at the plasma membrane and in intracellular vesicles in HH sending posterior cells and in A/P receiving cells (Fig. 3A). In contrast, SNAP-SMOCt-SA was less labelled and mostly present in intracellular vesicular structures while SNAP-SMOCt-SD was highly labelled with an enrichment at the plasma membrane of the HH sending and receiving cells (Fig. 3B,C). We
also observed distinctions in labelled SNAP-SMOWt distribution along the apico-basal axis of the wing epithelium (Fig. 3D): labelled SNAP-SMOWt was present at the apical side (visualized with aPKC staining) of the P cells and of the A cells that receive HH and also in the most basal region of the P cells and of the A cells abutting A/P in the region where the highest levels of HH are encountered. This basal distribution was lost with labelled SNAP-SMOCT-SA and increased with labelled SNAP-SMOCT-SD, indicating that it is dependent on the phosphorylation of the Ct-sites (Fig. 3E,F). Note that these effects were also seen by immunofluorescence with untagged SMO variants (Fig. S4).

In summary, the phosphorylation of the Ct-sites regulates the subcellular localization of SMO in response to HH by two means: (i) it increases its accumulation at the plasma membrane and (ii) it promotes its localization in the basal region of the polarized epithelial cells of the wing imaginal disc.

Phosphorylation of the SMO Ct-sites upregulates its activity in vivo

We then assayed whether the phosphorylation of the Ct-sites regulates SMO activity. SMOWt, SMOCT-SA and SMOCT-SD were expressed in the D compartment and HH signaling was monitored by following CI-FL and PTC accumulation. Despite some variation, clear signatures specific to the different forms of SMO were observed (Fig. 3G-K). SMOWt overexpression led to a mild up-regulation of HH signaling as indicated by (i) an upregulation of CI-FL levels at the A/P boundary (in more than 50 % of discs) and its ectopic accumulation in the A part of the wing discs (in more than 65 % of discs) (Fig. 3G1,J), (ii) an increase in PTC levels at the A/P border (in more than 60% of discs) and its occasional ectopic expression towards the anterior (20% of discs) (Fig. 3G2,K). By contrast, SMOCT-SA tended to decrease HH signaling (Fig. 3H,J,K). It never led to ectopic PTC and led to ectopic CI-FL accumulation about four times less often than SMOWt. Moreover, it down-regulated PTC levels and/or CI-FL in almost 30% of discs, two events rarely seen with SMOWt expression. Conversely, expression of SMOCT-SD led to a stronger activation of HH signaling than SMOWt, with an enhanced accumulation of CI-FL and PTC in the whole A compartment in 80% and 72% of the discs respectively (Fig. 3I-K).

Together these results indicate that the phosphorylation of the Ct-sites of SMO up regulates its activity.
Phosphorylation of the SMO Ct-sites enhances the activating effects of phosphorylation at the PKA/CKI sites

To better assess the roles of the Ct-sites phosphorylation, we analyzed the impact of mutating them on SMO^{PKA-SD} activity. SMO^{PKA-SD} is known to be constitutively active (Jia et al., 2004) and its expression in the wing pouch led to an increased expression of all known HH targets (Figs 4, S5). This was associated to an increase in CI-FL levels throughout the A compartment with an enlargement of the region near the A/P boundary that normally displays low levels of CI-FL - corresponding to CI-A and thereby called the “CI-A region” - due to the presence of high levels of HH. All these effects were stronger with SMO^{PKA-SD Ct-SD} with a very strong ectopic en expression and an important enlargement of the “CI-A” region. By contrast, SMO^{PKA-SD Ct-SA} led to CI-FL accumulation in the A region but it was unable to promote ectopic target gene expression. Moreover, en expression at the A/P boundary was suppressed along with the “CI-A region” and col and ptc expression were strongly downregulated. However, the expression domains of the “low HH” responsive genes dpp and iroquois (iro) were almost normal. Notably these negative effects of SMO^{PKA-SD Ct-SA} are also seen in absence of endogeneous SMO protein (see Fig. S6).

In conclusion, phosphorylation of the Ct clusters is required for the constitutive activity of SMO^{PKA-SD} and enhances its effects. By contrast, preventing Ct cluster phosphorylation in SMO^{PKA-SD} blocks the response to high levels of HH while having almost no effect on the targets genes that respond to low HH levels.

The negative effects of SMO^{PKA-SD Ct-SA} are suppressed by activated FU

Strikingly, the expression of SMO^{PKA-SD Ct-SA} phenocopies the effects of mutations disrupting FU kinase activity. In fu mutants altered in the kinase domain, en and col expression are strongly reduced, inactive CI-FL accumulates and the CI-A region disappears while dpp is almost unaffected (Alves et al., 1998). It may thus be the case that SMO^{PKA-SD Ct-SA} traps or freezes endogenous FU in an inactive state. This prompted us to examine the consequences of SMO^{PKA-SD Ct-SA} expression on the three proteins whose phosphorylation depends on FU activity and are likely targets of FU: COS2, FU itself and its antagonist SU(FU). Myc-tagged versions of these proteins were transiently coexpressed with SMO^{wt-HA} in Cl8 cells (Fig. 5A). All three displayed low levels of phosphorylation (visualized by a shift in their electrophoretic migration) in presence of SMO^{wt} and HH. Consistent with their signaling activity, SMO^{Cl-SA-HA} and SMO^{Cl-SD-HA} respectively slightly (but reproducibly) reduced and increased
phosphorylation. As expected, $\text{SMO}^{\text{PKA-SD}}$ also upregulated their phosphorylation in the absence of HH. In contrast, $\text{SMO}^{\text{PKA-SD Ct-SA}}$ expression prevented (COS2 and FU) or reduced (SU(FU)) phosphorylation, both in absence and in presence of HH. This indicates that $\text{SMO}^{\text{PKA-SD Ct-SA}}$ negatively affects the kinase activity of endogenous FU.

