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ABSTRACT

Dynamic control of gene expression is essential for the development
of a totipotent zygote into an embryo with defined cell lineages.
The accessibility of genes responsible for cell specification to
transcriptional machinery is dependent on chromatin remodelling
complexes such as the SWI\SNF (BAF) complex. However, the role of
the BAF complex in early mouse development has remained unclear.
Here, we demonstrate that BAF155, a major BAF complex subunit,
regulates the assembly of the BAF complex in vivo and regulates
lineage specification of the mouse blastocyst. We find that
associations of BAF155 with other BAF complex subunits become
enriched in extra-embryonic lineages just prior to implantation. This
enrichment is attributed to decreased mobility of BAF155 in extra-
embryonic compared with embryonic lineages. Downregulation of
BAF155 leads to increased expression of the pluripotency marker
Nanog and its ectopic expression in extra-embryonic lineages,
whereas upregulation of BAF155 leads to the upregulation
of differentiation markers. Finally, we show that the arginine
methyltransferase CARM1 methylates BAF155, which differentially
influences assembly of the BAF complex between the lineages and
the expression of pluripotency markers. Together, our results indicate
a novel role of BAF-dependent chromatin remodelling in mouse
development via regulation of lineage specification.

KEY WORDS: BAF complex, Chromatin remodelling, Epigenetics,
Lineage specification, Mouse embryo, Pluripotency, SMARCC1

INTRODUCTION

Differentiation involves a cascade of cell fate decisions that
progressively limit the potential of a cell to contribute to other
lineages. Two cell fate decisions take place in the pre-implantation
mouse embryo. The first of these causes the separation of the inner
cell mass (ICM) from trophectoderm (TE), the first extra-embryonic
lineage; the second leads to the formation of two distinct cell
populations from the ICM: pluripotent epiblast (EPI) and primitive
endoderm (PE), which forms the second extra-embryonic lineage
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(Schrode et al., 2013; Zernicka-Goetz et al., 2009). The identity of
cells contributing to each of these lineages is maintained by a
regulatory network, which is governed by master gene regulators
(Nichols and Smith, 2009). Nanog, Oct4 (Pou5f1) and Sox2 are
central to the gene network that maintains the pluripotent state of
the EPI, Cdx2 and Eomes are required for TE differentiation, and
Gata4, Gata6 and Sox17 are required to direct PE specification.
Differential behaviour of the protein complexes and chromatin-
modifying enzymes that alter the structure of chromatin is required
in concert with transcription factors to regulate appropriate gene
expression for these processes (Paul and Knott, 2014).

One of the first described epigenetic regulators involved in
lineage specification in the mouse embryo is the arginine
methyltransferase CARM1 (Torres-Padilla et al., 2007). Elevated
levels of CARMI lead to increased expression of NANOG and
SOX2 and the preferential contribution of blastomeres to the ICM
(Torres-Padilla et al., 2007; Parfitt and Zernicka-Goetz, 2010). The
effect of CARMI could be attributed to modification of specific
arginine residues on histone H3, which skews the differentiation
potential of the blastomere towards pluripotency. However, it also
remains possible that methylation by CARMI contributes to
chromatin remodelling, as shown recently in other model systems
(Wang et al., 2014).

The SWI\SNF (BAF) complex plays important roles in the
proliferation and differentiation of various cell types (Ho and
Crabtree, 2010). Chromatin remodelling by the BAF complex was
thought to be an exclusively permissive mechanism necessary for
gene transcription. However, the BAF complex was found to have
an instructive role in gene expression in certain cell types through its
combinatorial assembly and interactions with tissue-specific
transcription factors (Lessard et al., 2007; Nie et al., 2000; Wu
et al., 2007). For instance, in embryonic stem cells (ESCs) the BAF
complex occupies the promoters of nearly all of the genes in the core
pluripotency network and directly interacts with OCT4 and SOX2
to refine the transcription of genes involved in pluripotency and self-
renewal (Ho et al., 2009a,b, 2011).

BAF complexes are polymorphic assemblies of up to 15 subunits
encoded by 29 genes (Kadoch et al., 2013). The biological
specificity of the complexes is thought to emerge from
combinatorial assembly of the products of the families of genes
that encode the different subunits. Subunits of the complexes have
been implicated in various processes, such as tumour suppression
and development of the nervous system (Kadoch et al., 2013;
Kadoch and Crabtree, 2013). Null mutations in genes encoding
several of the BAF complex subunits, such as BRG1 (SMARCA4),
BAF155 (SMARCCI1) and BAF47 (SMARCBI), lead to
developmental arrest at the pre- to post-implantation transition
(Bultman et al., 2000; Guidi et al., 2001; Kim et al., 2001,
Klochendler-Yeivin et al., 2000). The primary reason for
developmental arrests at this embryonic stage has not been
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determined to date. In order to establish the underlying basis for
these developmental defects, here we examine the role of BAF155, a
major component of the BAF complex, in late pre-implantation
stages of mouse embryos.

RESULTS

Expression and proximity of BAF complex subunits in
embryonic and extra-embryonic lineages

The key process that has to be established in the mammalian embryo
by implantation is the specification of three distinct lineages:
pluripotent EPI and the differentiated extra-embryonic lineages PE
and TE. To investigate whether the chromatin remodelling mediated
by the BAF complex participates in this process, we first examined
its localisation when all three lineages are established at late
blastocyst stage (E4.5). We analysed the distribution of BAF
complex subunits: a catalytic subunit BRG1; a scaffolding subunit
BAF155 and its homologue BAF170 (SMARCC2); and subunit
BAF57, which contributes to DNA binding (Link et al., 2005; Chi
et al., 2002; Phelan et al., 1999; Sohn et al., 2007). We found that
BRG1, BAF155 and BAFS57 are expressed in all cell lineages,
whereas BAF170 is not expressed (Fig. 1A, Fig. S1A). To confirm
these observations, we quantified the expression levels of BRG1,
BAF155 and BAF57 between the lineages using NANOG, SOX17
or CDX2 as markers of EPI, PE and TE lineages, respectively. The
automated quantification of BRG1, BAF155 and BAF57 revealed
no significant differences in signal between the three cell types
(P>0.05, ANOVA), indicating that these subunits are expressed
equally in all the lineages at E4.5 (Fig. 1B).

