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Computational modelling of embryonic stem-cell fate control
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ABSTRACT
The maintenance of pluripotency in embryonic stem cells (ESCs), its
loss during lineage specification or its re-induction to generate
induced pluripotent stem cells are central topics in stem cell biology.
To uncover the molecular basis and the design principles of
pluripotency control, a multitude of experimental, but also an
increasing number of computational, studies have been published.
Here, we consider recent reports that apply computational or
mathematical modelling approaches to describe the regulatory
processes that underlie cell fate decisions in mouse ESCs. We
summarise the principles, the strengths and potentials but also the
limitations of different computational strategies.

KEY WORDS: Computational biology, Embryonic stem cells,
Multi-scale models, Network dynamics, Stem cell fate decisions

Introduction
Pluripotency is defined as the capacity of an individual cell to give
rise to all lineages of the mature organism, including the germ line.
This property is transient and restricted to a few epiblast cells in the
early mammalian embryo, but it can be sustained in vitro through
the establishment of embryonic stem cells (ESCs) (Evans and
Kaufman, 1981; Martin, 1981). Mouse ESCs (mESCs) can be
maintained in a naïve pluripotent state over many passages without
losing their differentiation potential. Moreover, when injected into a
host embryo, they return to normal development and contribute to
chimera formation (Smith, 2001). Uncovering the molecular basis
and understanding the design principles of pluripotency is,
therefore, of utmost relevance for both stem cell research and
developmental biology.
Like many other areas of modern life sciences, stem cell biology is

increasingly influenced by novel technologies, such as molecular
high-throughput techniques and (ultra-)high-resolution imaging. These
newmethodsprovide anunprecedented amount of information at levels
previously inaccessible. Although we recognise the tremendous
potential of this new level of quantification, it also generates new
challenges, including new sources of error in experimental setup or
analysis. Another challenge comes with the inherent complexity of
biological systems: in the majority of cases, a functional and
mechanistic understanding of the dynamic behaviour cannot be
achieved by simply ‘adding up’ the individual effects observed for
the different components of the system. As already Aristotle
recognised, “the whole is more than the sum of its parts”, or, in more
modern terms, the complex interplay of the individual components
might lead to the emergence of unexpected behaviours.
It has become increasingly clear that a complementary

application of methodologies from bioinformatics, statistics and
dynamic modelling is required for an accurate description and a
comprehension of complex interactions and emergent behaviours

(Fig. 1). For example, computational approaches can define the
structure and the dynamics of gene regulatory networks (GRNs, see
Glossary, Box 1). However, care is required when interpreting such
studies, as different structures potentially encode the same or similar
biological functions. Moreover, the same network structure might
generate different functional consequences. To distinguish between
different potential explanations, the analysis of the network
dynamics is as important as structure identification. Because such
network dynamics might be non-intuitive, mathematical concepts
and computational methods from dynamic systems theory are
extremely helpful for their formal description and quantitative
analysis. The fields of application of computational models are as
versatile as the methodologies themselves (see Box 2).

In this Review, we will discuss strategies to build and understand
computationalmodels ofGRNs inmESCs and in the blastocyst. First,
we introduce the transcriptional core network of pluripotency. Then,
we describe dynamic small-scale networks probing mechanisms that
underlie transcription factor (TF) heterogeneity.We also summarise a
selection of more complex pluripotency networks. Finally, we
consider dynamic models of cellular reprogramming and lineage
specification, with a brief outlook on the demand for multi-scale
modelling. For amore detailed discussion on the biological aspects of
mESC pluripotency and heterogeneity, we refer the reader to other,
excellent reviews (Niwa, 2007; Chambers and Tomlinson, 2009;
Martinez Arias and Brickman, 2011; Nichols and Smith, 2012;
Torres-Padilla and Chambers, 2014).

Dissecting the complexity of the pluripotency network
through computational models
Over the last decade, microarray and sequencing technologies have
been used extensively to measure gene expression in mouse and
human ESCs with the aim of identifying master regulators of
pluripotency regulation and lineage commitment, and their
interactions on a genome-wide scale (Ivanova et al., 2006; Loh
et al., 2006;Matoba et al., 2006;Wang et al., 2006; Kim et al., 2008;
Ding et al., 2009; Dowell et al., 2013). Although these large-scale
studies uncovered an inherent complexity of pluripotency
regulation, most attention has been paid to a core unit of three
TFs, namely Oct4, Sox2 and Nanog. More than 15 years ago, Oct4
was shown to be essential for the establishment of pluripotency in
the embryo and in cultured cells (Nichols et al., 1998). However,
although a constant expression of Oct4 is required for self-renewal,
the dosage also matters: both enhanced and reduced levels of Oct4
lead to lineage specification (Niwa et al., 2000). Oct4 cooperates
with Sox2 to regulate the expression of multiple target genes
(Chambers and Tomlinson, 2009), including fibroblast growth
factor 4 (Fgf4) that initiates lineage specification (Kunath et al.,
2007; Silva and Smith, 2008). The TF Nanog supports Oct4
and Sox2 in coordinating the activity of a number of target genes.
Overexpression of Nanog alleviates the requirement for extrinsic
culture medium supplements, such as leukaemia inhibitor factor
(LIF) or the mitogen kinase inhibitor (MEKi), to prevent
differentiation (Chambers et al., 2003; Mitsui et al., 2003; Ying
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et al., 2008). Although Nanog is essential to reach a pluripotent cell
state, pluripotency can bemaintained even in the absence of Nanog,
albeit in an unstable fashion (Chambers et al., 2007; Silva et al.,
2009).