To further test this possibility, we examined whether the negative effects of $\text{SMO}^{\text{PKA-SD Ct-SA}}$ were rescued by the expression of GAP-CFP-FU (GAP-cFU) (Figs 5B-E, S7). As previously reported, GAP-cFU expression led to an activation of the pathway with ectopic ptc, col, dpp expression and ectopic accumulation of CI-FL. When GAP-cFU was coexpressed with $\text{SMO}^{\text{PKA-SD Ct-SA}}$, all HH targets were ectopically expressed. Surprisingly, these effects were stronger than those of GAP-cFU or $\text{SMO}^{\text{PKA-SD Ct-SA}}$ alone as indicated by high levels of ectopic en expression throughout the entire A compartment. Notably, CI-FL levels were strongly reduced, presumably due to the generation of CI-A form throughout the A compartment.

These data show that the expression of an active form of FU can totally suppress the negative effects of $\text{SMO}^{\text{PKA-SD Ct-SA}}$ on the “high HH” targets and that reciprocally, its effects on all HH targets are increased by $\text{SMO}^{\text{PKA-SD Ct-SA}}$.

DISCUSSION

We identified novel phosphorylation of the fly SMO cyto-tail and showed that they are promoted by the protein kinase FU. This phosphorylation is part of a multisite, multi-kinase phosphorylation cascade, which controls both SMO accumulation at the plasma membrane and its distribution along the apico-basal axis. These phosphorylation events participate in amplification feedback loops which promote high levels of SMO-FU activation that allow responses to high doses of the HH signal.

Multisite, multi-kinase phosphorylation of SMO

Several kinases are involved in SMO cyto-tail hyperphosphorylation including PKA/CKI, CKII, aPKC, GPRK2/GRK2 and CK2γ/Gish. Here, we identify four novel phosphorylation clusters in its most C-term part, near the FU binding site that are required for the full phosphorylation of SMO in response to HH. FU may act on SMO phosphorylation directly or indirectly through the recruitment, increased expression (via CI activation) or activation of another kinase. Although definite proof of an direct effect is lacking in the absence of an in vitro FU kinase assay, several lines of evidence support that possibility since (i) blocking endogenous FU activity by a dominant negative form reduces the HH induced phosphorylation
of SMO, (ii) expressing a form of FU that is not anchored to the plasma membrane also promotes SMO phosphorylation (although less efficiently than GAP-FU) (iii) both GAP-gFU-kinase activity and its interaction with SMO are required for GAP-gFU phosphorylation and (iv) the induction of SMO phosphorylation by FU or GAP-FU on SMO are also seen with S2 cells that fail to express CI. Note also that FU may act only on a few of these sites which would prime the phosphorylation of adjacent sites by another kinase, as shown for its own autophosphorylation (Zhou and Kalderon, 2011).

Our data also suggest sequential phosphorylation of SMO initiated at the PKA/CKI sites leads to the phosphorylation of the Ct-sites. This could be due to the conformational changes induced by the PKA/CKI phosphorylation, which could increase the accessibility of the Ct-sites. Alternatively, the phosphorylation of the PKA/CKI sites could act indirectly by promoting FU activation. We favor this latter possibility since (i) FU can be directly activated by SMO (Claret et al., 2007; Zhou and Kalderon, 2011) and (ii) GAP-gFU can promote the phosphorylation of SMOWT in absence of phosphorylation of the SMO's PKA/CKI sites (Claret et al., 2007) and this work).

SMO localization and levels

SMO phosphorylation by PKA/CKI is necessary and sufficient to promote an increase in SMO levels and its localization at the plasma membrane but the temporal, spatial and functional connections between these events remain elusive. Several scenarios can be considered. For instance, SMO phosphorylation could block SMO endocytosis once it has reached the cell surface or it could upregulate the targeting of newly synthesized SMO to the plasma membrane. Our data, -in agreement with (Kupinski et al., 2013)- strongly support the first hypothesis. (i) The increase of SMO induced by HH and/or by the phosphorylation of its PKA/CKI sites is almost entirely due to an increase of its cell surface pool with only very modest effects on intracellular SMO levels and (ii) the phosphorylated SMO molecules are entirely located at the cell surface and reciprocally, all the cell surface fraction is phosphorylated.

Moreover, the phosphorylation of the Ct-sites seems to act by increasing the effects of the PKA/CKI sites on the stabilization of SMO at the plasma membrane. Mimicking the phosphorylation of the Ct-sites leads to a strong increase of the fraction of SMO present at the plasma membrane and this effect is most visible either in presence of HH-when the PKA/CKI sites are phosphorylated- or when their phosphorylation is mimicked.
SMO activation

Phosphorylation of the PKA/CK1 sites increases SMO activity by antagonizing a region called the SMO auto-inhibitory domain (SAID), which shuts down SMO activity in absence of HH, due to its intermolecular electrostatic interaction with acidic amino-acids of the most C-term region of SMO (Zhao et al., 2007). As a result, SMO cyto-tail dimerizes. This effect is increased by GPRK2/GRK2 phosphorylation (Maier et al., 2012). In contrast, FU acts on sites located in or near the acidic region and their phosphorylation further increases the negative charges in this region, which suggest that they may activate SMO by a novel—so far not understood—mechanism. Nonetheless, the effects of Ct sites phosphorylation strengthen the tight correlation between SMO signaling activity and its accumulation at the cell surface, and they further support the notion that the concentration or number of SMO molecules present at the cell surface is critical for HH signaling. Finally, the phosphorylation of the Ct-sites of SMO appear to be also involved in the apico-basal localization of SMO, leading to increased basal localization in the HH receiving cells. While the significance of this differential localization awaits further experimentation, it is interesting to consider them in the light of the double HH gradient that has been described: apical for the long range, “low HH” responses and basal for the short range, “high HH” responses (for review see (Guerrero and Kornberg, 2014)).