As the association of BRG1 and BAF155 is a distinctive feature
of the BAF complex in ESCs (Ho et al., 2009b), we next sought to
determine whether these subunits are in close proximity and
therefore have the potential to act as a functional complex in the
embryo. We used the proximity ligation assay (PLA), which results
in a fluorescent signal when proteins neighbour each other
(Soderberg et al., 2006). We found that at the early blastocyst
stage (E3.5), BAF155 and BRG] are in close proximity throughout
the embryo regardless of cell lineage (Fig. 1C, n=16). However, at
the late blastocyst stage (E4.5) there was a substantial increase in
BAF155-BRG1 proximity in the TE and PE in comparison to EPI
(Fig. 1C, n=18). To confirm these results, we quantified the
fluorescence intensity representing BAF155 and BRGI proximity
in E3.5 and E4.5 blastocysts as detected by PLA (Fig. 1D). There
was no difference in the fluorescent signal reflecting BAF155-
BRGI1 proximity between the three lineages at E3.5 (P>0.05,
ANOVA), whereas the signal was increased 2.6-fold in the TE at
E4.5 in comparison to EPI (P<0.001, ANOVA), and to a lesser
extent (1.5-fold) in the PE (P<0.001, ANOVA). A similar pattern
was detected at E4.5 for BAF155 and BAF57 (Fig. 1E,F, n=6). A
signal could not be detected when one of the antibodies was omitted
(Fig. S1B, n=12).

To determine whether the PLA signal was specific, we carried out
several control experiments. We first knocked down BAF155 by
dsRNA (see also Fig. 3) and found that the PLA signal between
BAF155 and BRG1 was strongly reduced (Fig. S1C, n=11). We
next assessed the proximity of BRG1 to CENPA, a subunit of the
centromere complex suggested not to directly interact with BRG1
(data obtained from the interactome library http:/string-db.org), and
could not detect a PLA signal (Fig. S1D,D’, n=20). To examine
whether the differences in proximity of BAF complex components
might be due to differences in the physical accessibility of cells to
the PLA procedure, we examined the relationship of histone H2A
and the histone modification H3K9me3. Consistent with previous
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work (Wongtawan et al., 2011; Nashun et al., 2010), histone H2A
and H3K9me3 were distributed equally in the three lineages when
assessed by immunostaining (Fig. S1E,E’) and PLA (Fig. SIE"),
suggesting that the physical properties of cells in different lineages
of a blastocyst are unlikely to influence the outcome of the PLA.

We also analysed the proximity of BAF155 and BRGI in cell
lines derived from the respective lineages: ESCs cultured in LIF,
representative of ICM; ESCs cultured in 2i medium and LIF,
representative of EPI (Boroviak et al., 2014); and trophoblast stem
cells (TSCs), derived from TE. This revealed significantly increased
proximity of these subunits in TSCs compared with the other cell
lines (Fig. 1G,H, P<0.001, ANOVA). Together, these results
indicate that, at the late blastocyst stage, the association of the BAF
complex subunit BAF155 with BRG1 and BAF57 is increased in
the extra-embryonic lineages in comparison to the EPI.

BAF155 regulates BAF complex subunit associations in a
mouse embryo

Since BAF155 has the unique ability to positively regulate the levels
of major components of the BAF complex in vitro (Sohn et al.,
2007), we next determined whether upregulation of BAF155 would
have the same effect in vivo. We injected human BAF155 mRNA
tagged with hemagglutinin (HA) into one blastomere at the late
2-cell stage and analysed embryos at the 8-cell stage. This produced
embryos in which half of the cells overexpressed BAF155 and the
other half had an endogenous level of BAF155, therefore serving as
a control (Fig. 2A). Increasing the BAF155 protein level 2.3-fold
resulted in a ~3-fold increase in the levels of BAF57 and BRG1
protein (Fig. 2B’,C, n=16; Fig. S2A,B). Overexpression of the
fluorescent protein mRuby (n=23) or BAF57 (n=13), as controls, to
a comparable protein level did not lead to a similar increase
(Fig. 2B,B”, Fig. S2A-D), indicating a specific effect of BAF155.
To address whether the increased BAF155 expression led to
changes in transcript levels of BAF subunits, we performed qRT-
PCR 24 h after BAF155 mRNA injection (Fig. 2D). There were no
significant changes in the levels of transcripts encoding key
components of the BAF complex (P>0.05, Student’s t-test),
suggesting that the increase in BRG1 and BAF57 upon BAF155
upregulation occurs at the post-transcriptional level.

Since the observed correlation between the level of BAF155 and
other complex subunits suggested that new BAF chromatin
remodelling complexes might be formed following overexpression
of BAF155, we determined whether exogenous BAF155 could
associate with the endogenous complex. We injected HA-tagged
BAF155 mRNA into one blastomere at the late 2-cell stage and
analysed the extent of proximity between exogenous BAF155-HA
and endogenous BRG1 using PLA at the 4-cell stage (Fig. S2E-G,
n=12). The specificity of incorporation was confirmed technically
by omitting one of the antibodies (Fig. S2G’, n=7), and biologically
since no interaction was detected between HA-tagged CENPA and
BRGI1 (Fig. S2G”, n=13). The PLA detected a 2-fold increase in
proximity between total BAF155 and endogenous BRGI in the
blastomeres expressing exogenous BAF155 (Fig. 2E-G, n=11,
P<0.05, Student’s #-test). These findings indicate that the level of
BAF155 can modulate BAF complex subunit associations.

