Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Mesoderm induction and mesoderm-inducing factors in early amphibian development
J. C. SMITH
Development 1989 105: 665-677;
J. C. SMITH
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading
PDF extract preview

This is a PDF-only article. The first page of the PDF of this article appears above.

REFERENCES

    1. ABRAHAM J. A.,
    2. MERGIA A.,
    3. WHANG J. L.,
    4. TUMOLO A.,
    5. FRIEDMAN J.,
    6. HJERRILD K. A.,
    7. GOSPODAROWICZ D.,
    8. FIDDES J. C.
    (1986). Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. Science 233, 545–548
    1. BANVILLE D.,
    2. WILUAMS J. G.
    (1985). Developmental changes in the pattern of larval β-globin mRNA sequences. J. mol. Biol. 184, 611–620
    1. BASS B. L.,
    2. WEINTRAUB H.
    (1987). A developmentally regulated activity that unwinds RNA duplexes. Cell 48, 607–613
    1. BLACK S. D.,
    2. GERHART J. C.
    (1985). Experimental control of the site of embryonic axis formation in Xenopus laevis eggs centrifuged before first cleavage. Devi Biol. 108, 310–324
    1. BLACK S. D.,
    2. GERHART J. C.
    (1986). High frequency twinning of Xenopus embryos from eggs centrifuged before first cleavage. Devi Biol. 116, 228–240
    1. BORN J.,
    2. GEITHE H. P.,
    3. TIEDEMANN H.,
    4. TIEDEMANN H.,
    5. KOCHER-BECKER U.
    (1972a). Isolation of a vegetalizing inducing factor. Z. Physwl. Chem. 353, 1075–1084
    1. BORN J.,
    2. TIEDEMANN H.,
    3. TIEDEMANN H.
    (19726). The mechanism of embryonic induction: isolation of an inhibitor for the vegetalizing factor. Biochim. biophys. Ada 279, 175–183
    1. BOTERENBROOD E. C.,
    2. NIEUWKOOP P. D.
    (1973). The formation of the mesoderm in urodelean amphibians. V. Its regional induction by the endoderm. Wilhelm Roux' Arch, devl Biol. 173, 319–332
    1. COOKE J.
    (1983). Evidence for specific feedback signals underlying pattern control during vertebrate embryogenesis. J. Embryo!. exp. Morph. 76, 95–114
    1. COOKE J.
    (1986). Permanent distortion of positional system of Xenopus embryo by brief early perturbation in gravity. Nature, Lond. 319, 60–63
    1. COOKE J.
    (1987). Dynamics of the control of body pattern in the development of Xenopus laevis. TV. Timing and pattern in the development of twinned bodies after reorientation of eggs in gravity. Development 99, 417–427
    1. COOKE J.,
    2. SMITH J. C.
    (1987). The midblastula cell cycle transition and the character of mesoderm in u.v.-induced non-axial Xenopus development. Development 99, 197–210
    1. COOKE J.,
    2. SMITH J. C.
    (1989). Gastrulation and larval pattern in Xenopus after blastocoelic injection of a Xenopus inducing factor: experiments testing models for the normal organization of mesoderm. Devi Biol. (in press).
    1. COOKE J.,
    2. SMITH J. C.,
    3. SMITH E. J.,
    4. YAQOOB M.
    (1987). The organization of mesodermal pattern in Xenopus laevis: experiments using a Xenopus mesoderm-inducing factor. Development 101, 893–908
    1. COOKE J.,
    2. WEBBER J. A.
    (1985). Dynamics of the control of body pattern in the development of Xenopus laevis. I. Timing and pattern in the development of dorso-anterior and of posterior blastomere pairs isolated at the 4-cell stage. J. Embryo!, exp. Morph. 88, 85–112
    1. DALE L.,
    2. SLACK J. M. W.
    (1987a). Fate map for the 32-cell stage of Xenopus laevis. Development 99, 527–551
    1. DALE L.,
    2. SLACK J. M. W.
    (1987b). Regional specification within the mesoder m of early embryos of Xenopus laevis. Development 100, 279–295
    1. DALE L.,
    2. SMITH J. C.,
    3. SLACK J. M. W.
    (1985). Mesoderm induction in Xenopus laevis: a quantitative study using a cell lineage label and tissue-specific antibodies. J. Embryo!, exp. Morph. 89, 289–312
    1. DEPARJS P.,
    2. JAYLET A.
    (1984). The role of endoderm in blood cell ontogeny in the newt Pleurodeles waltl. J. Embryo!, exp. Morph. 81, 37–47