Function and regulation of the kinase FU

Both phosphorylation of SMO Ct-sites and FU kinase activity are necessary for high levels of HH signaling and for the increase in SMO levels and cell surface localization induced by HH (Claret et al., 2007; Liu et al., 2007). So far, these effects have been attributed to FU ability to phosphorylate COS2 and SU(FU). Our results provide a novel output for FU as they show that it likely directly upregulates the levels of SMO at the cell surface and its signaling activity by phosphorylation. Noteworthy, the FU-dependent phosphorylation of COS2 has been recently shown not to be essential for its activity and as SMO and COS2 interact (Zadorozny et al., 2015); it is thus possible that the effect of FU on COS2 activity could in fact mainly occur via SMO. Our work also reveals that the FU downstream activity (i. e. the phosphorylation of SU(FU) and COS2) requires the phosphorylation of SMO Ct-sites. It indicates that SMO activates FU in a two-step mechanism: (i) an initial activation of FU by recruitment to the plasma membrane and which promotes its action on SMO and (ii) a second step that requires the phosphorylation of SMO Ct-sites which is necessary for FU effects on its cytosolic targets and the activation of CI-FL.
FU/SMO mutual activation controls high levels of Hh signaling

These results provide evidence of the interplay between SMO and FU which, by increasing SMO phosphorylation, leads to high SMO/FU activation. We propose a model where SMO/FU activation is based on the progressive multisite phosphorylation of SMO and on a series of activation loops that take place between SMO and FU in presence of high levels of HH (Fig. 6). This amplifying loop would finally lead to a high accumulation of the hyperactivated SMO/FU couple at the cell surface, reaching a threshold of activation sufficient to promote high levels of Ci activation and the “high HH” specific responses. Interestingly, multisite phosphorylation can lead to ultrasensitivity under some circumstances and to bistability when combined with a positive feedback loop (for review see (Ferrell and Ha, 2014a; Ferrell and Ha, 2014b; Lander, 2007). In such context, the crosstalk between SMO and FU may provide both robustness and switch like behavior to the HH pathway that could account in part for its morphogenetic effects. While SMO has been conserved from fly to mammals, significant differences have appeared between human and fly SMO and its regulation (Ingham et al., 2011). This has likely led to some changes in the molecular mechanism, but the underlying principles of the regulation may well have been conserved.

MATERIALS AND METHODS

Cl8 SNAP labelling experiments

Cells were washed -48h after transfection- in PBS then either labelled 20 minutes in complete cell medium with 0.75µM SNAP TMR-star and 0.75µM CLIP TMR-star (NEB) for total SMO accumulation or labelled for 10 minutes with SNAP-Surface 782 0.75µM in complete cell medium, before adding 0.75µM SNAP TMR-star and 0.75µM CLIP TMR-star for 10 minutes for surface/intracellular staining. In both cases, cells were then washed twice and lysed in 1% NP-40, 150 mM NaCl, 50 mM Tris, 1 mM DTT with “Complete EDTA free antiprotease mix” (Roche) and “Phosphatase Inhibitor Cocktail Set II” (Calbiochem). The lysate was centrifuged (12000 rcf) 10 minutes at 4°C, and mixed with Laemmli sample buffer (Bio-Rad) and 0.1M DTT. 15µL of each sample were loaded on precast 4-20% Mini-Protean TGX gels (Bio-Rad) and run as for Western blots (Sup data). Gels were scanned either on a Typhoon Trio imager (GE Healthcare) (excitation 532nm, emission 580nm, PMT 700V) for total accumulation or sequentially (for surface/intracellular staining) on a Lycor Odyssey at 800nm prior to Typhoon
Trio. The merged image was obtained by overlapping the two images. Three independent experiments (with all the constructs together) were performed. All gels were run and scanned together. Images were analyzed and quantified using ImageJ software. One tailed bivariate Wilcoxon rank tests were made using R software and R Commander (R Foundation for Statistical Computing).

Wing discs SNAP labelling experiments Third instar larva were dissected in S2 cell medium. They were then incubated 30 min with the non-liposoluble Alexa 546 fluorescent substrate at a dilution of 1/600 in S2 medium to allow fixation of the substrate and then incubate 10 min at 25°. The larvae were fixed 20 minutes with PFA, followed by three 10 minutes washes (PBS 0.3% Triton) before immunostaining or direct imaging.
ACKNOWLEDGMENTS

We thank M. Crozatier, J. Jiang, D. Kalderon, T. Kornberg, S. Ogden, D. Robbins, P. Thérond, A. Zhu and their labs for flies and reagents. We are grateful to F. Schweisguth, L. Ruel, G. D’Angelo, P. Therond, A. Brigui and our colleagues from the IJM for insightful discussions and to T. Herbillon for technical help. Antibodies from the DSHB were developed under the auspices of the NICHD and maintained by the University of Iowa. *Drosophila* embryo injections were carried out by BestGene Inc. We acknowledge the ImagoSeine core facility of Institut Jacques Monod, member of France-BioImaging (ANR-10-INBS-04) and certified IBiSA.

COMPETING INTERESTS

The authors declare no competing or financial interests.

AUTHORS CONTRIBUTIONS

M.S., I.B., and A.P. conceived the project. M.S., I.B., L.H., J.B., C.A., L.B. and V.G. performed the experiments. A.P. supervised the work. M.S, I.B, R.A.H and A.P analyzed the data, interpreted them and wrote the manuscript.