The level of BAF155 affects the expression of lineage
markers in the mouse blastocyst

Null mutations of several BAF complex subunits lead to
developmental arrest at the pre- to post-implantation transition
(Bultman et al., 2000; Guidi et al., 2001; Kim et al., 2001,
Klochendler-Yeivin et al., 2000). To understand the cause of this
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Fig. 1. Associations between the BAF complex subunits are upregulated in extra-embryonic lineages at the late blastocyst stage. (A) Antibody
staining of BAF complex subunits (n>9 each). (B) Automated quantification of fluorescence intensity of z-stacks in the three distinct cell types of the blastocyst.
(C) Fluorescent signal generated by PLA shows the interaction between BAF155 and BRG1 in early and late blastocysts. (D) The fluorescence intensity of
BAF155-BRG1 contact is similar among the lineages at E3.5, but higher in TE and PE at E4.5. (E) The fluorescence intensity from BAF155-BAF57 interaction is
increased in TE and PE. (F) Quantification of fluorescent signal from BAF155-BAF57 PLA between the embryonic lineages. (G) Fluorescent signal generated by
BAF155-BRG1 PLA in stem cell lines. Troma1 antibody detects the TE marker cytokeratin 8. (H) The fluorescence intensity of BAF155-BRG1 contact is higher in
TSC (median, 0.73; mean, 0.88) versus ESC (median, 0.50; mean, 0.52) and ESC 2i (median and mean, 0.37). Error bars represent s.d. **P<0.01, ***P<0.001,
ANOVA. Scale bars: 10 ym.

developmental arrest, we next examined the consequences of et al., 2001), the genetic identity of which we confirmed by single-
depleting the levels of BAF155. We first examined Bafl55 embryo genotyping (Fig. 3A). We found no obvious morphological
knockout embryos just prior to implantation at E4.5, generated by  defects at this embryonic stage; however, after careful examination
the intercross between heterozygous Baf155 knockout parents (Kim  we found that 18% of embryos from such intercrosses displayed
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Fig. 2. Upregulation of BAF155 causes upregulation of BAF complex components. (A) HA-tagged human BAF155, mouse Baf57 or Ruby mRNAs were
injected into one blastomere at the 2-cell stage and analysed at the 8-cell stage. (B-B"”) Clonal overexpression of BAF 155 results in the upregulation of protein
levels of the complex subunits (B’), whereas overexpression of Ruby (B) or BAF57 (B”) does not. (C) The protein levels of BAF57 and BRG1 upon BAF155
overexpression (OE) were upregulated by ~3-fold. (D) gRT-PCR analysis of transcripts for key components of the BAF complex 24 h after BAF155 OE. INI1 refers
to Baf47 (Smarch1). (E) HA-tagged BAF155 mRNA was injected into one blastomere at the 2-cell stage and analysed at the 4-cell stage by PLA. (F) Clonal
BAF155 OE caused an increase in BAF155-BRG1 interaction in the injected clones (dashed outline). (G) Overexpression of exogenous BAF 155 resulted in 2-fold
upregulation of BAF155-BRG1 contact. Error bars represent s.d. *P<0.05, **P<0.01, ***P<0.001, Student’s t-test.

ectopic expression of NANOG in TE in comparison to control wild-
type littermates (Fig. 3B,C, n=22). To investigate this phenotype in
more detail, we next examined the embryos after BAF155
downregulation using dsRNA against the Baf755 3'UTR injected
into the zygote (Fig. 3D). Similarly to Baf155 knockout embryos,
BAF155 protein was poorly detectable by immunofluorescence in
RNAIi embryos at E4.5 and the Baf155 mRNA level was reduced by
more than 65% (Fig. 3F,G, n=24). In agreement with the phenotypic
effect of Bafl55 knockout (Kim et al., 2001), BAFI155
downregulation did not lead to any obvious morphological
defects until the time of blastocyst hatching from the zona
pellucida, just before implantation (Fig. 3E). Examination of
BAF155 knockdown embryos revealed significantly increased
expression of the pluripotency marker Nanog (on both mRNA
and protein levels) and ectopic expression of NANOG in the TE
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lineage (Fig. 3F-H, n=24). The transcript levels of another
pluripotency marker, Oct4, were also upregulated, whereas Sox17
levels were decreased, although we did not observe misexpression
of SOX17 and CDX2 by immunofluorescent staining (Fig. 3F,
Fig. S3A,B, n=24). The total cell number was slightly, but
significantly, decreased upon BAF155 downregulation (Fig. 3H,
P<0.05, Student’s t-test), indicating a developmental defect.

To determine whether the consequences of BAF155
downregulation by RNAI are specific, we tested whether restoring
the BAF155 level could prevent the ectopic expression of NANOG
by injecting HA-tagged BAF155 mRNA into both blastomeres of
embryos zygotically depleted of endogenous BAF155 (Fig. 31,
n=14). We found that by E4.5 the ectopic expression of NANOG in
TE cells was undetectable in 85.7% of embryos (Fig. 31K, n=14)
suggesting specificity of the BAF155 dsRNA depletion. To validate
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Fig. 3. BAF155 is required for Nanog downregulation during lineage specification at the blastocyst stage. (A) Three-primer single-embryo PCR analysis
from Baf155 heterozygous intercrosses showing wild-type (450 bp) and mutated (250 bp) alleles. The first lane contains a size marker (1 kb HyperLadder).
(B) Baf155~"~ embryos have a significantly increased number of NANOG™ cells compared with control litermate embryos (***P<0.01, Student’s t-test).

