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ABSTRACT

Genes that are subject to genomic imprinting in mammals are
preferentially expressed from a single parental allele. This imprinted
expression of a small number of genes is crucial for normal
development, as these genes often directly regulate fetal growth.
Recent work has also demonstrated intricate roles for imprinted
genes in the brain, with important consequences on behavior and
neuronal function. Finally, new studies have revealed the importance
of proper expression of specific imprinted genes in induced
pluripotent stem cells and in adult stem cells. As we review here,
these findings highlight the complex nature and developmental
importance of imprinted genes.
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Introduction

Mammals inherit two sets of chromosomes, one from each parent,
and therefore possess two copies of each gene. For the majority of
these genes, both alleles are expressed or repressed, depending upon
the cell type. However, a small number of genes, designated
imprinted genes, are monoallelically expressed in a parent-of-
origin-specific manner. The murine genome contains ~150 such
imprinted genes, although this number is likely to increase as more
tissue-specific imprinting is described. Importantly, imprinting is
well-conserved across mammals, with many, but not all, imprinted
genes and imprinting mechanisms being conserved between mouse
and human (Lee and Bartolomei, 2013). This conservation has
greatly facilitated the study of imprinting, as researchers have used
both experimental mouse models and human genetic disorders to
expand our knowledge of imprinting. A significant consequence of
imprinting is that mammalian development requires genetic
contributions from both a mother and a father. Moreover, a
number of rare congenital disorders (Table 1) are caused by
parental-allele-specific mutation or misregulation of one or more
imprinted genes (Butler, 2009).

Imprinted genes are typically located in clusters of 3-12 genes
that are spread over 20 kb-3.7 Mb of DNA, although examples of
single imprinted genes do exist (Edwards and Ferguson-Smith,
2007). The clusters harbor maternally and paternally expressed
imprinted genes that encode both protein-coding and non-coding
(nc) RNAs. Each well-studied cluster has a discrete imprinting
control region (ICR) that governs imprinted expression and
exhibits parent-of-origin-specific epigenetic marks, such as DNA
methylation and post-translational histone modifications. Much
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work over the past 25 years has centered on the identification of
imprinted genes and understanding the mechanisms that underlie
imprinted expression. For example, how imprints are acquired and
reset in the germline and subsequently maintained and read after
fertilization has been the subject of intense study. Although less
effort has been focused on elucidating the function of imprinted
genes, recent experiments have revealed broad roles for imprinted
gene expression in mammals. These studies have shown that the
small number of genes that exhibit imprinted expression have a large
influence on mammalian development. As more imprinted genes
have been discovered, it has become clear that they exert their
effects on numerous and varied processes, including fetal growth,
pluripotency, differentiation and behavior. Here, we review the
mechanisms of imprinted gene regulation and the diverse roles of
imprinted genes during development, highlighting recent work that
expounds on their functional importance.

Establishing, maintaining and erasing imprints

The identification of the first imprinted genes (Igf2r, Igf2 and H19)
in 1991 (Barlow et al., 1991; Bartolomei et al., 1991; DeChiara
et al, 1991) sparked initial efforts towards elucidating the
mechanisms of imprint establishment, maintenance and erasure,
which together control the timing and placement of genomic
imprinting (Fig. 1). Allele-specific DNA methylation of ICRs has
been pursued as the best candidate mechanism for conferring
parental-specific imprints following fertilization. Moreover, the
hypothesis that parental-specific imprints are imposed when
the parental genomes can be distinguished prompted investigators
to assay methylation acquisition during gametogenesis, when the
maternal and paternal genomes are in separate compartments and
can be independently modified. It was initially shown that paternal-
specific methylation of the H19/Igf2 ICR is acquired prenatally in
prospermatogonia prior to the onset of meiosis in the male germline
(Davis et al., 2000). By contrast, maternal-specific ICR methylation
occurs postnatally in growing oocytes, with different ICRs being
methylated at a slightly different time during oocyte growth
(Lucifero et al., 2004). In both germlines, DNA methylation is
established through the action of the de novo DNA methyltransferase
3a (DNMT3A) and the accessory protein DNMT3L (Bourc’his et al.,
2001; Hata et al., 2002; Kaneda et al., 2004; Okano et al., 1999).
Although it remains poorly understood how specific sequences are
chosen for allele-specific DNA methylation in the germline, recent
work has indicated that transcription through ICR sequences provides
akey instructive step for the DNA methyltransferase proteins (Chotalia
et al., 2009; Henckel et al., 2012).