FUNDING

This work was supported by the CNRS, University Paris 7, and the Fondation ARC pour la Recherche contre le Cancer (grant 155032). I.B. was supported by the ARC and la Ligue contre le cancer, L. H. by the University Paris Diderot and the ARC, C. A. by the “Association Franco-argentine” and by the ARC and L.B. by Paris Sorbonne Cité.
REFERENCES

Figures

A

<table>
<thead>
<tr>
<th>557</th>
<th>667</th>
<th>687</th>
<th>740</th>
<th>916</th>
<th>939</th>
<th>951</th>
<th>1020</th>
<th>1036</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMO cter</td>
<td>E16</td>
<td>E15</td>
<td>E14</td>
<td>E13</td>
<td>E12</td>
<td>E11</td>
<td>E10</td>
<td>E9</td>
</tr>
<tr>
<td>Py</td>
<td>Gln</td>
<td>Gln</td>
<td>Gln</td>
<td>Gln</td>
<td>Gln</td>
<td>Gln</td>
<td>Gln</td>
<td>Gln</td>
</tr>
<tr>
<td>SMO Cl-SA</td>
<td>SMDLACAA</td>
<td>AAPGIA</td>
<td>SMDLACAA</td>
<td>AAPGIA</td>
<td>SMDLACAA</td>
<td>AAPGIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMO Cl-SD</td>
<td>SMDLACAA</td>
<td>AAPGIA</td>
<td>SMDLACAA</td>
<td>AAPGIA</td>
<td>SMDLACAA</td>
<td>AAPGIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMO PKA-SA</td>
<td>SMMDLACAA</td>
<td>AAPGIA</td>
<td>SMMDLACAA</td>
<td>AAPGIA</td>
<td>SMMDLACAA</td>
<td>AAPGIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMO PKA-SD</td>
<td>SMMDLACAA</td>
<td>AAPGIA</td>
<td>SMMDLACAA</td>
<td>AAPGIA</td>
<td>SMMDLACAA</td>
<td>AAPGIA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>SMO-HA</th>
<th>wt</th>
<th>Ct-SA</th>
<th>PKA-SA</th>
<th>PKA-SA Ct-SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAP-gFU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMAP</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>SMO-HA</th>
<th>wt</th>
<th>PKA-SA</th>
<th>PKA-SA Ct-SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAP-gFU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMAP</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>SMO-HA</th>
<th>wt</th>
<th>Ct-SA</th>
<th>dana</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAP-gFU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMAP</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th>SMO-HA</th>
<th>PKA-SD</th>
<th>PKA-SD Ct-SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAP-gFU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMAP</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

F

<table>
<thead>
<tr>
<th>SMO-HA</th>
<th>wt</th>
<th>PKA-SD</th>
<th>PKA-SD Ct-SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAP-gFU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMAP</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

G

<table>
<thead>
<tr>
<th>MS1096</th>
<th></th>
<th>TUB</th>
</tr>
</thead>
<tbody>
<tr>
<td>pSMO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TUB</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Figure 1: Activated FU promotes the phosphorylation of SMO on novel sites in its C-term intracellular tail.

(A) Schematic representation of the *Drosophila (D.) melanogaster* SMO C-term from position 557 to 1036. A multiple sequence alignment of different *Drosophila* species (*Dm*: *D.melanogaster, Dps*: *D.pseudo obscura, Ds*: *D.simulans, Dy*: *D.yakuba*). The positions correspond to the first amino acid (AA) of the *Dm* SMO. Conserved serine (S) and threonine (T) are in red and the stripes indicates a region with no conserved S or T. PKA/CKI phosphorylation clusters are conserved (dark grey box with the residues phosphorylated by the PKA underlined). Some conserved S and T are clustered in four groups (GI, II, III and IV) in the C-term. Binding to FU was reporter to occur between AA 985-1036 (Malpel et al., 2007). SMO variants used in this study are shown below where conserved S or T residues were substituted by alanine (A) or by aspartic acid (D) in the PKA/CKI cluster and/or Ct clusters.

(B-F) Immunodetection of various forms of transiently transfected SMO-HA in extracts of CI8 cells with an antibody against HA (αHA). (B) SMO^{wt}-HA (1, 2), SMO^{Ct-SA}-HA (3, 4), SMO^{PKA-SA}-HA (5, 6), SMO^{PKA-SA Ct-SA}-HA (7, 8) without (“-”) or with (“+”) HH. Here and in the following blots, the bracket indicates the phosphorylated forms of SMO-HA with a slower migration and GMAP is used as loading control. (C) SMO^{wt}-HA (1, 2), SMO^{PKA-SA}-HA (3, 4) and SMO^{PKA-SA Ct-SA}-HA (5, 6) without (“-”) or with (“+”) GAP-gFU. Here and in (D-F), GAP-gFU presence is verified by immunoblotting with an antibody against GFP (αGFP). (D) SMO^{wt}-HA (1-3), SMO^{Ct-SA}-HA (4-6) without (“-”) (1, 4) or with GAP-gFU (2, 5) or GAP-cFU-DANA (3, 6), a kinase dead form of GAP-FU. (E) SMO^{PKA-SD}-HA (1-4), SMO^{PKA-SD Ct-SA}-HA (5-8) alone (1,5), with GAP-gFU (3, 7) or with GAP-cFU-DANA (4, 8); in absence (1,5) or presence (2-4, 6-8) of HH. Note that the shift of SMO^{PKA-SD} was not totally suppressed by GAP-cFU-DANA likely due to the phosphorylation of others sites than the Ct-sites. (F) SMO^{wt}-HA (1, 2), SMO^{PKA-SD}-HA (3, 4), SMO^{PKA-SD Ct-SA}-HA (5, 6) without (“-”) or with (“+”) GAP-gFU.

Note that tagging SMO to its N-term was shown to preserve its function (Zhu et al., 2003). The star * indicates multimeric forms of SMO.