Dynamic properties of the pluripotency core network
Multiple experimental studies indicate that the core network
constituted by Oct4, Sox2 and Nanog is characterised by a number
of positive-feedback regulations (Chew et al., 2005; Rodda et al.,
2005; Loh et al., 2006). The first ordinary differential equation (ODE)
model (see Glossary, Box 1) of this core structure was published
by Chickarmane et al. in 2006 (Fig. 2A) (Chickarmane et al., 2006).
Here, the transcriptional regulation of the network components is
mathematically described usingHill equations, which arewidely used
to model chemical reactions and approximate molecular interactions
(Weiss, 1997). However, to simulate TF concentrations within this
framework, parameters such as binding or transcription rates, as well
as cooperativity parameters (that describe the stoichiometry of
molecules) have to be defined. Unfortunately, a quantitative
determination of biochemical parameters is challenging, if not
impossible, and fitting them to experimental data often yields large
uncertainties (Gutenkunst et al., 2007).Methodologies from dynamic
systems theory, such as state space and bifurcation analysis (Box 3),
are powerful tools to investigate the behaviourof a systemqualitatively
and quantitatively. Together with simulation studies and proper
sensitivity analyses of model parameters, these approaches can
identify whether the dynamics are consistent with the experimental
observations and allow the effect of changes in network components
or interaction rates to be predicted.
Chickarmane et al. investigated the dependency of stable Oct4

and Nanog expression states on external signals, demonstrating that
the positive-feedback loops in the core network give rise to a system
property termed bistability (Box 3) (Chickarmane et al., 2006).
Bistability can be interpreted as the coexistence of two stable gene
expression states associated with different developmental potentials
of cells. The emergence and disappearance of stable expression
levels as a function of a particular model parameter can be depicted
by a bifurcation diagram, as shown in Fig. 2B. It reveals that the
model illustrated in Fig. 2A can account for three distinct patterns of

stable expression states, depending on the intensity of an input
signal B, which negatively regulates Nanog transcription (Fig. 2B).
The authors nominated bone morphogenetic protein 4 (BMP4)
signalling and p53 as potential candidate factors for B. When signal
B is weak, the pluripotency network is sustained and a stable
expression state at high Nanog levels is established (termed ‘stem-
cell state’, upper solid line in Fig. 2B). By contrast, if signal B is
strong, Nanog autoregulation is suppressed and its transcription
remains at a basal level. Thus, a second stable state at low Nanog
levels is established (termed ‘differentiated state’, lower solid line in
Fig. 2B). However, for an intermediate range of signal B, both states
coexist, such that mESCs can attain either of the two expression
states (region shaded in grey in Fig. 2B). Thus, a continuous
increase of signal B intensity ‘moves’ cells from a monostable high
into a monostable low state by transiently passing the bistable
region. This process is reversible but the signal intensities at which
cells change their state into one or the other direction (c1 and c2) are
different. This property is called hysteresis and means that the
behaviour of a system depends on its history. Due to the highly
connected architecture of the underlying network, the model
predicts the same qualitative behaviour for Oct4 and Sox2. Thus,
in the model proposed by Chickarmane et al., all three TFs are either
on or off, ensuring that the expression of common target stem cell
and differentiation genes is mutually exclusive.

As shown above, the analysis of qualitative changes of gene
expression patterns depending on model parameters provides
insights into potential cellular states, their stability and robustness.
However, to study dynamic properties of developing cell
populations, the heterogeneity of gene expression and of cellular
states has to be taken into account.

The role of gene expression heterogeneity
The maintenance of mESC pluripotency requires specific culture
conditions. Standard mESC culture media contain serum factors and
the cytokine LIF (Niwa et al., 1998), and promote a population-
intrinsic heterogeneity reflected in the mosaic expression of
pluripotency genes, including Nanog, Rex1 (also known as Zfp42 –
Mouse Genome Informatics Database), Stella (also known as
Dppa3 – Mouse Genome Informatics Database) and Esrrb
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Fig. 1. General overview of computational
methodologies and their applications. To reconstruct
network structures and reveal their underlying
dynamics at different scales, methods from statistics
(e.g. correlation analysis), bioinformatics (e.g. Bayesian
networks) and mathematical modelling (e.g. differential
equations) can be applied. The usage of these methods
is not limited to one specific task. They rather provide
frameworks that can be adapted or extended to assist
the exploration of many different tasks.
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(Chambers et al., 2007; Carter et al., 2008; Toyooka et al., 2008).
Because of the key role of Nanog in the establishment of
pluripotency, its heterogeneity has been studied extensively. Flow
cytometry analyses of Nanog reporter cell lines show a stable
and reproducible bimodal distribution of Nanog-high (NH) and
Nanog-low (NL) cells (Chambers et al., 2007; Kalmar et al., 2009).
Purified NH cells can give rise to NL cells and vice versa, revealing
the dynamic capacity of mESCs to undergo state transitions (Box 3),

and show a functional bias in their differentiation propensity (Singh
et al., 2007; Marks et al., 2012). The biological relevance (Smith,
2013) and the molecular mechanisms underlying this intrinsic
heterogeneity are still under debate (Miyanari and Torres-Padilla,
2012; Navarro et al., 2012; Karwacki-Neisius et al., 2013; Muñoz-
Descalzo et al., 2013; Singer et al., 2014).

Complementary to experimental strategies, a few small-scale GRN
models have been applied to improve the mechanistic understanding
of dynamic heterogeneity in pluripotent mESCs (Kalmar et al.,
2009; Glauche et al., 2010; Herberg et al., 2014). Three different
mechanisms accounting for a bimodal Nanog distribution and
reversible state transitions will be discussed here: first, an excitable
model presuming monostable Nanog expression and extrinsic noise
(Kalmar et al., 2009); second, an oscillation model based on a cyclic
Nanog attractor (Glauche et al., 2010); and third, a fluctuation model
assuming bistable Nanog expression and intrinsic noise (Glauche
et al., 2010; Herberg et al., 2014).We review thesemodels to evaluate
their consistency with new experimental findings based on single-cell
gene expression recently published by Singer et al. (2014).