Following fertilization, the parental-specific imprints must be
maintained despite the extensive genome reprogramming and DNA
demethylation that occurs at this time (Bartolomei and Ferguson-
Smith, 2011). In addition to the action of the maintenance DNA
methytransferase DNMT1, which methylates the newly synthesized
strand of DNA, it is likely that the recognition of unique cis-acting

1805



REVIEW

Development (2014) 141, 1805-1813 doi:10.1242/dev.101428

Table 1. Human genetic disorders associated with imprinted genes

Associated
imprinted
Disorder domains Clinical phenotypes
Beckwith—Wiedemann Syndrome ~ H19-IGF2, Overgrowth,
(BWS) CDKN1C hemihyperplasia,
macroglossia,
abdominal wall
defects, increased
risk for embryonic
tumors
Silver—Russell Syndrome (SRS) H19-IGF2, Undergrowth and
GRB10, MEST  asymmetry

(PEGT), PEG3
Prader—Willi Syndrome (PWS) SNRPN-UBE3A Neonatal feeding
difficulty,
hypotonia,
hypothalamic
dysfunction,
intellectual delay,
hyperphagia,
obesity
Developmental
delay, speech
impairment, poor
motor control,
seizures
Transient diabetes
mellitus present at
birth
Scoliosis, early
puberty,
developmental
delay, hypotonia
Parathyroid hormone
resistance, low
energy, muscle
cramps, bone
thinning

Angelman Syndrome (AS) SNRPN-UBE3A

Transient neonatal diabetes (TND) PLAGL1

Uniparental disomy Chr14 (UPD14) DLK1

Pseudopseudohypoparathyroidism GNAS
(PPHP)

Shown are some of the major congenital disorders associated within
misexpression of imprinted genes, the clinical phenotype of these disorders
and the associated imprinting domains (named for specific genes in that
imprinted gene cluster).

sequences by trans-acting factors provides protection from post-
fertilization reprogramming. For example, the maternal factor PGC7
(also known as STELLA or DPPA3) plays a general role in
maintaining DNA methylation in the early mouse embryo, acting via
interactions with dimethylated histone 3, lysine 9 residues (Nakamura
et al., 2012). In addition, zinc finger protein homolog 57 (ZFP57)
appears to play a more specific role in regulating imprinted genes.
ZFP57 mutations have been identified in transient neonatal diabetes
patients and are associated with defective DNA methylation at several
imprinted loci (Mackay et al., 2008). In line with this, Zfp57 null mice
show loss of imprinting at many, but not all, loci (Li et al., 2008). It is
possible that other yet-to-be-identified proteins also maintain DNA
methylation at ICRs in the early embryo.

Finally, to complete the imprinting cycle, the somatic pattern of
biparental imprints is erased in primordial germ cells (PGCs), which
are recruited from somatic cells in the early embryo. Although this
process of erasure is poorly understood, it appears that imprints are
lost through a series of active and passive events, including those
involving the action of the ten-eleven translocation (Tet) family
of methylcytosine dioxygenases, which catalyze the oxidation of
S5-methylcytosine to 5-hydroxymethylcytosine (Dawlaty et al.,
2013; Hackett et al., 2013; Yamaguchi et al., 2013), as well as the
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action of DNA repair machinery (Pastor et al., 2013). Furthermore,
the methylation of newly replicated DNA by DNMT]1 is repressed in
PGCs, probably by repression of Uhrfl, a factor essential for
recruiting DNMTT1 to the replication fork (Kagiwada et al., 2012).

Mechanisms of imprinted gene regulation

Two well-defined mechanisms of imprinted gene regulation have
been described: the insulator model and the ncRNA model (Lee and
Bartolomei, 2013). The insulator model (Fig. 2A) is best illustrated
at the H19/Igf2 locus. In this example, the ICR on the maternal allele
is unmethylated and is bound by the insulator protein CCCTC
binding factor (CTCF). This binding prevents the downstream
enhancers that are shared by both H79 and Igf2 from engaging the
Igf2 promoter, but allows the enhancers to access H/9 and activate
its expression. On the paternal allele, the ICR is hypermethylated,
which prevents CTCF from binding and the insulator from forming.
Consequently, the /gf2 gene is activated by the shared downstream
enhancers. Thus, in this model, the epigenetic state of the ICR
determines the expression pattern of the locus.

The other major imprinting model is the ncRNA model (Fig. 2B),
which is employed at a number of loci, including Igf2r/Airn and
Kcnql/Kenglotl. In this case, the promoter of a long ncRNA
is located within the ICR. On the paternal allele, the ICR is
unmethylated thus allowing expression of the ncRNA, which in turn
silences the rest of the genes in the domain in cis. This occurs by either
attracting machinery that lay down repressive chromatin marks
(Nagano and Fraser, 2009) or by preventing RNA polymerase II
recruitment at promoters (Latos et al., 2012), although these
mechanisms are not fully understood. Methylation of the ICR on
the opposing maternal allele results in silencing of the ncRNA, thereby
allowing activation of proximal genes. Thus, in this example, the
function of long ncRNAs is to facilitate silencing of adjacent genes.