(G) Immunodetection of SMO in extracts of wing imaginal disc from *MS1096* (expressing GAL4 in the whole wing pouch), *MS1096; UAS smo^{wt}, MS1096; UAS smo^{Ct-SA} and *MS1096; UAS smo^{Ct-SD} flies, respectively. In *MS1096* control discs (1), only phosphorylated forms of SMO (pSMO) are visible. In discs that express the *smo^{wt}* transgene (2), the levels of both forms of SMO (p-SMO and SMO) are increased. In comparison, SMO^{Ct-SA} (3) was less phosphorylated than SMO^{wt}, as shown by the reduced pSMO/SMO ratio, especially considering the contribution of endogenous SMO to pSMO. In contrast, SMO^{Ct-SD} (4) is mainly
present as a phosphorylated form. Red and black arrowheads: hyperphosphorylated (pSMO) and non-phosphorylated (SMO) forms of SMO respectively. “TUB”: tubulin used as a loading control.

All the Western blots in all figures have been performed in at least three independent replicates.
Figure 2: Phosphorylation of the Ct-sites controls the levels of SMO at the plasma membrane.

(A) Transfected Cl8 cells expressing the different SNAP-SMO constructs were labelled for 20 min with a permeable fluorescent substrate (TMR STAR) that marked both cell surface and intracellular SNAP-SMO. Extracellular (Ext) in gray and intracellular (Int) in yellow.

(B) Representative fluorescent scanning of extracts of cells labelled as indicated in (A) and cotransfected with various forms of SNAP-SMO along with CLIP-GUS, which is a fusion between the *E. coli* glucuronidase (*GUS*) gene and the CLIP-tag, a derivative form of SNAP-tag with different substrate specificity. Here and in (E), CLIP-GUS was used as an internal control for experimental variations including the ones due to transfection efficiency variation.

(C) Graph showing the ratio between the amounts of SNAP-SMO to those of CLIP-GUS (in arbitrary units). The variants of SMO tested are indicated, and the value for SNAP-SMO^{wt} in the absence of HH was taken as the reference (=1). Here and in (F): yellow is without HH and orange with HH; quantifications are from 3 biological replicates that were scanned together. Gel images in (B) and (E) are composites of representative results (the dashed line indicates when the samples were on the same gel and the solid line when they came form gels run in parallel and treated in the exact same conditions). In (C) and (F), the error bars
represent standard deviation of the mean. Statistical analysis by one tailed bivariate Wilcoxon rank tests, black bracket: p value 0.05, red bracket: p value 0.1.

D Transfected C18 cells expressing the SNAP-SMO constructs were labelled for 10 min with a non-liposoluble 782nm fluorescent substrate (SNAP surface 782), that could not pass through membrane and therefore labelled only the population of SMO molecules present at the cell surface. Then, the cells were labelled 10 min with a membrane-permeable fluorescent substrate (SNAP TMR STAR) before being lysed.

E Representative fluorescent scanning of extracts of transfected C18 cells cotransfected with various forms of SNAP-SMO along with CLIP-GUS and labelled as indicated in (D). Fluorescent SNAP surface staining is shown in the upper panel, while fluorescent SNAP and CLIP TMR staining are shown in the middle panel. Merge of the two staining is shown in the lower panel. Images of corresponding intact cells are shown in Fig. S3.

F Ratio of the cell surface to the intracellular fluorescence obtained with different forms of SNAP-SMO. The values were normalized to the ratio obtained for SNAP-SMOwt in presence of HH.
Figure 3: Phosphorylation of the Ct-sites controls SMO localization and activity in vivo.

(A-F) XY confocal images (A-C) or XZ confocal images (D-F) of wing disc expressing UAS snap-smo^{wt} (A, D), UAS snap-smo^{Ct-SA} (B, E) and UAS snap-smo^{Ct-SD} (C, F) driven by apGal4 and labelled with a non-liposoluble fluorescent substrate (A-F) and stained with aPKC (green).
The XZ sections are perpendicular to the AP axis through the dorsal compartment. The images in (D3-F3) show the distribution of SNAP-SMO forms along the apico-basal axis in 3D false color.

The square in (A1-C1) corresponds to the region enlarged in (A2-C2). The A/P boundary (determined by CI-FL staining, not shown) is indicated either by 2 arrowheads or by a dotted line. Ap: apical; Ba: basal. Note that the imaging conditions used optimized the acquisition of SMO for each genotype. The XZ images correspond to maximum intensity projection from 13 sections. Here and in the following figures, XY disc images are oriented dorsal up and anterior left.

(G-I) Representative XY confocal images of wing discs of apGAL4 flies expressing UAS smowt (G), UAS smoCr-SA (H) and UAS smoCr-SD (I) and stained with antibodies against CI-FL (G1-I1) or PTC (G2-I2). The white arrowhead indicates the position of the D/V boundary.

(J-K) For each labelling, the discs were classified in a blind experiment according to four phenotypic criteria that reflect the strength of HH activation: “decreased accumulation at A/P” (down arrow), “no effect on accumulation at A/P” (=), “increased accumulation at A/P” (up arrow) and “ectopic accumulation” (ectopic). The percentage of the different phenotypes observed for each genotype is presented on the radar diagram for CI-FL (J) and for PTC (K) staining. The number of discs analyzed are indicated in brackets.

Scale bars represent 50 \(\mu \text{m} \) in (A1, B1, C1, G, H, I) and 20 \(\mu \text{m} \) in the other panels.
Figure 4: Phosphorylation of the Ct-sites increases the effects of PKA/CKI phosphorylation.

(A-D) Wing discs expressing UAS smo^{wt} (A), UAS smo^{PKA-SD} (B), UAS smo^{PKA-SD Ct-SD} (C) and UAS smo^{PKA-SD Ct-SA} (D) in the dorsal compartment using apGAL4 and stained with antibodies against EN (A1-D1), β-galactosidase (ptc-Z) to follow ptc-Z (A2-D2) or dpp-Z transcriptional fusion reporters (a4 to d4) and CI-FL (A3-D3). A slight expansion of the dorsal expression domain of dpp is observed when smo^{PKA-SD Ct-SA} is expressed. This is likely due to further spreading of HH resulting from the strong reduction of PTC at the A/P boundary.