(C) Baf155~'~ embryos exhibit ectopic nuclear expression of NANOG in TE (determined morphologically), unlike Baf155"" littermates that only have nuclear
NANOG expression in the EPI cells. (D) Downregulation of BAF 155 at the zygote stage was performed using dsRNA against the 3'UTR (dsBAF155), or control
dsRNA. (E) DIC images of embryos injected with control dsRNA or dsBAF155. (F) gqRT-PCR of whole embryos, comparing lineage marker transcripts of control
and dsBAF 155 blastocysts. (G) z-projections of immunofluorescent images of control and dsBAF 155 E4.5 blastocysts. (H) The total number of cells in control
E4.5 blastocysts (88+4) was slightly reduced compared with dsBAF155 blastocysts (76+7). The number of NANOG™ cells in dsBAF155 blastocysts was
increased (17+4) compared with the control (9+3). (I) Rescue experiment of BAF155-depleted embryos. (J) Rescue blastocysts had fewer cells (77+9) than
control blastocysts (87+5), but the same number of NANOG™ cells. (K) No ectopic expression of NANOG in TE was detected in the majority of rescued blastocysts.
Error bars represent s.d. *P<0.05, **P<0.01, ***P<0.001, Student’s t-test. Scale bars: 10 ym.
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the dsRNA knockdown phenotype further, we injected siRNA
against the coding sequence of Baf155 mRNA into the zygote.
BAF155 siRNA (n=16) led to a reduction in Bafl155 mRNA
and protein compared with control siRNA embryos (n=12)
(Fig. S3C-E). Similarly to Baf155 knockout and BAF155 dsRNA,
depletion with siRNA resulted in an increase in the number of
NANOG-expressing cells (Fig. S3D) and upregulation of Nanog
mRNA levels, as well as decreased expression of Sox17 (Fig. S3C).
Taken together, these results indicate that depletion of BAF155
leads to increased expression of Nanog in the ICM and its ectopic
expression in TE.

To determine whether upregulation of BAFI155 would
phenotypically have a counter effect, we injected HA-tagged
BAF155 mRNA into zygotes (Fig. 4A-E). Although embryos
developed until early blastocyst stage, their development arrested at
the E3.5 to E4.5 transition, with a significantly decreased cell
number compared with controls (=9, P<0.001, Student’s r-test;
Fig. 4C,D, Fig. S4, Movies 1 and 2). qRT-PCR analysis revealed
that a 5-fold increase of Baf155 mRNA at E4.5 was associated with
a 7-fold increase in Sox/7 mRNA and a 2-fold increase in Cdx2
mRNA (Fig. 4B, n=30, P<0.01, Student’s #-test). Additionally,
unlike in control blastocysts in which ICM cells (21 on average, n=6
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Fig. 4. Upregulation of BAF155 shifts the developmental programme towards the extra-embryonic lineage. (A) Overexpression (OE) experiments of
BAF155 using the HA-tagged BAF 155 construct or of Ruby (control). (B) gqRT-PCR on whole embryos, comparing lineage marker transcripts of control and
BAF 155 OE blastocysts. (C) Immunofluorescence images of control and BAF155 OE blastocysts at E4.5. (D) Total cell number was reduced in BAF155 OE
blastocysts (61+6) compared with the control (90+5). (E) The total number of ICM cells was reduced in BAF155 OE blastocysts (14+2) compared with the control
(21£3); the majority of ICM cells in BAF155 OE blastocysts co-express NANOG and SOX17 (9+3), unlike control blastocysts (1+2). (F) z-projections of control and
BAF155 OE blastocysts: Ruby blastocyst contributes equally to the ICM and CDX2" TE cell populations, whereas BAF 155 OE blastocyst infrequently contributes
to the CDX2™ ICM cells (arrows). (G) The percentage of clones injected with BAF155 contributing to the total blastocyst was lower than that injected with Ruby.
(H) Clones injected with BAF155 showed a higher contribution to the CDX2" TE lineage compared with Ruby™ clones. Error bars represent s.d. *P<0.05,

**P<0.01, ***P<0.001, Student’s t-test. Scale bars: 10 pm.
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embryos) fell into distinct NANOG™" (EPI) and SOX17* (PE)
populations and only very rarely did ICM cells show co-expression
of these markers (one or two cells, on average), in BAF155-
overexpressing E4.5 blastocysts the majority of ICM cells (14
cells, n=9 embryos) showed co-expression of SOX17 and NANOG
(9 cells on average, P<0.01, Student’s ¢-test, Fig. 4C,E) suggesting
defects in EPI versus PE lineage specification.

The finding that BAF155 upregulation resulted in lineage
specification defects prompted us to ask whether BAF155
upregulation in one blastomere at the 2-cell stage would also
affect lineage contribution (Fig. 4F-H). We found that the clones
overexpressing BAF155 were reduced in number and contributed
preferentially to the extra-embryonic lineage (CDX2" cells) rather
than to the ICM (CDX2~ cells) (Fig. 4G,H, n=12). Specifically,
only 11.4% of the BAF155-overexpressing clones contributed to
the CDX2™ population compared with 22.2% of clones expressing
the control mRNA Ruby (n=11). Therefore, BAF155 upregulation
in a single 2-cell blastomere biases its progeny towards the extra-
embryonic lineage (Fig. 4H, P<0.01, Student’s #-test).

Together, our results indicate that the level of BAFI155 is
important for accurate lineage specification by implantation:
decreased levels of BAF155 lead to increased expression of the
pluripotency genes Nanog and Oct4 and, counter to this, increased
BAF155 results in upregulated expression of the differentiation
genes Cdx2 and Sox17.