In 2009, Kalmar et al. proposed a noise-driven, excitable model
based on positive autoregulations and mutual activations of Oct4 and
Nanog (Fig. 3A) (Kalmar et al., 2009). Additionally, the authors
supposed that sufficiently high levels of Oct4 can repress Nanog
expression, introducing anegative feedback.To formally describe these
regulations, a stochastic differential equation (SDE) model (see
Glossary, Box 1) has been used. Although the positive-feedback
loops allow for bistability, parameters have been chosen such that only
one stable NH state exists (compare with Fig. 2B: ‘Stem cell state’).
Excursions from this state have been induced by a stochastic noise term
(see ‘additive noise’ under the entry ‘Transcriptional noise’ in the
Glossary, Box 1). Thus, mESCs stochastically escape from the stable

Box 1. Glossary
Bayesian network model: Probabilistic model that describes the
interactions of network components (random variables) in terms of
their conditional dependencies (Pe’er, 2005).
Boolean network model: Qualitative model in which network
components are represented by Boolean variables. The state of
components is determined as a logical function of the states of all the
components linked to it (Bornholdt, 2008).
Clustering: Collection of algorithms that organises datapoints into
groups according to some measures of similarity. The selection of these
measures sensitively determines the final result (Frades andMatthiesen,
2010).
Correlation analysis: Statistical technique that uses correlation
coefficients to describe stochastic dependence. Statistical correlation
must not be confused with causal relation (Bewick et al., 2003).
Dynamic systems theory: Provides a mathematical framework to
describe the temporal behaviour of complex systems. Specifically, it
focuses on stability properties, i.e. analysing which system states can be
expected to be stable over time and under which conditions.
Gene regulatory network (GRN): The structure (i.e. the topology) of a
GRN is defined by a number of components (e.g. genes) and their
regulatory interactions. It can be represented by a directed graph
consisting of nodes (components) and edges (interactions). The network
dynamics (i.e. temporal changes of component states) is not purely
determined by the topology, but also depends on the parameters
describing the individual interactions and the initial conditions.
K-means clustering:Clustering algorithm that partitions a dataset into a
number of k pre-specified clusters by minimising the sum of squared
Euclidian distances of individual datapoints from the cluster centroids.
Multi-scale model: Mathematical framework that combines the
description of different temporal and/or spatial scales. Multi-scale
models are able to explain behaviours that emerge on one scale, on
the basis of effects that are acting on other scales (Nakaoka, 2014).
Ordinary differential equations (ODE): Mathematical formalism to
describe continuous changes of variables (e.g. proteins) using a
deterministic function of the variable and its derivatives.
Pearson’s correlation coefficient: Measure of the direction and
strength of a linear relationship between two variables (Taylor, 1990).
Principal component analysis (PCA):Statistical method that describes
given datapoints in terms of linearly uncorrelated variables, denoted as
principal components (PC), leading to a dimensionality reduction
(Ringnér, 2008). In general, PCs are constructed in such a way that
the first PC explains the largest part of the variance in the dataset,
followed by the second, third, etc.
Stochastic differential equations (SDE): Differential equations that
describe stochastic changes of variables (e.g. proteins) by incorporating
a random noise term. As analytic solutions are rarely possible, they are
often analysed by numerical algorithms or by simulations (e.g. Monte-
Carlo simulation).
Support vector machine (SVM): Procedure to classify datapoints into
pre-defined categories. SVMs are examples of supervised learning
algorithms, because it uses training data with known categorisation
(Noble, 2006).
Transcriptional noise: Fluctuations in gene expression can be
modelled by incorporating a stochastic term to the differential
equations (SDEs). Additive noise: Noise amplitude is independent of
gene expression levels. Multiplicative noise: Noise amplitude increases
linearly with expression levels.

Box 2. Fields of application of computational models
The development and the refinement of a computational model is an
iterative process of (i) formulating assumptions (based on experimental
observations), (ii) implementing these assumptions in the context of a
mathematical description, (iii) evaluating the model (e.g. by computer
simulations) and (iv) comparing model results and predictions with
experimental data. The application of models aims at revealing insights
into the mechanisms underlying the properties or the regulatory
processes of a system.

In particular, computational models

• summarise our understanding of a system or a process and, thus,
help to identify gaps in our knowledge;

• provide presumptive mechanisms to explain and link a variety of
observed phenomena and reveal to which extent data are
consistent between experiments and with theoretical concepts;

• identify the general principles that govern a biological system;

• allow to formulate hypotheses about the qualitative and the
quantitative behaviour of a system;

• can be used to perform experiments in silico that would be too
elaborative or costly to be conducted at the bench;

• anticipate the impact of the manipulation of a system or its
perturbation;

• allow us to analyse, visualise and interpret complex datasets.

To be of practical relevance, computational models have to

• be based on clearly defined and biologically plausible
assumptions;

• be described comprehensibly;

• provide experimentally testable predictions.
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expression state, which is characterised by high Oct4 and Nanog
expression, towards a region of low Nanog and variable Oct4
expression. As no second (attracting) stable state exists, cells rapidly
return to their origin and, thus, exhibit pulsing Nanog dynamics
(Fig. 3A, bottom). This model predicted that excursions from the NH
state are transient, providing a very short window of opportunity in
which perturbations can become consolidated into a lineage
commitment decision (Chambers et al., 2007).
Exploring the same topic, Glauche et al. suggested two alternative

SDE models (Glauche et al., 2010). In the first model (model 1 in
Fig. 3B) mESCs are bistable with respect to Nanog expression
(compare with Fig. 2B, grey shaded region). State transitions are

induced by a transcriptional noise (see ‘multiplicative noise’ under
the entry ‘Transcriptional noise’ in the Glossary, Box 1) leading to
stochastic fluctuations. In the second model (model 2 in Fig. 3B), a
hypothetical factor X has been integrated such that Nanog is part of
an activator-repressor system. The resulting negative feedback can
generate a cyclic attractor and thus oscillations between high and low
Nanog expression levels (Fig. 3B, bottom). Replacing the previously
suggested direct activation of Oct4-Sox2 by Nanog with an indirect,
double-negative feedback, Glauche et al. suggested a mechanistic
explanation for the gatekeeper function of Nanog in the control of
mESCdifferentiation (Silva and Smith, 2008). Indeed, assuming that
Nanog prevents the effects of differentiation signals (represented
by Y), only mESCs in the NL state can differentiate. Meanwhile,
Muñoz-Descalzo et al. provided an alternative explanation, showing
that Nanog buffers the differentiation-inducing activity of Oct4
through the formation of stable complexes (Muñoz-Descalzo et al.,
2013) (see section below on lineage specification).