    1. DRIEVER W.,
    2. NUSSLEIN-VOLHARD C.
    (1988). A gradient of bicoid protein in Drosophila embryos. Cell 54, 83–93
    1. FLICKENGER R. A.
    (1980). The effect of heparin upon differentiation of ventral halves of frog gastrulae. Wilhelm Roux' Arch, devl Biol. 188, 9–11
    1. GENTRY L. E.,
    2. WEBB N. R.,
    3. LIM G. J.,
    4. BRUNNER A. M.,
    5. RANCHALIS J. E.,
    6. TWARDZIK D. R.,
    7. LIOUBIN M. N.,
    8. MARQUARDT H.,
    9. PURCHIO A. F.
    (1987). Type 1 transforming growth factor beta: amplified expression and secretion of mature and precursor polypeptides in Chinese Hamster Ovary cells. Mol. cell. Biol. 7, 3418–3427
    1. GIMLICH R. L.,
    2. COOKE J.
    (1983). Cell lineage and the induction of second nervous systems in amphibian development. Nature, Lond. 306, 471–473
    1. GIMUCH R. L.,
    2. GERHART J. C.
    (1984). Early cellular interactions promote embryonic axis formation in Xenopus laevis. Devl Biol. 104, 117–130
    1. GODSAVE S. F.,
    2. ISAACS H. V.,
    3. SLACK J. M. W.
    (1988). Mesoderm inducing factors: a small class of molecules. Development 102, 555–566
    1. GURDON J. B.
    (1987). Embryonic induction - molecular prospects. Development 99, 285–306
    1. GURDON J. B.
    (1988). Cell movements and a community effect in tissue morphogenesis. Nature, Lond. 336, 772–774
    1. GURDON J. B.
    (1989). The localization of an inductive response. Development 105, 27–33
    1. GURDON J. B.,
    2. FAIRMAN S.,
    3. MOHUN T. J.,
    4. BRENNAN S.
    (1985). The activation of muscle-specific actin genes in Xenopus development by an induction between animal and vegetal cells of a blastula. Cell 41, 913–922
    1. GURDON J. B.,
    2. MOHUN T. J.,
    3. SHARPE C. R.,
    4. TAYLOR M. V.
    (1989). Embryonic induction and muscle gene activation. Trends in Genetics, (in press).
    1. HEASMAN J.,
    2. WYUE C. C.,
    3. HAUSEN P.,
    4. SMITH J. C.
    (1984). Fates and states of determination of single vegetal pole blastomeres of X. laevis. Cell 37, 185–194
    1. HOLWILL S.,
    2. HEASMAN J.,
    3. CRAWLEY C. R.,
    4. WYUE C. C.
    (1987). Axis and germ line deficiencies caused by u.v. irradiation of Xenopus oocytes cultured in vitro. Development 100, 735–743
    1. HöRSTADIUS S.
    (1935). Über die Determination im Verlaufe der Eiachse bei Seeigeln. Publ. Staz. Zool. Napoli 14, 132–179
    1. JACOBSON M.
    (1984). Cell lineage analysis of neural induction: origins of cells forming the induced nervous system. Devl Biol. 102, 122–129
    1. JACOBSON M.,
    2. HIROSE G.
    (1978). Origin of the retina from both sides of the embryonic brain: a contribution to the problem of crossing at the optic chiasma. Science 202, 637–639
    1. JACOBSON M.,
    2. HIROSE G.
    (1981). Clonal organization of the central nervous system of the frog. II. clones stemming from individual blastomeres of the 32- and 64-cell stages. J. Neurosci. 1, 271–284
    1. JAYE M.,
    2. LYALL R. M.,
    3. MUDD R.,
    4. SCHLESSINGER J.,
    5. SARVER N.
    (1988). Expression of acidic fibroblast growth factor cDNA confers growth advantage and tumorigenesis to Swiss 3T3 cells. EMBO J. 7, 963–969
    1. JONES E. A.,
    2. WOODLAND H. R.
    (1986). Development of the ectoderm in Xenopus laevis: the definition of a monoclonal antibody to an epidermal marker. Cell 44, 345–355
    1. JONES E. A.,
    2. WOODLAND H. R.
    (1987). The development of animal cap cells in Xenopus: a measure of the start of animal cap competence to form mesoderm. Development 101, 557–563
    1. KANEDA T.
    (1981). Studies on the formation and state of determination of the trunk organizer in the newt Cynops pyrrhogoster. III. Tangential induction in the dorsal marginal zone. Dev. Growth Diff. 23, 553–564
    1. KANEDA T.,
    2. SUZUKI A. S.
    (1983). Studies on the formation and state of determination of the trunk organizer in the newt Cynops pyrrhogaster. IV. The association of the neural-inducing activity with the mesodermization of the trunk organizer. Wilhelm Roux' Arch, devl Biol. 192, 8–12