BAF155 differentially affects the dynamics of BAF
component assembly between embryonic and extra-
embryonic lineages

Since the above results suggested that the BAF complex might, to a
certain extent, be dynamic, we investigated this possibility by an
independent method. We examined the mobility of two BAF
complex subunits, BAF155 and BAFS57, using fluorescence
recovery after photobleaching (FRAP). BAF155 and BAF57 were
labelled with the fluorescent tag mCherry, which does not interfere
with the association of these subunits with BRG1, as shown by PLA
(Fig. S5A). To provide a control in the form of a stable nuclear
protein complex, we similarly tagged CENPA, which is known to be
stably associated with centromeres (Hemmerich et al., 2008;
Hellwig et al., 2008). The constructs were injected into one
blastomere of 2-cell embryos, while the uninjected blastomere
provided an internal control, and FRAP was carried out on a defined
area of the nucleus at the 8-cell stage (Fig. 5A,A’). Measurements of
the maximum fluorescence recovery were used to assess the
mobility of these proteins in terms of the ratio of bound (immobile)
versus unbound (mobile) protein.

A stable complex typically shows a large immobile pool of
protein subunits with very little unbound protein (Hemmerich et al.,
2011; Carrero et al., 2003). As expected, CENPA, a protein that
remains immobile on chromatin throughout most of the cell cycle,
showed a recovery FRAP curve indicating that 94% (+1.7%) of the
total protein is immobile (#=22), in agreement with a previous report
(Hemmerich et al., 2008). By contrast, FRAP curves for the two
components of the BAF complex showed different kinetics. Both
fitted bi-exponential curves, but with 78+2.4% (n=18) of BAF155
compared with 59.9£5.0% (n=20) of BAF57 being immobile under
the same conditions (P<0.001, F-test, Fig. SA’,A"). These results
suggest that although the majority of the BAF155 and BAF57
subunits exist in a stable complex, there is a pool of each protein in
the embryo that is mobile.

To determine whether the immobile fraction of BAF57 would
change upon BAF155 downregulation, we depleted BAF155 at

the zygote stage (Fig. SSB), and investigated the mobility of BAF57
and CENPA by FRAP at the 8-cell stage (Fig. 5B, Fig. S5D,E).
The immobile fraction of CENPA (n=10) remained unaffected
(93.1£1.7% compared with 94+1.6% in controls, P>0.05, F-test;
Fig. 5B’,B”). By contrast, the immobile fraction of BAF57 was
decreased upon BAF155 downregulation (4545.2% compared with
the control 60+5.6%, P<0.001, F-test; Fig. 5B’,B”), suggesting that
the level of BAF155 can affect the proportion of BAF57 subunit
associated within the complex. As BAF155-depleted cells tend to
upregulate Nanog expression (see above), a decrease in the
immobile fraction of BAF complex components would suggest
that expression of the pluripotent gene Nanog is associated with a
reduction in stable BAF complex.

To determine whether upregulation of BAF155 might have a
reciprocal effect, we overexpressed BAF155-HA at the zygote stage
(Fig. S5C) and used FRAP to investigate the kinetics of BAF57
and CENPA proteins at the 8-cell stage (Fig. 5C, Fig. S5F,G).
This resulted in an increase in the immobile fraction of BAF57
to 83.4£3.6% (n=11) compared with 60+5.6% in embryos
with endogenous BAF155 levels (Fig. 5SC’,C"). By contrast,
overexpression of BAFI55 did not affect the mobility of
CENPA (n=9; 93.1£1.63% compared with 94+1.7% for the
control, Fig. 5C’,C”), indicating a specific effect of BAF155 on
BAF57. Together, these results support the hypothesis that the BAF
complex is dynamic in early embryos and can be modulated by the
level of BAF155.

As our findings indicated higher levels of BAF complex in
the extra-embryonic versus embryonic lineages (Fig. 1C-F) we
next used FRAP to assess the mobility of BAF155 in both
lineages. To this end, we have established a transgenic line in
which Nanog is fused to YFP by direct knock-in as a live marker
of pluripotent cells (Fig. S6A-C, Movie 3). We introduced
fluorescently tagged BAF155 into embryos with a downregulated
level of BAF155 using previously established rescue conditions
(Fig. 6A, Fig. 31-K). FRAP measurements for BAF155 (n=16)
and CENPA (n=11) revealed that whereas there was little
difference in the mobility of CENPA between NANOG" (EPI)
and NANOG~ (TE) cells (96.31+3.6% and 95.17£1.2%,
respectively, P>0.05, F-test), 87.79+4.03% of BAF155 was
immobile in NANOG™ cells versus 72.06+6.2% in NANOG™
cells (P<0.05, F-test) (Fig. 6B-E). This increased amount of
immobile BAF155 in NANOG™ cells is in accordance with the
increased proximity of BAFI155 to other core BAF complex
proteins as measured by PLA in extra-embryonic lineages prior to
implantation (Fig. 1A,B). These results suggest that greater levels
of stable BAF complex in cells promotes commitment to the
extra-embryonic lineage.

CARM1-mediated methylation of BAF155 influences
assembly of the BAF complex and lineage specification
BAF155 is reported to be one of the prime targets of CARMI1
(Wang et al., 2014), an epigenetic modifier with a role in cell fate
specification in the mouse embryo and ESCs (Torres-Padilla
et al., 2007; Parfitt and Zernicka-Goetz, 2010; Wu et al., 2009),
which led us to ask whether methylation of BAF155 by CARMI1
contributes to the difference in its mobility in pluripotent versus
differentiating cells in the embryo. Examining the localisation of
the methylated form of BAF155 (Wang et al., 2014) revealed that
meBAF155 is distributed equally between the lineages at E3.5
(n=8, Fig. 7A, Fig. STA, P>0.05, ANOVA), whereas at E4.5 it is
present at significantly lower levels in TE than in other lineages
(n=6, Fig. 7A, Fig. S7B, P<0.001, ANOVA). In agreement, we

1277

DEVELOPMENT


http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.131961/-/DC1
http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.131961/-/DC1
http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.131961/-/DC1
http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.131961/-/DC1
http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.131961/-/DC1
http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.131961/-/DC1
http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.131961/-/DC1
http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.131961/-/DC1