Recently, Herberg et al. put forward the fluctuation model to study
whether different intensities of Fgf4/Erk signalling can account for
culture-dependent differences in Nanog expression (Herberg et al.,
2014). mESCs exposed to serum-free medium containing MEK/Erk
and Gsk3β inhibitors, termed 2i, are captured in a pluripotent ground
state characterised by a single, homogenous NH peak (Ying et al.,
2008; Wray et al., 2010). Applying the model illustrated in Fig. 3C,
the authors demonstrated that Fgf4/Erk signalling can regulate the
existence of stable Nanog expression patterns by ‘shifting’ cells from
amonostable high into a bistable regime as described above (compare
with Fig. 2B, with signal B assumed to represent Fgf4/Erk). In
particular, if Fgf4/Erk signalling is efficiently blocked (as in 2i), there
is onlyone stable expression state at highNanog levels. In this ground
state, network-inherent stochasticity or (external) perturbations only
induce micro-heterogeneity within an apparently uniform cell
population. However, if Fgf4/Erk signalling is active, two stable
expression states coexist (bistability), such that stochastic fluctuations
generate functionally different subpopulations (macro-heterogeneity,
Fig. 3C, bottom) (Huang, 2009; Herberg et al., 2014).

Although all three models consistently describe a stable, albeit
dynamic, bimodal distribution of Nanog expression within a
population of mESCs (compare with insets in Fig. 3, bottom
row), they generate different hypotheses about the underlying
mechanism and its dynamic outcome. These hypotheses guided
experimental strategies to distinguish between the mechanisms
(Box 2). For example, Glauche et al. demonstrated that stochastic
fluctuations and deterministic oscillations are distinguishable based
on the dynamics of the (re-)establishment of heterogeneity after cell
sorting (Glauche et al., 2010). Furthermore, comparing the models
revealed that measurements of the residence times of single cells in
the NH and the NL state would allow the discrimination of mono-
from bistable fluctuations. In a bistable system, residence times for
both Nanog expression states would be prolonged, exceeding
typical cell cycle times as predicted by Herberg et al. (2014),
whereas a monostable system implies that unstable NL cells rapidly
revert back into the stable NH state (Kalmar et al., 2009).
Intriguingly, Singer et al. recently analysed single-cell expression
dynamics, demonstrating that Nanog heterogeneity arises from
a combination of stochastic transitions between coexisting
gene expression states (i.e. macro-heterogeneity, bistability) and
burst-like transcription within each state (i.e. micro-heterogeneity,
noise) (Singer et al., 2014). They also showed that single mESCs
remain in either one of the two Nanog states for multiple cell cycles.
These findings clearly favour the fluctuation model suggested and
described by Glauche et al. (2010) and Herberg et al. (2014).

Box 3. The state space formalism: a model to
quantitatively describe cell fate decisions
The gene expression state S of a cell is defined by the expression values
of a set of genes at a certain time point. This state is a point in an abstract
space composed of all possible expression states, termed state space.
As gene expression changes due to stochastic fluctuations or
developmental processes, the position of state S in the state space
changes. The particular path that is taken is denoted as a trajectory.
Because of regulatory interactions between genes, not all expression
states are actually reachable.

Differential equations can be used to describe mathematically how
gene expression evolves over time. Thus, the solutions of a system of
equations describe corresponding trajectories. States, to which
trajectories move over time, are termed stable fixed points (or steady
states), because once these points have been reached, the state does
not change anymore without external stimulation. Unstable fixed points,
by contrast, are transient, because infinitesimally small perturbations
lead to a movement away from these points. Alterations in gene
regulation can change stable expression patterns (fixed points)
quantitatively and qualitatively. Qualitative changes, termed
bifurcations, occur when fixed points emerge, disappear or change
their stability.

If two or more stable fixed points coexist at a given time, the system is
termed bistable or multistable, respectively. In a deterministic situation,
the initial conditions, i.e. the starting point of the trajectory, determine to
which stable state the trajectory moves. Changes between stable states
are termed state transitions and are associated with changes in the fate
or the developmental potential of a cell. State transitions can be
continuous or, given a multi-stable system, switch-like in response to
external perturbations or stochastic fluctuations.
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Taken together, the complementary use of computational and
experimental strategies clearly indicates that Nanog heterogeneity is
based on two coexisting expression states and stochastic
fluctuations at the transcriptional level. Specifically, the presented
mathematical models brought up hypotheses on potential regulatory
mechanisms, evaluated their consistency with available experimental
data and revealed experimental strategies required to distinguish
between them (Box 2).