Imprinted genes and embryonic development and growth

The conclusion that imprinted genes are essential for proper
development was made after studies demonstrating the
developmental arrest of uniparental mouse embryos. In mice,
uniparental embryos can be experimentally produced through
nuclear transfer of zygotic pronuclei. Androgenetic embryos
(derived from two paternal pronuclei) and gynogenetic embryos
(derived from two maternal pronuclei) lacked embryonic and
extraembryonic tissues, respectively (Barton et al., 1984; McGrath
and Solter, 1984), suggesting a central role for imprinted genes in
early lineage commitment and growth. Consistently, the first
identified imprinted genes were shown to be essential for normal
fetal growth but, as we discuss below, roles for imprinted genes in
placental growth and behavior have since been discovered
(summarized in Fig. 3).

Fetal growth and development

The most well-studied example of an imprinted gene that regulates
growth is the paternally expressed gf2 gene, which is a positive
regulator of fetal growth. Inappropriate biallelic expression of Igf2
results in broad embryonic overgrowth, whereas its reduction leads
to growth restriction (DeChiara et al., 1991; Ferguson-Smith et al.,
1991; Leighton et al., 1995). Interestingly, the effect of IGF2 on
fetal growth is neutralized by a maternally expressed imprinted
gene, Igf2r. Igf2r mutations are associated with overgrowth and
embryonic death, but both phenotypes are rescued in an /gf2 null
background (Ludwig et al., 1996). Accordingly, IGF2R acts as an
antagonistic receptor that binds IGF2 and targets it for lysosomal
degradation (Foulstone et al., 2005). The HI9 gene, which
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expresses both a 2.3 kb ncRNA and a microRNA (miR-675) in a
manner linked to the expression of Igf2 (Fig. 2A), has been
proposed to be a growth repressor (Hao et al., 1993). However, it is
unclear whether the longer ncRNA, the miRNA, or both exhibit
growth repressive properties.

Another imprinted gene with a broad developmental effect on
embryonic growth is Grbl0. Maternally expressed in most
murine tissues, GrbI0 acts as a crucial growth restrictor. Maternal
Grb10 knockout embryos exhibit overgrowth, and deletion of
the GrbIl0 ICR results in biallelic expression and significant
undergrowth (Charalambous et al., 2003; Shiura et al., 2009). Like
IGF2, GRB10 probably exerts its effect on growth through the insulin
pathway, binding the insulin receptor and both insulin-like receptors
IGF1R and IGF2R (Holt and Siddle, 2005). Recent work has also
shown that GRB10 is a substrate for mammalian target of rapamycin
(mTOR), with mTOR-mediated phosphorylation and stabilization of
GRBI10 leading to reduced insulin signaling (Yu et al., 2011).

Although Igf2, Igf2r, H19 and Grb 10 are important for modulating
growth control pathways, many other imprinted genes affect
embryonic growth through other mechanisms. It has been proposed
that a number of these imprinted genes, including Peg! (Mest), GtI2
(Meg3), Cdknlc, Plagll and DIkl, are coordinately regulated in
multiple tissues along with Igf2 and Grb10 to regulate growth in a
proposed ‘imprinted gene network’ (Arima et al., 2005; Varrault
etal., 2006). The full extent of the co-regulation of these genes and the
mechanism of co-regulation are still unknown. The transcription
factor Zacl (Plagll), which is a paternally expressed imprinted gene,
has been suggested to alter the expression of genes in the imprinted
gene network (Varrault et al., 2006). Deletion of this gene in mice
results in intrauterine growth restriction and neonatal lethality.
Moreover ZACI1 alters the expression of several imprinted genes,
including Cdknlc and DIkI, and it directly regulates the H19/Igf?
locus through binding of its shared enhancer (Varrault et al., 2006).
Additionally, H19 has been proposed as a possible regulator of the
imprinted gene network in frans by recruiting MBD1 (Gabory et al.,
2009; Monnier et al., 2013). Finally, BMI1, a member of the
Polycomb Repressive Complex 1 (PRC1) has also been implicated in

Maternal imprints
established de novo
in the female

germline (postnatal)

Sperm@/\f

Fig. 1. Establishment, maintenance and erasure of
genomic imprints during mouse development.
Imprints are acquired in a sex-specific manner in the
mature germline (light green circles) during development,
with paternal imprints (blue chromosomes) being
established prenatally and maternal imprints (pink
chromosomes) established postnatally. These imprints
are retained despite the global changes in DNA
methylation that occur after fertilization, which include
active demethylation of the paternal genome and passive
demethylation of the maternal genome. These imprints
are maintained in somatic tissues throughout adulthood.
In primordial germ cells (PGCs, dark green circles),
imprints are erased (gray chromosomes) and reset for
the next generation.