STEM CELLS AND REGENERATION

Development (2016) 143, 1271-1283 doi:10.1242/dev.131961

CENPA
A BAF155

A’ b

Omobile
Dimmobile

-
(9]

* ¥k
1

-

BAFS7

CENPA |

B control RNAI B’
BAF155 3'UTR dsRNA

40s

e o e
N B o®

o

BAF 155 BAF 57 CENPA

«BAF 155
= BAF 57
0.4 -« CENPA

A”F

0.2

Fluorescence intensity Fluorescence intensity
o
-]

B” sec

1.2
2 06 *%%  Omobile Eimmobil
'*ﬁ -~ BAF 57, control o ——— Dmoble HMNGREE
5 = BAF 57,dsBAF 155 @

o
E o4 -+ CENPA, control 2
8 = CENPA, dsBAF 155 =
c 8
2 c
0 0.2 8
o @
5 @
(]
3 5
L 004 3 |
0 10 20 30 40 w BAF 57, BAF 57, | CENPA, CENPA,
sec control dsBAF155 control dsBAF155
1 "
c GAP-GFP C c
BAF155-HA
1.2
2 0s ry *kk Omobile Bimmobile
B = BAF 57, control @
s «BAF 57, BAF 1550E @
E .. ~ CENPA, control £
Q = CENPA, BAF 155 0E &
c =
@
2 02 2
(7] N
. ¢
3 E
[T i .
d BAF 57, BAF57, | CENPA, CENPA,

control BAF155 ~ control BAF155
OE OE

Fig. 5. The mobility of BAF57 is dependent on the level of BAF155 expression. (A) The live kinetics of BAF155, BAF57 and CENPA proteins tagged with
mCherry were measured at the 8-cell stage. (A’) Recovery kinetics were estimated by measuring fluorescence intensity (within the boxed region) prior to
photobleaching (P) and during 40 s after photobleaching. (A”) The immobile pool was significantly greater for BAF155 (78.61+2.4%) than BAF57 (59.97+5.0%);
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represent s.e.m. ***P<0.001, F-test.

found that only low levels of meBAF155 were detectable in
Carml knockout embryos (Kim et al., 2010) (Fig. 7A, n=5), in
line with arginine methylation of BAF155 being CARMI
dependent (Wang et al., 2014). To address whether a similar
TE-specific decrease is present for other CARMI-mediated
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methylations, we also compared the levels of H3R17me2
among the three distinct lineages of E4.5 blastocyst (Fig. 7B,
Fig. S7C). We discovered that there are no significant differences
in H3R17me2 levels (Fig. S7C), suggesting that the difference in
the methyltransferase activity of CARMI1 between the lineages is
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unlikely to be a consequence of decreased meBAF155, but rather
of the difference in the availability of BAF155 as a substrate for
CARMI1 methylation in TE.

To further assess the effect of CARM1 on BAF155 methylation,
we used a specific CARM1 inhibitor (CARMi) (Cheng et al., 2011).
The addition of CARMi at the zygote stage resulted in
developmental arrest after the first division (Fig. S7D, n=18),
whereas its addition at the 2-cell stage had a range of developmental
effects depending on the concentration of the inhibitor (Fig. S7E).
We selected an intermediate concentration (9 uM) that led to
substantial reduction in BAF155 methylation (Fig. 7C) while
allowing 73% (n=22) of embryos to develop to the blastocyst stage
[compared with 94.2% (n=34) in DMSO, Fig. S7E]. To determine
the mobility of BAF155 upon CARMi treatment, we performed
FRAP using rescue conditions (Fig. 3I-K). Whereas control
embryos exhibited higher mobility of BAF155 in NANOG"
compared with NANOG™ cells (Fig. 7D,E, P<0.05, F-test),
consistent with our previous observations (Fig. 6D,E), the
mobility of BAF155 in NANOG™ cells of CARMi-treated
embryos was decreased compared with NANOG™ DMSO-treated
control embryos (Fig. 7D,E, P<0.05, F-test). This suggests that
methylation of BAF155 by CARMI1 can influence the mobility of
BAF155 in pluripotent NANOG-expressing EPI cells.

To test whether the reduction in CARM1-mediated methylation
affects the associations of the BAF complex subunits, we analysed the
proximity of BAF155 and BRG1 in E4.5 Carml~'~, CARMi-treated
and control (DMSO-treated) embryos by PLA. Consistent with our
previous observations (Fig. 1C,D), BAF155-BRGI proximity was
decreased in the EPI of control (»=9) and wild-type (n=6) embryos
(Fig. 7F,G). By contrast, the signal from BAF155-BRG1 proximity
was increased in the EPI and in some extra-embryonic cells of
Carml1~~ (n=8) and CARMi-treated (n=5) embryos compared with
control groups (Fig. 7F,G, P<0.05, ANOVA). Together, the FRAP
and PLA analyses suggest that levels of stable BAF complex are
increased in the absence of CARMI1 function.

Finally, to test whether the increased proximity of BAF155 with
BRG!1 in EPI upon CARMI inhibition would affect lineage
specification, we examined the number of NANOG™ cells in Carm1
knockout (n=8) and CARMi-treated (n=21) embryos. This revealed
a significant reduction in the number of NANOG" cells compared
with control embryos (Fig. 7H).