Pluripotency regulation in the context of more complex networks
Although the GRN of mESC pluripotency is centred on Oct4, Sox2
and Nanog, numerous studies point to the involvement of additional
transcriptional (co-) factors, such as Klf4, Esrrb, Dapp1, Zfp281,
Tcl1 and Tbx3 (Ivanova et al., 2006; Matoba et al., 2006; Wang
et al., 2006; Kim et al., 2008), to mention only a few. In this section,
we introduce three studies in which statistical and bioinformatics
methods have been applied to analyse more complex TF interactions
under different conditions.
MacArthur et al. studied the role of Nanog heterogeneity in early

fate decisions by mimicking its temporal fluctuations (MacArthur
et al., 2012). In particular, they analysed global gene expression
changes during downregulation of Nanog, with a focus on elements
of a previously published GRN (Kim et al., 2008). All factors,
including Oct4, Sox2 and Klf4, were downregulated considerably
later than Nanog, providing a time window in which cells can be
rescued from differentiation by reintroducing Nanog expression.
Using clustering and support vector machine approaches (see
Glossary, Box 1) for the analyses of single-cell expression profiles,
the authors strengthened the view that mESCs exit pluripotency
gradually and stochastically. They also established two classifiers
that distinguish pluripotent and non-pluripotent cells by learning the

expression profiles of cell samples taken from the Gene Expression
Omnibus (GEO) database (Edgar et al., 2002). The application of
these classifiers showed an intermediate, primed cell state in which
differentiation and pluripotency genes are co-expressed. Finally,
MacArthur et al. analysed the feedback structure of the GRN and
found that fluctuations in Nanog expression transiently activate
different sub-networks driving transitions between a self-sustaining
state (feedback-rich) and a differentiation-sensitive state (feedback-
sparse). Similar results have been reported by Trott et al., who
analysed single-cell gene expression levels with the objective to
decipher the activity of (sub-)networks in heterogeneous mESCs
(Trott et al., 2012).

Recently, Xu et al. constructed a GRN consisting of 15
pluripotency regulators and 15 lineage markers from the ESCAPE
database (Xu et al., 2013, 2014). Based on single-cell gene
expression data of mESCs cultured in LIF/serum and 2i/LIF
conditions, the authors attempted to reveal differences in the
network structure between the two conditions using a Boolean
network model (see Glossary, Box 1) to learn the underlying
network logic. In that model, continuous gene expression values
had to be converted to binary values (0: factor is off, 1: factor is on),
which was carried out using a k-means clustering step (see Glossary,
Box 1). To derive the logical function of each network node, an
exhaustive search with limitations on the operators to constrain the
search space (e.g. nesting, XOR gates and autoregulatory
interactions were neglected) was performed, yielding a group of
network models consistent with the experimental data. Xu et al.
used this set of models to predict several characteristics, including
the most common feedback loops, the differences between network
interactions in the two culture conditions and previously
uncharacterised interactions. For example, the models indicate that
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the positive feedback between Oct4 and Sox2 is absent in 2i/LIF
conditions, but present in LIF/serum. However, this and other
predictions have yet to be validated experimentally.
In a methodologically similar study, Dunn et al. applied a data-

constrained Boolean model to define a minimal GRN that allowed
them to reproduce expression profiles of mESC populations in
different culture conditions (Dunn et al., 2014). The authors started
their analysis with a model composed of 17 pre-selected factors
implicated in mESC maintenance. To reveal possible interactions,
expression correlations between all pairs of TFs were quantified
using Pearson’s correlation coefficient (see Glossary, Box 1).
Subsequently, a software tool was used to constrain the set of
possible models to those able to reproduce the experimental data.
Dunn et al. only kept the components and interactions that are
highly correlated and present in all network structures. This
selection resulted in 12 components and 11 interactions in
addition to pre-specified target interactions. The authors applied
the candidate models to investigate the consequences of different TF
knockouts and tested their predictions experimentally. Because
none of the models could explain the outcome of the Tbx3/Klf2
double-knockdown, the observed behaviour after knockdown was
added as a new data constraint. Similar to the results of Xu et al.
(2014), the positive link between Oct4 and Sox2 did not show up
during the selection process but was integrated manually to fulfil all
predefined constraints and predictions in 2i/LIF conditions. The
authors claimed that the constructed GRN model constituted ‘the
most parsimonious network’ that maintains naïve pluripotency.
Although combining a Boolean network model with prior
information on regulatory interactions is generally feasible, in our
opinion this statement should be complemented with the limiting
clause ‘within the given set of assumptions’.
The presented studies are examples of computational methods

suitable to evaluate gene expression data and to infer (TF- or
culture-dependent) interactions between larger sets of genes.
However, they also make clear that modelling the dynamics of
more complex GRNs requires an even more simplified description
of the system. Boolean model frameworks are commonly used to
describe GRNs, but they present limitations (e.g. discretised
expression levels) that have to be considered when interpreting
the results (see Discussion). Applied in a proper way, these models
are extremely useful to predict the consequences of perturbations
(Box 2) and to identify candidate genes that play decisive roles in
the loss or regain of pluripotency, as discussed in the next section.

Computational models of cellular reprogramming
In 2006, Takahashi and Yamanaka evaluated a number of candidate
genes with respect to their potential to induce pluripotency in
somatic cells (Takahashi and Yamanaka, 2006). The discovery that
the overexpression of four factors (Oct4, Sox2, Klf4 and c-Myc) can
direct the reprogramming of somatic cells into induced pluripotent
stem cells (iPSCs) constituted a paradigm shift in developmental
biology. However, details and mechanisms of the reprogramming
process during iPSC generation still need to be fully elucidated
(Takahashi and Yamanaka, 2013).
A current limitation of the cellular reprogramming process is its

low efficiency, for which there are two conceptual explanatory
models: the deterministic model, in which only some cells have the
potential to generate iPSCs within a fixed and uniform time period
(latency), and the stochastic model, in which most or even all cells
are competent for reprogramming, but the latency differs (Hanna
et al., 2009; Yamanaka, 2009). Hanna et al. combined time-series
experiments with computational modelling to gain insights into the