Oocyte

Zygote

the coordinated expression of multiple imprinted genes within this
network (Zacharek et al., 2011).

Imprinting and placental development
Some imprinted genes also have key functions in placental
development (Fig. 3). These genes control embryonic growth, as
the placenta acts as the singular point of regulation between maternal
and embryonic tissues, and is the source of many hormones and
growth factors (Abu-Amero et al., 2006). A large number of
imprinted genes (~80) are reported to be highly expressed in the
placenta, although recent work has highlighted the prevalence of
confounding maternal contamination and has questioned whether
some of these genes are in fact imprinted (Okae et al., 2012). The
deletion of some imprinted genes, including the paternally expressed
Peg3 and Pegl, in mouse knockout models causes growth restriction
of the entire placenta (Curley et al., 2004; Lefebvre et al., 1998).
miR-675, which is processed from the first exon of H19, is also
highly expressed in the placenta and is important for signaling the end
of placental growth by downregulating /gf7r (Keniry et al., 2012).
Other imprinted genes are essential for the proper development of
placental tissues. For example, Ascl2 and Pegl( are required for the
development of the spongiotrophoblast, one of the major endocrine
factor-producing regions of the placenta (Guillemot et al., 1994,
Ono et al., 2006). Conversely, Phlda2 and Cdknlc are maternally
expressed imprinted genes that, when deleted, cause improper
spongiotrophoblast expansion (Frank et al., 2002; Zhang et al., 1998).
Rtl1, a paternally expressed imprinted gene, is crucial for the
maintenance of placental capillaries (Sekita et al., 2008). Other
imprinted genes are central to placental function; mono-amine uptake
to the embryo through the placenta is inhibited by deletion of Slc22a3
and nutrient uptake is inhibited by the deletion of the placental-
specific isoform of Igf2, Igf2 PO (Constancia et al., 2002; Zwart et al.,
2001). Given the roles of imprinted genes in the placenta, it is
unsurprising that deletion of Dnmit3l, a member of the DNA
methyltransferase family that acts with DNMT3A to establish
DNA methylation imprints in germ cells, results in extensive
abnormalities in placental development (Arima et al., 2006).
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Fig. 2. Imprinting mechanisms. (A) The insulator model is best
represented by the H19/Igf2 locus. The ICR on the paternal allele of this
locus is DNA methylated. By contrast, the ICR on the maternal allele is
unmethylated, which allows binding of the insulator protein CTCF and
prevents enhancers from interacting with the insulin-like growth factor 2
(Igf2) promoter. Instead, the enhancers activate H19 expression. On the
paternal allele, DNA methylation prevents CTCF from binding to the ICR,
allowing the enhancers to activate Igf2 expression. (B) The ncRNA model is
best illustrated by the Kcnq1 locus. Here, the ICR contains the promoter of
the Kcnq1ot1 long ncRNA. On the paternal allele, the ICR is unmethylated,
allowing the expression of Kecng7ot1, which in turn silences the paternal
alleles of the adjacent genes. On the maternal allele, Kcnq1ot1 is not
expressed owing to DNA methylation of the ICR, and the adjacent imprinted
genes are expressed. All imprinted domains are depicted for the mouse,
although the human regions are largely conserved. T refers to the telomeric
end of the cluster and C the proximal end of the chromosome. Not drawn

to scale.