Together, these results suggest an important role of CARMI1-
mediated methylation of BAF155 in normal development: its
absence leads to increased proximity of BAF155 with BRGI,
stabilisation of the complex and a decrease in the number of
NANOG" pluripotent cells.
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DISCUSSION difficulties associated with studying protein interactions on a single-

Epigenetic changes to chromatin play a profound role in mouse cell level in mouse embryos in which classical biochemical
development. Elucidating the mechanisms that control these approaches are not possible. To overcome these technical
changes is, however, challenging at present due to technical restrictions we have applied PLA in combination with FRAP
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Fig. 7. CARM1-mediated methylation of BAF155 influences assembly of
the BAF complex and lineage specification. (A) Methylated BAF155in E3.5
and E4.5 embryos. Methylated BAF155 was detectable at only low levels in
Carm17™~ embryos. (B) The distribution of H3R17me2 at E4.5. (C) Methylation
of BAF155 is reduced in embryos treated with a CARM1-specific inhibitor
(CARMI) and is unaffected by DMSO carrier. (D) NANOG" cells in CARMi-
treated embryos show reduced FRAP recovery of BAF155-mCherry
compared with NANOG™ in DMSO-treated embryos. (E) NANOG" cells
(CARMI) have a higher immobile fraction of BAF155 protein (75+3.6%) than
NANOG" cells in DMSO (86.87+2%). (F) The frequency of interactions
between BAF155 and BRG1 is comparably increased in EPI cells (dashed
outline) of Carm1 null and CARMi E4.5 embryos (arrows), in contrast to EPI
cells of wild-type and DMSO-treated embryos. (G) The fluorescence intensity
generated by BAF155-BRG1 association is increased in EPI cells of Carm17'~
compared with wild-type embryos, and in CARMi-treated compared with
DMSO-treated embryos. (H) The number of NANOG™ cells is decreased in
Carm1 null and CARMi embryos. Error bars represent s.e.m. *P<0.05,
**P<0.001, Student’s t-test. Scale bars: 10 ym.

experiments to gain insight into how the composition of the core
BAF complex is established in different lineages. We found that a
major component of the BAF chromatin remodelling complex,
BAF155, plays a crucial role in regulating the dynamics of the BAF
complex in the early mouse embryo, and is essential for cell fate
specification before the implantation stage.

We demonstrate that, prior to implantation, the proximity of the core
BAF complex subunits BAF155, BRG1 and BAF57 increases in the
extra-embryonic lineages. We then find a reduced mobility of BAF155
in the extra-embryonic compared with the embryonic lineages, which
suggests either increased complex formation or stability. We further
demonstrate that a decreased level of CARMI-mediated BAF155
methylation is at the heart of the increased BAF complex stability in
the extra-embryonic lineages. The functional importance of BAF155
in development is indicated by the opposing responses to its
expression levels: reduced levels BAF155 lead to increased
expression of the pluripotency marker Nanog, whereas upregulated
BAF155 increases the expression of differentiation marker genes.

These findings have several important implications. First, they
suggest a regulatory function of chromatin remodelling by the BAF
complex during early mouse development, rather than a permissive
role. Second, the differential BAF complex subunit associations
between the lineages and the consequences of their misexpression
imply that the BAF complex is involved in the establishment of
pluripotency and extra-embryonic transcriptional programmes.
Finally, CARM1-mediated regulation of BAF complex dynamics,
alongside its known role in histone tail modification (Torres-Padilla
et al., 2007), emphasizes the interconnectivity of epigenetic
mechanisms required to ensure correct cell fate programmes and
prepare an embryo for implantation. Cumulatively, these results
indicate the role of the BAF complex in lineage specification of the
mouse embryo, suggesting that the developmental arrest of embryos
lacking the subunits of the BAF complex at peri-implantation stages
(Bultman et al., 2000; Guidi et al., 2001; Kim et al., 2001;
Klochendler-Yeivin et al., 2000) could be due to a failure to
accurately specify extra-embryonic from pluripotent cell fates.

The involvement of the BAF complex in pluripotency has
previously been studied in ESCs. Proteomic studies revealed that the
BAF complex in ESCs (esBAF) has a distinctive composition
defined by the presence of pluripotency-specific subunits (Ho et al.,
2009b). Furthermore, it was shown that esBAF occupies the
enhancers and promoters of many genes of the pluripotency
network, including Oct4, Nanog and Sox2, as well as their targets,
suggesting a functional interaction between esBAF and the
pluripotency network (Ho et al., 2009a). Knockdown of BRG1

was demonstrated to have a dual effect in ESCs: acute depletion
resulted in immediate upregulation of Nanog and Oct4 (Singhal
et al., 2014), whereas depletion using a conditional allele and
shRNA led to initially maintained expression of these genes but
their downregulation after several days (Kidder et al., 2009; Ho
et al., 2009b). It has been suggested that the role of BRG1 in the
pluripotent cells is to tonically repress the expression of Nanog and
Oct4, so as to maintain the pluripotency network (Ho et al., 2009b).
Similarly, knockdown of BRG1 in a blastocyst has been shown to
derepress Nanog and Oct4 expression, suggesting that BRG1 is also
anegative regulator of these genes in the early embryo (Kidder et al.,
2009; Carey et al., 2015). Much less is known about the role of other
components of the BAF complex in pluripotency. One report
demonstrating that, upon robustly triggered differentiation in ESCs,
BAF155 instigates changes in chromatin to repress Nanog, has
resonance with our findings (Schaniel et al., 2009).

The surprising time-dependent effect of downregulation of the
core BAF complex subunits could suggest a dynamic requirement
for the BAF complex in the regulation of pluripotency. This could be
controlled through changes in BAF complex stoichiometry or
through mobilisation dynamics of existing subunits. The findings
we present here suggest that differences in the level of mobilised
BAF155 between pluripotent and extra-embryonic lineages is key
for the differential cell type-specific regulatory effect of the BAF
complex on Nanog and other lineage specification genes. How
might this difference in BAF155 mobilisation between the lineages
be controlled? One possibility is that it is influenced by post-
translational modifications of its subunits. A recent study (Wang
et al., 2014) reported that BAF155 is modified by methylation
specifically at R1064. Although this methylation does not
drastically affect incorporation of BAF155 into the BAF complex,
meBAF155 does not form a complex with the catalytic subunit
BRGT1 and others at specific transcriptional sites (Wang et al., 2014).
The methyltransferase found to modify BAF155 is CARM1, which
is implicated in cell fate decisions during early embryogenesis
(Parfitt and Zernicka-Goetz, 2010; Torres-Padilla et al., 2007).