nature of reprogramming (Hanna et al., 2009). In their experiments,
they monitored the proportions of iPSCs generated and found that
reprogrammed cells appear in most clonal populations, if cultured
for a sufficiently long time. However, the time to conversion
apparently differs between clones, supporting the view that
reprogramming is a continuous, stochastic process. Accordingly,
the authors developed a mathematical model that considers
reprogramming as a one-step stochastic process with a constant
cell-intrinsic rate. Fitting the model to their experimental data, this
intrinsic rate was estimated for different experimental settings. The
authors argued that Nanog overexpression accelerates the
reprogramming kinetics through a mechanism most likely
independent of the cell proliferation rate. However, in that study,
the molecular changes during reprogramming were analysed in
heterogeneous cell populations, making sequential events occurring
in single cells inaccessible. Combining single-cell expression
analysis with a Bayesian network model (see Glossary, Box 1),
Buganim et al. demonstrated that the reprogramming process can
best be described by two phases: an early stochastic phase with high
variation in gene expression and a subsequent, more hierarchical
phase of gene activation (Buganim et al., 2012). The network model
predicted that the activation of Sox2 initiates a number of
consecutive steps that finally lead to fully reprogrammed iPSCs.
The authors applied the hierarchical model to predict sets of TFs
capable to induce pluripotency. Subsequently, these sets were tested
experimentally, demonstrating that all of them facilitate iPSC
generation but with different efficiencies, ranging from 0.2% (a
combination without Oct4, Klf4, c-Myc) to 22.2% (using Oct4,
Nanog, Esrrb, Klf4 and c-Myc). Interestingly, there is limited
correlation between those genes that can facilitate efficient
reprogramming and those of which the expression is predictive of
future iPSC generation. For example, the endogenous expression of
Oct4 does not necessarily predict iPSC generation, whereas the
expression of Utf1 and Esrrb does.

Given the importance of both the genetic and epigenetic control of
pluripotency, Artyomov et al. developed a computational model of
pluripotency induction that couples both layers of regulation
(Artyomov et al., 2010). In this study, all genes responsible for a
particular cellular identity (e.g.Oct4, Sox2andNanog for pluripotency)
were described as a single ensemble module. Moreover, cellular
states, arranged in a hierarchical tree-like structure, were described
not only by the expression levels of master genes, but also by the
state of their epigenome. Artyomov et al. defined a set of rules on
how protein expression can modify the epigenetic state and vice versa
during cell cycle progression. Simulating thousands of independent
reprogramming experiments, the authors found rare pathways leading
to successful reprogramming.

As briefly illustrated by the studies discussed above, a combination
of dynamic single-cell expression data and computational models
provides insights into the different phases of the reprogramming
process. Although an optimisation of the process seems hardly
possible within the stochastic phase, targeted activation of pathways
or genes in the hierarchical phase can enhance the generation of
fully reprogrammed iPSCs. Selecting cells or cell colonies that
express predictive markers might help to further increase the
proportion of iPSCs, especially because environmental cues and
cell-cell communication, which can be manipulated experimentally,
play pivotal roles (compare with section on spatio-temporal
dynamics).

Whereas stimulating particular components of the pluripotency
GRN is crucial for the re-acquisition of a pluripotent cell state,
limiting its activity is essential for its maintenance, as shown by
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studies on mESC differentiation, which we will cover in the
following section.

Towards a quantitative description of cell differentiation
dynamics
Mimicking the first lineage specification observed in the embryo,
mESCs can differentiate into epiblast cells (Epi; giving rise to
embryo proper), primitive endoderm (PrE; generating extra-
embryonic membranes) and trophectoderm (TE; giving rise to
extra-embryonic tissues), depending on the culture environment.
The differentiation into PrE and TE can be forced by ectopic

expression of the lineage determinants Gata6 for PrE (Fujikura
et al., 2002) and Cdx2 for TE (Beck et al., 1995; Strumpf et al.,
2005), but also through changes in the expression of Oct4. Whereas
an acute repression of Oct4 leads to differentiation into TE, an
increase causes differentiation into PrE (Niwa et al., 2000).
Therefore, Oct4 exerts a dose-dependent dual function as both a
key factor for pluripotency and a signal driving cells toward lineage
specification. However, how these dual functions of Oct4 are
regulated remains to be elucidated.
To describe the dose-dependent function of Oct4, Chickarmane

and Peterson extended their bistable core network (ODE model; see
above) by integrating two mutual antagonisms: one between Oct4
and Cdx2, and one between Nanog and Gata6 (Chickarmane and
Peterson, 2008). The simplified GRN, outlined in Fig. 4A, is based
on a set of experimental findings reviewed by Niwa (2007).
Additionally, the authors suggested a novel motif to account for the
non-linear (‘bell-shaped’) relation between stable Nanog states and
expression of Oct4, as illustrated in Fig. 4B and described by
Matoba et al. (2006). In this motif, Oct4 activates Gata6, and both
factors cooperatively suppress Nanog transcription (dashed lines
in Fig. 4A). With this assumption, the network model can give rise
to three different dynamics, depending on Oct4 expression, which
is assumed to be controlled by an external signal A (e.g. Bmp or
Wnt/β-catenin or signalling). If Oct4 expression is low, the stem cell
switch including Nanog is off and Cdx2 is constantly expressed at
high levels (TE-like state; Fig. 4B). Enhanced Oct4 expression
initially leads to an increase of Nanog and, thus, to a stable stem cell
state. However, at a certain threshold, Oct4 induces a low-level
expression of Gata6 and both factors cooperatively repress Nanog
transcription, leading to bistability (Fig. 4B, region shaded in grey).
In this range, the fate of a cell is determined by the initial
concentrations of the pluripotency factors. If Oct4 is further
increased or overexpressed, the autoregulatory capacity of Gata6
is switched on and Nanog transcription is efficiently suppressed
(PrE-like state; Fig. 4B,C). According to the model prediction that

the stem cell state is most ‘stable’ for an intermediate range of Oct4,
cellular reprogramming has also been suggested to be most efficient
when Oct4 is ‘overexpressed’within a specific range (Chickarmane
et al., 2012). Otherwise, Oct4 expression is either too low to
reactivate the pluripotency network or sufficiently high to activate
Gata6, which, in both cases, leads to a stable differentiation state.
Consequently, the question arises as to how the concentration range
of Oct4 is or can be narrowed to efficiently promote pluripotency.