The brackets in A3-C3 indicate the reduced accumulation of CI-FL near the A/P associated with its high activation state. Here and in Fig. 5, scale bars represent 50 μm. At least twenty discs per phenotype were analyzed.
Figure 5: The negative effects of SMO^{PKA-SD Ct-SA} are suppressed by coexpression of constitutively active FU.

(A) Immunodetection of myc-COS2, myc-FU and SU(FU)-myc in extracts of Cl8 cells coexpressing SMO^{wt-HA} (1, 2), SMO^{Ct-SA-HA} (3, 4), SMO^{Ct-SD-HA} (5, 6), SMO^{PKA-SD-HA} (7, 8) and SMO^{PKA-SD Ct-SA-HA} (9, 10) without (“-”) or with (“+”) HH. Arrowheads indicate the most phosphorylated forms of myc-COS2, myc-FU and SU(FU)-myc.
(B-E) Wing discs of apGAL4 flies (B) or expressing UAS smoPKA-SD CI-SA (C), UAS GAP-cFU (D) and UAS GAP-cFU with UAS smoPKA-SD CI-SA (E) and stained with antibodies against EN (B1-E1), COL (B2- E2) and CI-FL (B3- E3). Expression of GAP-cFU led to anterior expansion of the expression of col and en and to an ectopic accumulation of CI-FL. Co-expression of GAP-cFU and smoPKA-SD CI-SA led to ectopic expression of all HH targets. Note that the effects of GAP-cFU overexpression were further enhanced in the presence of SMOPKA-SD CI-SA and that GAP-cFU has a mild effect compared to previous published data (Claret et al., 2007) due to lower expression levels. Note that, SMOPKA-SD also increases the effect of GAP-cFU (Fig. S8).
Figure 6: Model: SMO/FU act as a molecular switch that participates in high levels of HH signaling

HH gradient promotes graded phosphorylation of the PKA/CKI sites of SMO, leading to a progressive increase of SMO levels and an increase in CI-FL. At low concentrations of HH, PKA/CKI leads to a low activity of SMO (called SMO1) sufficient to block CI processing, leading to the expression of “low HH targets” - as dpp and iro. Higher levels of HH leads to increased SMO phosphorylation and SMO (called SMO2) reach a threshold of activation sufficient to promote the activation of FU (FU1) (step1). In turn, activated FU phosphorylates (directly or indirectly) SMO on its Ct-sites (step 2), leading to higher levels of SMO activity (SMO 3) that allows further FU activation (FU2) (step3) and action on its downstream targets. As a result, high levels of the hyper active SMO/FU (SMO3/FU2) pair is accumulated at the plasma membrane and allows very high levels of HH signaling associated to the accumulation of low levels of CI-A which controls “high HH” targets such as en.

SMO/FU0,1, 2 (and 3 for SMO) represent increasing levels of SMO or FU activation respectively.
Supplemental Information

Supplemental Figure Legends Figures S1-S8

Figure S1. Activated FU promotes the phosphorylation of the four Ct clusters.

(A) Immunodetection of SMO-HA in extracts of Cl8 cells transiently expressing SMO^{wt}-HA, SMO^{PKA-SA}-HA and SMO^{PKA-SD}-HA with GAP-GFP-FU. Samples in lanes 3, 6 and 9 were treated with phosphatase inhibitor (Phos Inhibitor) and samples in lanes 2, 5 and 8 were treated with λ-phosphatase (λ-phos). These results indicate that the shift in the migration of SMO^{wt}, SMO^{PKA-SA} and SMO^{PKA-SD} in presence of GAP-CFP-FU is due to phosphorylation. In all the panels, the black arrow and the bracket indicate the non-phosphorylated (SMO) and the phosphorylated (p-SMO) forms of SMO respectively.

(B) Immunodetection of SMO-HA in extracts of Cl8 cells transiently expressing SMO^{wt}-HA (lanes 1-2), SMO^{Ct-SA}-HA (lane 3), SMO^{GI-SA}-HA (lane 4), SMO^{GII-SA}-HA (lane 5), SMO^{GIII-SA}-HA (lane 6) and SMO^{GIV-SA}-HA (lane 7) without (”) or with (“+”) GAP-MYC-FU. Mutation of the S in group II suppressed most of the phosphorylation of SMO^{GII-SA}. For SMO^{GIV-SA} the shift of p-SMO was little affected but there was a reproducible modest decrease of pSMO/SMO. Finally, mutation of group I and III had intermediate effects.

(C) SMO^{wt}-HA (lanes 1, 2), SMO^{Δ978}-HA (lanes 3, 4) without (”) or with (“+”) GAP-GFP-FU. This indicates that GAP-GFP-FU has little effect on the phosphorylation of SMO^{Δ978} (a form of SMO which lacks its FU binding region.

(D) Immunodetection of SMO-HA in extracts of Cl8 cells transiently expressing SMO^{wt}-HA, SMO^{wt}-HA + HH, SMO^{Δ978}-HA, SMO^{PKA-SA Ct-SD}-HA. Samples in lanes 3, 6 and 9 were treated with phosphatase inhibitor (Phos Inhibitor) and samples in lanes 4, 7 and 10 were treated with λ-phosphatase (λ-phos). These results indicate that the shift of SMO^{Δ978} in absence of HH is probably not due to phosphorylation.