We found that, just prior to implantation, methylated BAF155 is
decreased in TE in comparison to EPI. CARM1 inhibition triggered
low BAF155 methylation, elevated BAF155-BRG1 association and
a decreased number of Nanog-positive cells. This has resonance
with the previous findings that CARM1-triggered methylation of
histone H3 arginine residues is required to promote pluripotency
(Torres-Padilla et al., 2007). We suggest that refining the levels of
expression of Nanog in EPI could occur through regulation of BAF
complex assembly dynamics via CARM 1 -triggered methylation of
its core subunit BAF155. This methylation limits the number of
BAF155-BRG1-containing complexes formed, and therefore
alleviates the repressive effect they have on the expression of
Nanog. This regulatory mechanism of the assembly dynamics of the
BAF complex could contribute to the modulation of expression
levels of pluripotent markers such as Nanog in EPI, controlling the
level of expression so that it is compatible with further development.
Conversely, the absence of such a pathway in TE results in a low
level of BAF155 methylation, high BAF155-BRG1 proximity and
is correlated with the silencing of Nanog that earmarks the cells for
extra-embryonic differentiation (Fig. 8).

The question of how repression of Nanog in TE is achieved
mechanistically by the BAF155-BRGl-containing complex
remains open. It was recently suggested to occur through the
interaction of BRG1 with HDACI1 specifically in TE, which
antagonises histone acetylation at the proximal enhancer of Nanog
and thereby shuts down its expression (Carey et al., 2015).
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In summary, our results demonstrate the significance of
interconnected epigenetic regulation in the specification and
maintenance of cell fates in the early mouse embryo. Although we
know several of the key players that are involved in the establishment
of pluripotent and extra-embryonic fates, there is still little information
about how these mechanisms are coordinated in vivo. The challenge
for the future will be to determine the precise molecular mechanisms
that direct the differences in epigenetic programming in individual
cells as the embryo progresses through its normal development.

MATERIALS AND METHODS

Embryo collection and culture

6- to 8-week-old F1 females from C57B16xXCBA crosses were
superovulated by injection of 10 IU PMSG (Intervet) and 10 IU human
chorionic gonadotropin (hCG; Intervet) 48 h later and mated with F1 males
expressing CAG-GFP, Nanog-YFP or that were Carml™~ (Kim et al.,
2010). Oviducts were dissected in M2 medium with bovine serum albumin
(BSA) and cultured in KSOM as previously described (Bischoff et al.,
2008). The selective CARMI inhibitor bis-benzylidene piperidinone
(Millipore) was dissolved in dimethyl sulfoxide (DMSO). Culture of
ESCs and TSCs is described in the supplementary Materials and Methods.
Single-embryo genotyping by PCR and the primers used are described in the
supplementary Materials and Methods and Table S5.

Microinjections

mRNAs for microinjection were produced by in vitro transcription of Sfil-
linearised RN3P or Hpal-linearised pCS2+ plasmids using mMessage
mMachine T3 or SP6 RNA polymerase (Life Technologies) according to the
manufacturer’s instructions. CENPA plasmid was a gift from D. Glover,
University of Cambridge, UK; BAF155 and Baf57 were gifts from G.
Crabtree lab, University of Stanford, CA, USA. The generation and
sequences of dsRNAs are listed in the supplementary Materials and
Methods and Table S1. Microinjection of mRNAs or dsRNAs was
performed as described (Zernicka-Goetz et al., 1997).

Image acquisition and analysis

Live time-lapse images were collected every 15 min on an inverted Zeiss
Axiovert spinning disk confocal system (Intelligent Imaging Solutions)
using a 63x/1.3 NA water objective. Image acquisition from fixed
preparations was carried out using a Leica SP5 confocal microscope with
a 40%/1.4 NA oil-immersion objective. Analysis of images and creation of
image z-projections were performed in Fiji (Schneider et al., 2012).
Automatic quantification was performed using the Object Scan plugin for
Fiji (see supplementary Materials and Methods).

Immunofluorescence and PLA

Protocols for immunofluorescence on fixed embryos and cells, including a
list of the antibodies used, and an extended PLA protocol adapted for mouse
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embryos are presented in the supplementary Materials and Methods and
Table S2.

cDNA constructs

Human BAFI155 (NM_003074.3), human BRGI (NM_001128844.1),
mouse Baf57 (NM_020618.4) and human CENPA (gi602413) were
subcloned into RN3P and pCS2+ for the in vitro transcription of mRNA.

RNA isolation and quantitative PCR

Transcripts were isolated using the Arctus PicoPure RNA Isolation Kit
(Applied Biosystems). qRT-PCR reactions were performed in triplicate
using the Power SYBR Green PCR RNA-to-CT 1-Step Kit (Applied
Biosystems) and the primers listed in Table S3.

Generation of Nanog-YFP reporter mice

The C-terminus of NANOG was tagged with YFP protein as described
previously (Skarnes et al., 2011; Hofemeister et al., 2011). Details of the
generation of the line are provided in the supplementary Materials and
Methods and Table S4.

FRAP data analysis

Recovery curves were obtained by measuring the intensities of 18-yum?
background, control and photobleached regions using Leica FRAP Wizard
software. FRAP data acquisition and the parameters and equations used for the
analysis are listed in the supplementary Materials and Methods and Table Sé.
GraphPad Prism software was used for nonlinear fitting and plotting of graphs.

Statistical analysis

ANOVA was used to test statistical significance when comparing means of
more than two independent groups. Student’s 7-test was used to compare the
means of two independent groups. F-test was used for FRAP data analysis in
order to identify the model that best fits the population from which the
recovery data were sampled.
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