Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
Purification, partial characterization and biological effects of the XTC mesoderm-inducing factor
J.C. Smith, M. Yaqoob, K. Symes
Development 1988 103: 591-600;
J.C. Smith
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Yaqoob
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. Symes
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The mesoderm of Xenopus laevis is formed through an inductive interaction in which a signal from the vegetal hemisphere of the blastula acts on overlying animal pole cells. We have recently reported that the Xenopus XTC cell line secretes a mesoderm-inducing factor (MIF) which may resemble the natural signal. In this paper, we describe the purification and biological effects of XTC-MIF. XTC-MIF is a hydrophobic protein with an isoelectric point of 7.8 and an apparent relative molecular mass (Mr) of 23,500. On reduction, XTC-MIF loses its biological activity and the protein dissociates into two inactive subunits with apparent Mr of about 15,000. These properties closely resemble those of transforming growth factor type beta (TGF-beta), and it is interesting that TGF-beta 2 has recently been shown to have mesoderm-inducing activity. The biological response to XTC-MIF is graded. After exposure to 0.2-1.0 ng ml-1 XTC-MIF, stage-8 animal pole explants form mesenchyme and mesothelium. At higher concentrations, up to about 5 ng ml-1, muscle is formed, occasionally with neural tissue. In response to concentrations of XTC-MIF greater than 5–10 ng ml-1, notochord and neural tissue are usually formed. The formation of notochord and neural tissue in response to XTC-MIF represents a qualitative difference between this inducing factor and the other known group of MIFs, the heparin-binding growth factors.

Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Purification, partial characterization and biological effects of the XTC mesoderm-inducing factor
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Purification, partial characterization and biological effects of the XTC mesoderm-inducing factor
J.C. Smith, M. Yaqoob, K. Symes
Development 1988 103: 591-600;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Purification, partial characterization and biological effects of the XTC mesoderm-inducing factor
J.C. Smith, M. Yaqoob, K. Symes
Development 1988 103: 591-600;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice
  • REF-1, a protein with two bHLH domains, alters the pattern of cell fusion in C. elegans by regulating Hox protein activity
  • Centrosome migration into the Drosophila oocyte is independent of BicD and egl, and of the organisation of the microtubule cytoskeleton
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

The Node is looking for a new Community Manager!

If you're interested in science communication, publishing and the developmental biology community, we're hiring for a new Community Manager for our community site, the Node.

The position is an exciting opportunity to develop an already successful and well-known site, engaging with the academic, publishing and online communities. Find out more and how to apply.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


The people behind the papers - Clément Dubois, Shivam Gupta, Andrew Mugler and Marie-Anne Félix

A new paper investigates the robustness of neuroblast migration in the C. elegans larva in the face of both genetic and environmental variation. In an interview, the paper's four authors tell us more about the story.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Every talk is recorded and since launching in August last year, the series has clocked up almost 10k views on YouTube.

Here, Swann Floc'hlay discusses her work modelling dorsal-ventral axis specification in the sea urchin embryo.

Save your spot at our next session:

14 April
Time: 17:00 BST
Chaired by: François Guillemot

12 May
Time: TBC
Chaired by: Paola Arlotta

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992