(E) Immunodetection of forms of SMO-HA in extracts of Cl8 cells transiently expressing SMO^{Ct-SD}-HA (lanes 1-2) and SMO^{PKA-SA Ct-SD}-HA (lanes 3-4) without (”) or with (“+”) HH. This indicates that SMO^{Ct-SD} is still phosphorylated in presence of HH.
Figure S2. The SNAP-SMO fusion is functional in vivo.
Wings of UAS dicer; nub> RNAi smo5'UTR (A), UAS dicer; nub> RNAi smo5'UTR; UAS smo (B), or UAS dicer; nub> RNAi smo5'UTR; UAS snap-smo flies (C). Male with a reduced smo expression presented a loss of LV3 and LV4 and a decrease in the size of the wing due to a strong downregulation of HH pathway. Overexpression of smo or snap-smo similarly suppressed these effects restoring both the formation of LV3 and LV4 and the normal size of the wing, leading of a normal phenotype.

Figure S3. Phosphorylation of the Ct-sites controls SMO accumulation at the plasma membrane.
(A) Cell surface fraction of SMO (normalized to GLIP-GUS) expressed as a ratio to the amount of SMOwt for the different SNAP-SMO constructs. Light Green is without HH and dark green with HH.
(B) Amount of the intracellular SMO (normalized to GLIP-GUS) and expressed as a ratio to the amount of SMOwt for the different SNAP-SMO constructs. Pink is without HH and red with HH.
(C) Confocal images of Cl8 cells transiently transfected with various forms of SNAP-SMO-RFP with or without HH. Cells were washed in PBS 48h after transfection and labeled for 10 minutes in complete cell medium with 0.75µM SNAP Surface 488nm (green). Then cells were quickly washed in PBS and fixed in PFA 4% for ten minutes. Images of cells were acquired with a confocal spinning disc CSU10 (Yokawaga) analysed with ImageJ software (National Institute of Health), and assembled with Photoshop (Adobe, San Jose, CA). This confirms the localization of the various forms of SMO.
Figure S4: Phosphorylation of the Ct-sites controls SMO level and localization in vivo.

(A-C) XY confocal images of wing disc expressing UAS snap-smowt (A), UAS snap-smo$^{Ct-SA}$ (B) and UAS snap-smo$^{Ct-SD}$ (C) driven by apGAL4 and labeled with a non-liposoluble fluorescent substrate. The imaging conditions used are exactly the same for each genotype. These data confirm in vivo that the phosphorylation by FU increase SMO level.

(D-F) XY confocal images of wing disc expressing UAS smowt (D), UAS smo$^{Ct-SA}$ (E) and UAS smo$^{Ct-SD}$ (F) driven by MS1096 and stained with an antibody against SMO. The square in (D1,E1,F1) corresponds to the region enlarged in (D2,E2,F2).

The white broken lines delimit the A/P border.

Here and in the following figures, XY disc images are oriented dorsal up and anterior left.

(G-I) Single XZ confocal section perpendicular to the A/P axis through the dorsal compartment of wing discs of apGAL4 flies expressing UAS smowt (G), UAS smo$^{Ct-SA}$ (H) and UAS smo$^{Ct-SD}$ (I) and stained with antibodies against SMO (white in G1-I1 or red in G2-I2), aPKC (G2-I2, green) and CI-FL (G2-I2, blue). The 2 arrowheads indicate the A/P boundary. Ap for apical; Ba for basal. Note that different imaging conditions were used to optimize the acquisition of SMO for each genotype.

Scale bars represent 50 μm in (A, B, C, D1, E1, F1) and 20 μm in the enlargement (D2, E2, F2, G, H, I).
Figure S5. Phosphorylation of the Ct-sites increases the effects of PKA/CKI phosphorylation.

Wing discs of apGAL4 flies expressing UAS smo^{wt} (A), UAS smo^{PKA-SD} (B), UAS smo^{PKA-SD Ct-SD} (C) and UAS smo^{PKA-SD Ct-SA} (D) and stained with antibodies against PTC (A1-D1) and β-galactosidase to follow iro-Z transcriptional fusion reporters (A2-D2). Scale bar represent 50μm. These data confirm the ones observed with ptc-Z and dpp-Z staining (Fig. 4).
Figure S6: SMO^{PKA-SD Ct-SA} has also a negative effect in absence of endogenous smothinged

Wing discs flies with smo mutant MARCM clones visualised by GFP and expressing UAS smo^{wt} (A, C) or UAS smo^{PKA-SD Ct-SA} (B, D) and stained with antibodies against CI and COL or PTC as indicated. The clones are outlined with dotted line. These data confirm with the effects observed in a wild type smo background (Fig. 4).

Scale bar represent 50μm.
Figure S7. The negative effects of SMOPKA-SD Ct-SA is suppressed by coexpression of constitutively active FU.

Wing discs of apGAL4 flies alone (A) or expressing UAS smoPKA-SD Ct-SA (B), UAS GAP-cFU (C) and UAS GAP-cFU with UAS-smoPKA-SD Ct-SA (D) and stained with antibodies against PTC (A1-D1) and β-galactosidase to follow dpp-Z (A2-D2). These data confirm the ones observed with ptc-Z and iro-Z staining (Fig. 5).

Scale bar represent 50μm.

Figure S8: The effects of GAP-cFU overexpression are enhanced in the presence of SMOPKA-SD

Wing discs of apGAL4 flies expressing UAS smoPKA-SD (A), UAS GAP-cFU (B) and UAS GAP-cFU with UAS smoPKA-SD (C) and stained with antibodies against PTC. Expression of GAP-cFU and SMOPKA-SD led to anterior expansion of the expression of PTC. Note that the effects are stronger when GAP-cFU and SMOPKA-SD are expressed together.
Drosophila strains and genetics