Imprinting and human growth disorders

Although the previously described work on imprinted genes was
performed using mouse models, the consequence of misregulated
imprinting on embryonic growth is obvious in humans where it
manifests in multiple clinical phenotypes (Table 1). For example,
Beckwith—-Wiedemann syndrome (BWS) is an overgrowth
disorder associated with genetic defects in two adjacent clusters
of imprinted genes on chromosome 11. Individuals with BWS
often present as large for gestational age at birth, with large
tongues (macroglossia), large bodies and placental overgrowth.
This syndrome most commonly arises owing to the loss of
methylation at the ICR for the long ncRNA gene KCNQI1OTI
(Higashimoto et al., 2006). This loss of methylation results in
biallelic expression of the ncRNA and consequently cis-acting
repression of the protein-coding genes regulated by KCNQ10T1
(Fig. 2B). One protein-coding gene from this cluster that drives the
BWS phenotype is CDKN1C, which makes a protein product that
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acts as a cell cycle inhibitor and growth restrictor; absence or
mutation of CDKN1C promotes overgrowth (Andrews et al., 2007;
Matsuoka et al., 1996). BWS is less frequently caused by
activation of IGF2 and reduced HI9 expression (typically
through ICR deletions and an increase in methylation at the H/9
promoter), although in these cases it is often accompanied by
Wilms and other tumors (Choufani et al., 2013). In contrast to
BWS, Silver—Russell syndrome (SRS) is a genetic disorder in
which babies are born small for their gestational age and later
exhibit dwarfism. SRS is highly associated with hypomethylation
at the HI9/IGF2 ICR (designated IC1 at the human locus),
resulting in biallelic expression of H79 and biallelic repression of
IGF2 (Gicquel et al., 2005). Both BWS and SRS are also
associated with asymmetrical growth and a variety of deleterious
phenotypes, suggesting that the role these imprinted genes play in
growth has fundamental importance in many biological processes.

Mouse mutants in the BWS and SRS orthologous regions have
been instrumental in uncovering the mechanism of imprinting
regulation at the H19/Igf2 and Kcngl/Kcenglotl loci. Most of these
loss-of-imprinting (LOI) mouse models for BWS and SRS mimic
patient cases, although curiously they do not fully recapitulate the
phenotypes observed in these human syndromes. Mice in which
Igf2 is overexpressed and Cdknlc or Igf2r is deleted display some
but not all of the BWS phenotypes (Caspary et al., 1999;
Eggenschwiler et al., 1997). It has been suggested that mice
cannot fully recapitulate the BWS phenotype at least in part because
of differences in proliferation rates between mouse and human
(Caspary et al., 1999). With respect to SRS, an engineered mouse
strain in which CpG mutations prevented maintenance methylation
of the paternally transmitted H79/Igf2 ICR exhibited diminished
Igf2 expression and overexpression of H19 (Engel et al., 2004).
Although these mice are small, they do not appear to exhibit the
other features characteristic of SRS, such as asymmetry.

Imprinted genes and neural development and function

In addition to their roles in the general growth and health of the
embryo, imprinted genes also play numerous, highly specialized
and cell type-specific functions during development. Although this
is true in a variety of tissues and contexts, imprinted genes have a
particularly important and complex role in the development of the
mammalian brain. This was first highlighted by foundational work
examining the contribution of parthenogenetic (PG, similar to
gynogenetic embryos but exclusively derived from an egg) and
androgenetic (AG, paternal only) cells to the nervous system in a
developing chimeric embryo (Keverne et al., 1996). Although both
PG and AG cells exhibited low levels of contribution to the
developing brain in chimeras, PG chimeras had a larger brain and a
smaller body, whereas AG chimeras had a smaller brain, but a larger
body. Furthermore, PG and AG cells contributed to distinct sub-
regions of the brain, with PG cells being more prevalent in the
neocortex and AG cells more prevalent in the pre-optic area and
hypothalamus. This work was the first to suggest that the maternal
and paternal genomes may have distinct roles in neuronal
development, and has subsequently been tied to several key
imprinted loci and their proper regulation.

Imprinted gene expression in the brain

It is interesting to note that a number of imprinted genes have
expression patterns and functions in the brain that are distinct from
those seen in other tissues (Fig. 3). Ube3a is the most well studied
example, being biallelically expressed in most tissues but maternally
expressed within certain neuronal subtypes (Albrecht et al., 1997).
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Maternal deficiency of UBE3A4 causes Angelman syndrome (AS;
Table 1), a neurodevelopmental disorder associated with cognitive
and motor impairment (Kishino et al., 1997). UBE3A is an ubiquitin
ligase that can target proteins for degradation. /n vitro, UBE3A
has been shown to ubiquitylate proteins important for cell
cycle regulation, such as p53 (TRP53), HHR23A (RAD23A) and
MGMT (Kumar et al., 1999; Scheffner et al., 1993; Srivenugopal
et al., 1996). UBE3A has similarly been shown to ubiquitylate
ARC, a protein localized to neuronal synapses that promotes
internalization of specific glutamate receptors important for neural
plasticity (Greer et al., 2010). Such results should be taken with
caution, however, as ubiquitylation of these proteins by UBE3A
in vivo is largely unproven, or, in the case of ARC, has recently been
contested (Kiihnle et al., 2013). Nevertheless, Ube3a knockout in
the mouse is associated with increased levels of ARC and p53
in brain lysates, suggesting at least a genetic role for Ube3a in
regulating protein levels in neurons. In addition, Ube3a knockdown
in primary hippocampal neurons results in decreased synaptic
localization of AMPA receptors, which are important for the
plasticity of neuronal connections and which can be sequestered by
ARC (Greer et al., 2010). As mentioned above, very recent work
argues that UBE3A does not directly ubiquitylate ARC, but rather
that UBE3A acts as a negative regulator of estrogen-mediated Arc
transcription (Kiihnle et al., 2013). Consistent with this model,
UBE3A has been shown to act as a transcriptional co-regulator by
interacting with steroid hormone receptors, including the estrogen
receptor (Ramamoorthy and Nawaz, 2008). However, biochemical
analysis of the UBE3A4 point mutations in found in AS patients
shows very frequent loss of ubiquitin ligase activity and a general
preservation of co-activator activity (Cooper et al., 2004). Taken
together, it is possible that defects in both mechanisms (transcription
and ubiquitylation) may contribute to the AS phenotype.