    1. KAWAKAMI I.
    (1976). Fish swimbladder: an excellent mesodermal inductor in primary embryonic induction. J. Embryol. exp. Morph. 36, 315–320
    1. KAWAKAMI I.,
    2. NODA S.,
    3. KURIHARA K.,
    4. OKUMA K.
    (1977). Vegetalizing factor extracted from the fish swimbladder and tested on presumptive ectoderm of Triturus embryos. Wilhelm Roux' Arch, devl Biol. 182, 1–7
    1. KEATING M. T.,
    2. WILLIAMS L. T.
    (1988). Autocrine stimulation of intracellular PDGF receptors in v-sis-transformed cells. Science 239, 914–916
    1. KELLER R. E.
    (1976). Vital dye mapping of the gastrula and neurula of Xenopus laevis. II. Prospective areas and morphogenetic movement s of the deep layer. Devl Biol. 51, 118–137
    1. Browder L.
    1. KELLER R. E.
    (1986). The Cellular Basis of Amphibian Gastrulation. In Developmental Biology: A Comprehensive Synthesis, vol. 2, The Cellular Basis of Morphogenesis (ed. Browder L.), pp. 241–327. New York: Plenum Press.
    1. KELLER R. E.,
    2. DANILCHIK M.,
    3. GIMLICH R.,
    4. SHIH J.
    (1985). The function and mechanism of convergent extension during gastrulation of Xenopus laevis. J.Neurosci. Res. J. Embryol. exp. Morph 89 Supplement, 185–209
    1. KELLER R. E.,
    2. SCHOENWOLF G. C.
    (1977). An SEM study of cellular morphology, contact, and arrangement, as related to gastrulation in Xenopus laevis. Wilhelm Roux's Arch, devl Biol. 182, 165–186
    1. KIMELMAN D.,
    2. ABRAHAM J. A.,
    3. HAAPARANTA T.,
    4. PAUSI T. M.,
    5. KIRSCHNER M.
    (1988). The presence of FGF in the frog egg: its role as a natural mesoderm inducer. Science 242, 1053–1056
    1. KIMELMAN D.,
    2. KIRSCHNER M.
    (1987). Synergistic induction of mesoderm by FGF and TGFβ and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell 51, 369–377
    1. KLYMKOWSKY M. W.,
    2. MAYNELL L. A.,
    3. POLSON A. G.
    (1987). Polar asymmetry in the organization of the cortical cytokeratin system of Xenopus laevis oocytes and embryos. Development 100, 543–557
    1. KURIHARA K.,
    2. SASAKI N.
    (1981). Transmission of homoiogenetic induction in presumptive ectoderm of newt embryo. Dev. Growth Diff. 23, 361–369
    1. LEAL F.,
    2. WILUAMS L. T.,
    3. ROBBINS K. C.,
    4. AARONSON S. A.
    (1985). Evidence that the v-sis gene product transforms by interaction with the receptor for platelet-derived growth factor. Science 230, 327–330
    1. LEWIS J. H.,
    2. WOLPERT L.
    (1976). The principle of nonequivalence in development. J. theor. Biol. 62, 479–490
    1. MASSAGUE J.
    (1987). The TGF-β family of growth and differentiation factors. Cell 49, 437–438
    1. MEINHARDT H.
    (1982). Models of Biological Pattern Formation. London: Academic Press.
    1. MELTON D. A.
    (1987). Translocation of a localized maternal mRNA to the vegetal pole of Xenopus oocytes. Nature, Lond. 328, 80–82
    1. MINUTH M.,
    2. GRUNZ H.
    (1980). The formation of mesodermal derivatives after induction with vegetalizing factor depends upon secondary cell interactions. Cell Diff. 9, 229–238
    1. MOODY S. A.
    (1987a). Fates of the blastomeres of the 16-cell-stage Xenopus embryo. Devl Biol. 119, 560–578
    1. MOODY S. A.
    (1987b). Fates of the blastomeres of the 32-cell-stage Xenopus embryo. Devl Biol. 122, 300–319
    1. NAKAMURA O.,
    2. MATSUZAWA T.
    (1967). Differentiation capacity of the marginal zone in the morula and blastula of Triturus pyrrhogaster Embryologia 9, 223–237
    1. NAKAMURA O.,
    2. TAKASAKJ H.,
    3. ISHIHARA M.
    (1970a). Formation of the organizer from combinations of presumptive ectoderm and endoderm. I. Proc. Japan Acad. 47, 313–318
    1. NAKAMURA O.,
    2. TAKASAKI H.,
    3. MIZOHATA T.
    (19706). Differentiation during cleavage in Xenopus laevis. I. Acquisition of self-differentiation capacity of the dorsal marginal zone. Proc. Japan Acad. 46, 694–699
    1. NEWPORT J.,
    2. KIRSCHNER M.
    (1982). A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage. Cell 30, 675–686
    1. NIEUWKOOP P. D.
    (1969). The formation of mesoderm in Urodelean amphibians. I. Induction by the endoderm. Wilhelm Roux' Arch. EntwMech. Org. 162, 341–373
    1. NIEUWKOOP P. D.,
    2. FABER J.
    (eds) (1967). Normal Table of Xenopus laevis (Daudin), 2nd ed. Amsterdam: North-Holland.