The following constructs and transgenic lines were previously published: ap-gal4 (Chr II, (Weihe et al., 2001)), MS1096 (chr. X (Capdevila et al., 1998), dppZ (Twombly et al., 1996), ptcZ (Struhl et al., 1997), iroZ (Damby-Chaudiere and Leys, 1992). The UAS-smo, UAS-smo{Ct-SD/SA} , UAS-smo{GI to IV SA}, UAS-smo{PKA-SD/SA} , UAS-smo{PKA-SD/SA} , UAS-snap-smo{Ct-SD/CyO} transgenic flies were generated in this work by BestGene Inc. All smo transgenes were introduced into the same landing site (9738) on 3R (at 9F9) using the PhiC31 integration system to ensure that they are expressed at similar levels (Bateman et al., 2006). The following drosophila genotypes were used to generate MARCM clones: (1) hs-FLP122, tubG4, UAS/GFP/FM7; FRT40A, tub GAL80 (2) FRT40A smo{0/CyO}; UAS-smo{KT} and (3) FRT40A smo{0/CyO}; UAS-smo{PKA-SD/CyO}. Heat-shock was induced 3, 4 days after egg laying for 2 hours at 37°C. Fly wings were dissected in 70% ethanol and mounted in Hoyer’s medium. Pictures were taken with a Zeiss Lumar stereomicroscope and the AxioVision software. For the functional assays, the flies were grown at 29°C unless indicated otherwise.

Imaginal discs immunostaining

Imaginal discs from third-instar wandering larvae were dissected in phosphate buffered saline (PBS), fix by incubation for 20 min at room temperature (RT) in 4% paraformdehyde, washed, and permeablized for 3 incubations for 10 min each in PBS + 0.3% triton (PBST). They were blocked by incubation for 1 hr in PBST+ BSA 0.1% + NaCl 0.25M and then overnight at 4°C with the primary antibody. They were washed four times for 10 min with PBST+ BSA 0.1% + NaCl 0.25M and incubated for 2 hr at RT with the secondary antibody (in PBST+ BSA 0.1% + NaCl 0.25M). Finally they were rinsed 3 times for 10 min each in PBST and mounted in All. The images of wing imaginal discs (at least twenty discs per genotype) were acquired with a Leica SP5 confocal microscope, analyzed with ImageJ software (National Institute of Health), and assembled with Photoshop (Adobe, San Jose, CA). The primary antibodies used were the following: mouse anti-PTC, 1:1000 (Apa 1, from Developmental Studies Hybridoma Bank [DHSB]) (Martin et al., 2001), mouse anti-SMO, 1:100 (20C6, from DSHB) (Lum et al., 2003), mouse anti-COL, 1:100 (Gift from M. Crozatier) (Crozatier et al., 2003), rat anti-full length CI, 1:5 (2A1 from R. Holmgren (Motzny and Holmgren, 1995)), and rabbit polyclonal anti-β-galactosidase 1:100 (ABR-Affinity BioReagents). Secondary antibodies were obtained from Molecular probe and were all used at a dilution of 1:100.

Plasmids

We used the Gateway Technology (Invitrogen following the manufacturer’s instructions) to introduce the wild-type and mutant smo transgenes in the vectors pAct5C-GW-HA (gifts from T. Murphy) that allowed the expression of the SMO (tagged with a triple HA on its C-terminus under an actin5C promoter) for tissue culture cell transfection and pUAS-GW-attB (constructed by A. Brigui) by insertion of the GW recombination cassette C3 at the EcoRI site of the pUASL-attB plasmid (GI EF362409) for PhiC31 germline transformation, respectively. Prior to that, the PCR products obtained from the coding sequence (without the termination codon) of a smo cDNA were inserted into pENTR/D-TOPO by directional TOPO Cloning. Mutations leading to the S to A and S to D changes of the PKA/CKI sites were inserted into pENTR/D-TOPO-smo by replacement of a region by the similar region coming from smo{PKA-SD/SA} cDNA constructs. All constructs were checked by sequencing the fragments produced by PCR and their junctions.

C18 cell culture, transfection and Western Blotting

C18 cells were cultured as described in (Claret et al., 2007) in 2% CFS (Hyclone). Transient transfections were then carried out with Transit Insect Reagent (Mirus). 48h post transfection, cells were harvested and washed twice in PBS1X, lysed in 1% NP-40, 150 mM NaCl, 50 mM Tris pH 8, 0.5% sodium deoxycholate, 10% glycerol with “Complete EDTA anti-protease mix” (Roche) and “Phosphatase Inhibitor Cocktail Set II” (Calbiochem) and passed 3 times in a 26g needle. The lysate was centrifuged (12000 rcf) 10 minutes at 4°C, and mix with Laemmli sample buffer (Bio-Rad) and 0.1M DTT. Protein concentrations were assayed by the Bradford method, using the Bradford Ultra reagent (Expedeon) according to the manufacturer instructions. The equivalent of 60µg of protein was warmed 5 minutes at 25°C before loading on a 10% Anderson gel. The gels were run using a miniprotein apparatus (Bio-Rad) 90 minutes at 150 volts (constant voltage). The proteins were then transferred for 75 minutes at 100V onto Nitrocellulose membrane (0.2µM, Protran BA 83 Schleicher & Schuell) using the same apparatus.
and blotted with 1:1000 Rat monoclonal anti-HA (Roche), 1:5000 Rabbit anti-GFP (Torrey Pines Biolabs), 1:2000 Rabbit anti-GMAP (Sigma, gift from Laurent Ruel), 1:1000 Mouse anti-Myc (clone 4A6, Millipore), secondary antibodies conjugated with HRP: anti-Rat (JacksonImmuno), anti-Mouse (Sigma) and anti-Rabbit (JacksonImmuno). The immunolabeled bands were detected with the enhanced chemiluminescence detection system (ECL Select, Amersham) on a LAS-3000 imager (Fujifilm). For wing disc blot, discs were dissected in PBS and transferred in lysis NP40 buffer mix with Laemmli sample buffer 0.1M DTT, passed 3 times in a 26g needle and frozen in liquid nitrogen. Samples were run as for CL8 extracts. Membrane was blotted using 1:1000 Rabbit anti-SMO (gift from P. Thérond) and 1:1000 Mouse anti α-tub (Sigma).