Other imprinted genes that show brain-specific expression patterns
contribute to the proper establishment of the highly complex cell types

Fig. 3. A summary of imprinted gene
functions during embryogenesis. Examples of
imprinted genes and their functions in the brain
(top box), in the placenta (lower box) and in
general growth (left-hand boxes) during
embryonic development are listed.
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that make up the brain. Peg3 is a paternally expressed gene that
encodes a zinc finger protein that exhibits high expression levels in
certain brain regions. Importantly, Peg3 has been implicated in the
control of apoptosis in neurons through its interaction with p53 and the
pro-apoptotic factor BAX (Johnson etal., 2002). Deletions of paternal
Peg3 result in increased neonatal apoptosis in specific brain regions.
This apoptosis ultimately reduces the total number of oxytocin-
secreting neurons and masks normal sex-specific differences in
apoptosis in brain regions involved in sexual behavior, olfaction and
pheromone processing (Broad et al., 2009; Li, 1999).

Another example of an imprinted gene that affects specific
neuronal subtypes is the paternally expressed Ndn gene, which
encodes a protein that interacts with p53 and a variety of growth
factors to influence neuronal differentiation and growth (Kuwajima
et al., 2006; Salehi et al., 2002; Taniura et al., 1999). Ndrn mutant
mice exhibit reduced neuronal density in the hypothalamus and
morphological abnormalities in axonal outgrowths (Muscatelli
et al., 2000; Pagliardini et al., 2005). Interestingly, a variety of
hypothalamic dysfunctions are evident in Prader—Willi Syndrome
(PWS; Table 1) (Swaab, 1997). Accordingly, mutations in NDN, as
well as in other genes within the same imprinting cluster including
SNRPN and several small nucleolar RNAs (snoRNAs), are
associated with PWS.

Imprinted genes in the brain: human disorders and effects on
behavior

The importance of imprinted genes in neurodevelopment is probably
best highlighted by the wide variety of behavioral phenotypes
associated with their misexpression. Mice deficient in maternal
Ube3a exhibit defects in hippocampal-related memory and learning,
along with a variety of abnormalities in motor system behaviors
(Heck et al., 2008). These phenotypes are partially mirrored in
patients with AS, a disorder characterized by attention deficits and
delayed motor development (Pelc et al., 2008). Furthermore, Ndn null
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mice show an abnormal skin scraping tendency and modified spatial
learning, both of which are reminiscent of some behaviors associated
with PWS (Muscatelli et al., 2000). It is important to note, however,
that mouse model systems do not recapitulate the full gamut of
behavioral phenotypes exhibited by AS and PWS patients. For
example, some, but not all, mice models for PWS exhibit increased
appetite, which is also observed in human PWS patients (Rieusset
et al., 2013), but this may not be from the lack of satiation that
underlies these phenotypes in humans.

A variety of other imprinted genes are also associated with the
regulation of behavior. Two imprinted genes, Peg/ and Peg3, are
associated with an important role in maternal care behaviors. Peg3
null female mice exhibit deficiencies in sexual behavior and
maternal care actions, such as milk-letdown and nest building.
Additionally, Peg3 null neonates have reduced suckling behavior
(Champagne et al., 2009). Similarly, Peg/ null females display
abnormal maternal care and impaired placentophagia, which both
are behaviors associated with the successful rearing of young
(Lefebvre et al., 1998). Recent work has also shown that paternal
deletion of Grb10, which is expressed from the paternal allele in a
subset of neurons from alternative promoter(s), is associated with
hyper-aggression and increased social dominance in mice (Garfield
et al., 2011). Finally, a maternally expressed gene, Nesp (Gnas),
which encodes a protein involved in neuro-excretory function, is
associated with novel exploration behavior and has been observed
to have striking overlap in expression with Grb10 in the brain
(Dent and Isles, 2014; Plagge et al., 2005).