Combining quantitative single-cell analysis and mathematical
modelling, Muñoz-Descalzo et al. pointed out that post-translational
interactions allow the buffering of the differentiation-inducing
activity of Oct4 (Muñoz-Descalzo et al., 2013). They demonstrated
that, under self-renewing conditions, Nanog and β-catenin proteins
form stable complexes with Oct4, and, thus, restrict its levels to a
range that facilitates pluripotency. However, under LIF/serum
conditions, Oct4 levels are high enough to cause Nanog bistability,
potentially due to the activation of Fgf4/Erk or Gata6. According to
the authors, Nanog fluctuations impact the amount of unbound
(‘active’) Oct4 proteins that trigger differentiation. In line with this,
lowering Oct4 levels in pluripotent mESCs has been shown to
reduce Nanog heterogeneity and to establish a more robust
pluripotency state (Karwacki-Neisius et al., 2013).

Modelling the mutual transcriptional and post-transcriptional
regulation of pluripotency and lineage factors provided possible
mechanistic explanations for the dose-dependent activity of Oct4
and its association with the instability of the pluripotent cell state
when Nanog expression is low.

From temporal to spatio-temporal dynamics
So far, we have focused on the analysis of temporal dynamics of
intracellular GRNs. However, mESCs do not exist in isolation.
Similar to their in vivo counterparts, they self-organise as spheroid
aggregates, termed embryoid bodies (EBs), or arrange in colony
structures. Embedded in these structures, cells send and receive
signals which might affect gene expression and, thus, establish
spatial patterns or cell type arrangements.

Spatio-temporal patterns in embryonic development
One example of spatio-temporal patterning can be found in the early
phases of mouse development when the inner cell mass (ICM)
segregates into Nanog+ epiblast cells (Epi) and Gata6+ PrE cells
[reviewed by Artus and Hadjantonakis (2012)]. After an initial
phase of co-expression, both TFs display a mutually exclusive salt-
and-pepper pattern (Chazaud et al., 2006) and finally arrange into
two layers, with PrE cells occupying the outer layer that faces the
blastocoel (Rossant and Tam, 2009). This patterning depends on
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Fgf4 signalling, which is induced by cells that express Nanog
(Yamanaka et al., 2010; Frankenberg et al., 2011).
To reveal a potential mechanism for the establishment of the salt-

and-pepper pattern, Bessonnard et al. developed an ODE model
describing the interactions between Nanog, Gata6 and the Fgf4/Erk
signalling (Fig. 5A) (Bessonnard et al., 2014). First, they
demonstrated that the model can account for the coexistence of
three stable expression states within a small range of Fgf4 activity
(Fig. 5B). These stable states correspond to an ICM-like state
(co-expression of Nanog and Gata6), an Epi-like state (Nanog
expression) and a PrE-like cell state (Gata6 expression, Fig. 5C).
Subsequently, 25 ‘cells’ (i.e. GRNs) were arranged in silico on a
squared grid to specify neighbour relationships between individual
cells. Cell-cell communication was modelled by averaging the
concentrations of Fgf4 produced by a cell itself and by its
closest neighbours. This average concentration determined the
intracellular activity of Erk signalling. The model assumes an
initial heterogeneous distribution of Fgf4, and this leads to a
random Nanog versus Gata6 expression pattern, consistent with
experimental findings (Chazaud et al., 2006; Plusa et al., 2008).
Thus, the model provides one potential mechanistic explanation for
the salt-and-pepper cell pattern observed in the ICM. However, it
involves a rather large number of arbitrary parameters that had to be
confined to a specific range in order to capture the presented
dynamics (i.e. tristability) (the so-called ‘over-fitting problem’,
discussed further below). Another issue comes with the static nature
of the spatial dimension. The ICM is subject to dynamic changes
and re-arrangements (e.g. due to cell proliferation or mechanical
forces), which impact the emergent pattern. However, these changes
have been neglected in this study. Krupinski et al. considered these
dynamic properties and combined a three-dimensional (3D) cell-
based model with GRNs to simulate both the spatial structure and
gene expression levels of a growing blastocyst (Krupinski et al.,
2011). Herein, each cell is represented by an incompressible
ellipsoid that interacts with its local environment through elastic
adhesion forces. Furthermore, each cell is characterised by TF
concentrations [determined according to the GRN developed by
Chickarmane and Peterson (2008), described above], cell cycle and
polarity. By coupling the intrinsic properties of ICM cells with the
mechanical forces present in their environment, this model
framework allows us to address general, but very important,
questions, such as: Does cell position determine gene expression?
Do geometric constraints affect spatial expression patterns? Are
differential adhesion strengths sufficient to facilitate cell sorting?
The ability to assess these questions in silico is particularly
significant, as this type of question is still challenging to address

experimentally although technologies for in vivo imaging and
quantification are constantly improving. This is partly due to the
inaccessibility of emerging embryonic structures but also due to the
lack of quantitative measures of single-cell properties and spatial
patterns.

Multi-scale modelling reveals functional links between GRNs and
cellular properties
Recent findings on the impact of cell density and clustering on the
self-renewal and differentiation of mESCs (Peerani et al., 2009;
van den Brink et al., 2014; Warmflash et al., 2014) emphasise
once more that gene expression levels, cellular properties and
spatial effects have to be considered in order to achieve a true
systemic understanding of stem cell fate decisions. To link these
different regulatory layers and to comprehensively analyse the
emergent dynamic behaviour, multi-scale mathematical modelling
is needed.