Roles for imprinted genes in stem cells and reprogramming
A crucial function for genomic imprinting in stem cells, including
embryonic stem cells (ESCs), induced pluripotent stem cells
(iPSCs) and adult stem cells, has recently garnered much attention
(Papp and Plath, 2013; Stadtfeld and Hochedlinger, 2010). As
discussed above, genomic imprints are established in the male and
female germline when the parental alleles can be independently
marked. This establishment occurs after imprint erasure and is part
of the widespread epigenetic reprogramming and genome-wide
demethylation that is essential for totipotency (Hajkova et al., 2008;
Surani et al., 2007). However, it is now known that at least some of
the germline-specific reprogramming events can be bypassed during
reprogramming, when iPSCs are derived from differentiated
somatic cells. An important question for practitioners of iPSC
technology during its early development was whether imprints
would be appropriately maintained during the reprogramming
process. For example, nuclear transfer (NT)-derived mouse clones
exhibited general epigenetic instability and LOI, and suffered from a
variety of defects often associated with imprinting disorders
(Humpherys, 2001).

Regardless of whether these cells will be used to study basic
developmental processes or employed for human therapeutics, proper
imprinting is an essential benchmark. LOI not only can result in the
previously mentioned errors in early growth and development, but
additionally is highly correlated with cell transformation and cancer.
Many imprinted genes, including H19, Pegl and Peg3, are known
tumor suppressors (Feinberg, 1999). Additionally, ‘imprint-free’
mouse ESCs that have global LOI effectively contribute to chimeras,
but these mice develop multiple types of cancer by one year of age
(Holm et al., 2005). Thus, the careful study of imprinted gene
expression and function in iPSCs is required for full confidence in
their application. Such studies, together with analyses of imprinting
in embryonic and adult stem cells, highlight the functional importance
of imprinted genes in pluripotent cell populations.
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A Silenced Dik1-Dio3 during derivation of iPSCs
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Fig. 4. DIk1-Dio3 expression during iPSC induction. (A) Gt/2, a
non-coding RNA in the DIk7-Dio3 imprinted cluster, is expressed from the
maternal allele in most somatic tissues. Within these tissues, the ICR
(IG-ICR) within the cluster exhibits activating histone marks (H3K4me2 and
H3Kac). Induction of pluripotency in somatic cells via exogenous expression
of Oct4 (Poubf1), KIf4, Sox2 and Myc frequently results in the aberrant
silencing of maternal transcripts within the DIk7-Dio3 cluster and DNA
methylation of the ICR by DNMT3A (not pictured). The subsequent
misexpression of Gt/2 and other DIk1-Dio3 transcripts results in poor
incorporation of these iPSCs into chimeric mice made using the tetraploid
(4N) complementation method. No ‘all iPSC’ mice have been made from
iPSCs with silenced DIk1-Dio3. (B) The addition of ascorbic acid (vitamin C)
during the iPSC reprogramming process results in activating histone

marks at the IG-ICR, including H3K4me3, and the expression of Gt/2.

The addition of ascorbic acid prevents the recruitment of DNMT3A (D3a)

by an unknown mechanism. These iPSCs can give rise to ‘all iPSC’ mice.

Imprinting and reprogramming
An initial report describing the reprogramming of mouse embryonic
fibroblasts to a pluripotent state showed that several imprinted genes
(H19, Pegl, Peg3 and Snrpn) maintained proper allele-specific
DNA methylation after reprogramming (Wernig et al., 2007). Two
subsequent studies characterizing imprinting during the induction of
human iPSCs showed that LOI is an exceedingly rare but observable
event that is evident at early stages in the reprogramming process, is
highly cell-line specific, and is maintained through multiple
passages (Hiura et al., 2013; Pick et al., 2009). Interestingly,
maintenance of the state of imprinting is also evident in iPSCs
generated from AS and PWS patient fibroblasts, with pathological
errors in imprinting and expression being retained through
reprogramming and subsequent culture (Chamberlain et al., 2010).
Thus, it appears that imprints present in the somatic cell of origin are,
for the most part, faithfully retained in iPSCs after reprogramming.
A significant and functionally crucial exception to these trends
involves errors during iPSC reprogramming at the DIlkI-Dio3
imprinted cluster (Fig. 4A). In a genome-wide comparison of
expression between genetically identical mouse ESCs and iPSCs, the
only two significantly downregulated transcripts in iPSCs were the
maternally expressed ncRNA G#/2 and the long ncRNA Rian, both of
which are found within the DIkI-Dio3 imprinting region (Stadtfeld
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et al., 2010). Analysis of 62 additional iPSC lines showed that only
~6% of these lines exhibited normal expression of G#/2, and that lines
that misexpress genes in this cluster demonstrated a greatly reduced
ability to contribute to chimeras. Further work corroborated that
repression of genes in the DIkI-Dio3 cluster correlated with reduction
in pluripotency hallmarks, specifically the generation of ‘all iPSC’
mice (Carey et al., 2011; Liu et al., 2010). Mechanistically, it was
found that hypermethylation across DIkI-Dio3 causes aberrant
repression at the cluster and is dependent on the inappropriate
recruitment of the de novo DNA-methyltransferase DNMT3A.
Surprisingly, recent follow-up work has shown that treatment of
iPSCs with ascorbic acid (vitamin C) during passage and
reprogramming ensures the maintenance of euchromatic marks
across DlkI-Dio3; ascorbic acid treatment inhibits the recruitment
of DNMT3A by a highly specific but unknown mechanism and
increases iPSC pluripotency and reprogramming efficiency (Stadtfeld
et al,, 2012).

Imprinting in adult stem cells

Imprinted genes have been recently implicated in the maintenance
and function of adult stem cell populations. A transgenic reporter
mouse line for the paternally expressed Peg3 gene has shown that
Peg3 expression in adults is restricted to stem cell/progenitor
populations in a variety of tissues, including the brain, gut, bone,
muscle and skin (Besson et al., 2011). The generation of
neurospheres, via an in vitro technique used to isolate and amplify
neuronal progenitors, resulted in ~100% Peg3-positive cells after a
single passage. Additionally, engrafting experiments in the epidermis
revealed that transferred Peg3-positive cells have the ability to self-
renew within the follicular stem cell niche and differentiate
effectively. These experiments suggest that Peg3 plays a functional
role in adult stem cells, although it is currently unclear whether this
role is different from that observed in early development.

The maternally expressed HI19 gene is also involved in the
maintenance of adult hematopoietic stem cell (HSC) populations in
the mouse (Venkatraman et al., 2013). Conditional maternal
deletion of the H19/Igf2 ICR in HSCs caused reduced expression
of HI9 and increased expression of /gf2, accompanied by a
reduction in the number of long-term HSCs, an increase in short-
term HSCs, and overall compromised hematopoietic potential and
function. In addition, maternal deletion of the H79/Igf2 ICR caused
inappropriate activation of the Igf2-Igflr pathway via increased
expression of Igf2 and decreased repression of Igf7r, which is a
target of H19-derived miR-675. This led to inhibited quiescence-
associated cell cycle arrest mediated by FOXO3, ultimately
resulting in the activation and exhaustion of long-term HSCs.

Additionally, selective loss of DIkl imprinting within mouse
neural stem cells (NSCs) and their niche has been shown to be crucial
for postnatal neurogenesis (Ferron et al., 2011). DIkI is a membrane-
bound receptor for Notch signaling that is downregulated postnatally
in most tissues. DIkI-deficient mice show decreased pools of slow-
dividing NSCs, resulting in depletion of neurons in the adult olfactory
bulb. Interestingly, the NSCs and the surrounding astrocytes that
make up their niche express D/k! from both alleles, whereas DIk] is
otherwise expressed exclusively from the paternal allele. This
coordinated biallelic expression of DIkl highlights the importance
of specific contexts in imprinted gene regulation and underscores the
significance of gene dosage for imprinted genes.

Conclusions
Although initial work suggested that imprinted gene expression is
crucial for early embryonic growth and differentiation, it is now

clear that genomic imprinting exhibits a much more varied role in
mammalian development. It is important to note that this Review is
intended to highlight just some of the functions of genomic
imprinting and imprinted genes, but is not comprehensive; various
roles for many imprinted genes have been documented. For
example, LOI at numerous imprinted genes has been associated
with cancer and oncogenic phenotypes (Baylin and Jones, 2011); a
functional importance not detailed at length in this Review.
Additionally, imprinted expression plays a variety of other tissue-
specific roles in many other organs and cell types not elaborated
here (Prickett and Oakey, 2012). It is almost certain that a full
understanding of tissue-specific imprinting is incomplete. Further
exploration of the prevalence of imprinting in complex tissues such
as the brain and in novel contexts such as adult stem cell populations
will undoubtedly lead to exciting discoveries regarding the
expression and functions of imprinted genes.
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