At present, live-cell imaging of fluorescently labelled cells is the
most suitable method to acquire structural and transcriptional
information of cells within an ‘undisturbed’ environment. However,
not all cell properties influencing inter- and intracellular regulatory
processes, e.g. cell adhesions or mechanics, can be measured or
derived directly from imaging data. In this case, multi-scale models
can be used to explore systematically the consequences that functional
changes at the cellular level might have at the population level. For
example, the multi-scale blastocyst-model of Krupinski et al.
demonstrates how gene expression, cell proliferation and mechanical
properties jointly structure an early embryo. In particular, it revealed
that the formation of TE is most robust when assuming a position-
based regulation of Cdx2 expression, and that differential adhesion
strengths are crucial for the sorting of Epi and PrE cells (Krupinski
et al., 2011). Similar relationships between cell position and TF
expression have been reported by Herberg et al. (2015). Comparing
spatial gene expression patterns of in vitro and in silicomESCcolonies
on the basis of quantitative measures revealed that cells with a high
self-renewing capacity are located in the interior of a colony structure
due to TF-related differences in proliferation and adhesion (Herberg
et al., 2015). By simulating spatio-temporal patterns of Oct4
expression in EBs, White et al. showed that competing influences
between Oct4+ and Oct4– neighbours can account for experimentally
observed clusters during pluripotency loss, independently of EB
structure, size or cell division (White et al., 2013).

Although there are currently only very few multi-scale models of
mESC differentiation available, their insights already indicate the
importance of considering not only transcriptional but also cellular
interactions in the regulation of pluripotency.
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Conclusion and perspectives
Here, we have discussed a number of different studies, which all
apply computational approaches to quantitatively analyse regulatory
processes that underlie fate decisions in mESCs and in the
blastocyst. Although all these in silico approaches share this aim,
the specific questions they aim to answer and the methods applied to
do so are quite different. From a general perspective, one can
categorise these questions into those aiming to establish a
quantitative description of a biological process (i.e. asking “What
is going on?”) and those geared towards understanding the
underlying mechanisms (i.e. asking “Why does it happen?”)
(Mainzer, 2014). Answering the first type of questions calls for a
detailed description of the behaviour of the system, without
necessarily requiring a deep understanding of the underlying
mechanisms. By contrast, addressing the mechanisms that
determine the behaviour of the system requires the integration of
different levels of information, potentially at the expense of a
detailed description of the system.
Although there are methodological overlaps, these two

perspectives are usually linked to specific computational
approaches (Fig. 6). Typical tools to address ‘What?’-questions
are bioinformatics methodologies. The availability of public
databases such as GEO (Edgar et al., 2002), FunGenES (Schulz
et al., 2009) or ESCAPE (Xu et al., 2013), together with the
application of sufficient computing resources, allows us to very
quickly answer scientific questions such as: Which genes are
differentially expressed across tissue samples? What is the effect of
activating or repressing a gene in a defined context? However, one
problem of purely data-driven approaches is the sheer abundance of
data. Even with efficient high-performance computers, it will
(presumably for a long time) not be possible to process and analyse
all possible configurations of a biological system. This means that
we still need to guide these algorithms by formulating the right
questions, implying that we still need to investigate the underlying
design principles. To do so, one needs to study interaction rules and
regulatory mechanisms that cause dynamic, emergent properties
and functions. In terms of Aristotle’s characterisation of complexity
(“the whole is more than the sum of its parts”), we need to focus on
the ‘more’. To this aim, the theory of dynamic systems, including its

mathematical framework, is extremely helpful to conceptualise and
to describe formally dynamic phenomena. As described above,
these techniques require a simplified description of the systems.
Whereas these simplifications disregard various details, they
nevertheless facilitate the discovery of regulatory principles and
mechanisms.

From this, it becomes clear that a systemic, mechanistic
understanding of biological systems ultimately requires the
combination of a detailed description of the components of the
system and of the regulatory principles that rule system dynamics.
Thus, data-driven bioinformatics approaches and hypothesis-driven
mechanistic modelling approaches should not be seen as competing
but as complementary computational disciplines.

However, any kind of mathematical model, regardless of its
complexity or formalism, is based on a set of assumptions. Thus,
conclusions drawn from a particular model are constrained by these
assumptions, and any interpretations neglecting them can, therefore,
be misleading. Importantly, this statement is not restricted to
mathematical models, but holds true for experimental models, too. It
is therefore important to consider the limitations and pitfalls (which
are often inherent to the applied modelling strategy) to correctly
interpret the results obtained from both experimental and modelling
experiments.

Gene expression is often modelled as a binary (i.e. on/off )
process, using Boolean network approaches. These models are
extremely useful to capture the essence of the regulatory
relationships, but they might also miss important details, such as
the fact that relationships between TFs and target genes are dose-
dependent rather than binary. Closely related to this issue, when
interpreting the relationships between network components, one
should also consider the properties of the particular measure used to
describe the links. For example, the widely used Pearson’s
correlation coefficient is constructed to detect linear, but not (in
general) non-linear relationships. Thus, GRNs with links that have
been deduced using this metric might potentially disregard any kind
of non-linear interactions.

Another problem, which might be related to the process of
adapting a computational model to experimental data, is the so-
called over-fitting. It occurs if a model (i.e. its structure and/or its
parameters) is adapted to one particular dataset. Indeed, a ‘perfect’
model fit to a particular set of data can always be achieved by a
sufficiently large number of model parameters. Thus, it must not be
interpreted as the only explanatory model but as one consistent
explanation. The reliability of a model increases with the number of
independent datasets or experimental conditions that it consistently
explains. As different models might potentially be consistent with a
certain dataset, it is suggested, according to the parsimony principle
[also denoted as ‘Occam’s razor’, after William of Ockham
(ca. 1287-1347): “pluralitas non est ponenda sine necessitate”
(“pluralism must not be presumed except if it is necessary”)], to
prefer the simplest one with the fewest assumptions. By contrast,
identifying a condition that cannot be described by a given model
will disprove the model in its current formulation. This highlights a
very important requirement for any model: it has to provide
experimentally testable predictions, because model validation
strictly depends on the comparison with data.

These remarks do not imply that computational approaches are
less reliable than experimental studies. On the contrary, we would
like to emphasise explicitly their strengths and potentials. However,
to take advantage of their application in an optimal way and to
avoid potential misinterpretations, any modelling work should
be accompanied by a detailed description and discussion of the
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assumptions that went into the analysis. We would also like to
highlight the necessity of independent confirmations of model-
derived hypotheses and predictions.
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