    1. NIEUWKOOP P. D.,
    2. JOHNEN A. G.,
    3. ALBERS B.
    (1985). The Epigenetic Nature of Early Chordate Development. Inductive Interaction and Competence. Cambridge: Cambridge University Press.
    1. NIEUWKOOP P. D.,
    2. UBBELS G. A.
    (1972). The formation of mesoderm in Urodelean amphibians. IV. Quantitative evidence for the purely "ectodermal" origin of the entire mesoderm and of the pharyngeal endoderm. Wilhelm Roux' Arch. EntwMech.Org. 169, 185–199
    1. O'CONNOR-MCCOURT M. D.,
    2. WAKEFIELD L. M.
    (1987). Latent transforming growth factor-β in serum. A specific complex with Qi-macroglobulin. J. biol. Chem. 262, 14090–14099
    1. OGI K.-I.
    (1967). Determination in the development of the amphibian embryo. Sri. Rep. Tohoku Univ. Ser. IV (Biol.) 33, 239–247
    1. OGI K.-I.
    (1969). Regulative capacity in the early amphibian embryo. Res. Bull. Dept. Gen. Ed. Nagoya University 13, 31–40
    1. PADGETT R. W.,
    2. ST JOHNSTON R. D.,
    3. GELBART W. M.
    (1987). A transcript from a Drosophila pattern gene predicts a protein homologous to the transforming growth factor-β family. Nature, Lond. 325, 81–84
    1. PONDEL M. D.,
    2. KING M. L.
    (1988). Localized maternal mRNA related to transforming growth factor B mRNA is concentrated in a cytokeratin-enriched fraction from Xenopus oocytes. Proc. natn. Acad. Sci. U.S.A. 85, 7612–7616
    1. REBAGUATI M. R.,
    2. MELTON D. A.
    (1987). Antisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity. Cell 48, 599–605
    1. REBAGUATI M. R.,
    2. WEEKS D. L.,
    3. HARVEY R. P.,
    4. MELTON D. A.
    (1985). Identification and cloning of localized maternal RNAs from Xenopus eggs. Cell 42, 769–777
    1. ROGELJ S.,
    2. WEINBERG R. A.,
    3. FANNING P.,
    4. KLAGSBRUN M.
    (1988). Basic fibroblast growth factor fused to a signal peptide transforms cells. Nature, Lond. 331, 173–175
    1. ROSA F.,
    2. ROBERTS A. B.,
    3. DANIELPOUR D.,
    4. DART L. L.,
    5. SPORN M. B.,
    6. DAWID I. B.
    (1988). Mesoderm induction in amphibians: the role of TGF-β2-like factors. Science 239, 783–785
    1. SARGENT T. D.,
    2. JAMRICH M.,
    3. DAWID I. B.
    (1986). Cell interactions and the control of gene activity during early development of Xenopus laevis. Devi Biol. 114, 238–246
    1. SAXEN L.,
    2. TOIVONEN S.
    (1958). The dependenc e of the embryonic induction action of HeLa cells on their growth media. J. Embryol. exp. Morph. 6, 616–633
    1. SHUTTLEWORTH J.,
    2. COLMAN A.
    (1988). Antisense oligonucleotide-directed cleavage of mRNA in Xenopus oocytes and eggs. EMBO J. 7, 427–434
    1. SLACK J. M. W.
    (1983). From Egg to Embryo. Determinative Events in Early Development. Cambridge: Cambridge University Press.
    1. SLACK J. M, W.,
    2. DALE L.,
    3. SMITH J. C.
    (1984). Analysis of embryonic induction by using cell lineage markers. Phil. Trans. R. Soc. Lond. B 307, 331–336
    1. SLACK J. M. W.,
    2. DARLINGTON B. G.,
    3. HEATH J. K.,
    4. GODSAVE S. F.
    (1987). Mesoderm induction in early Xenopus embryos by heparin-binding growth factors. Nature, Lond. 326, 197–200
    1. SLACK J. M. W.,
    2. FORMAN D.
    (1980). An interaction between dorsal and ventral regions of the marginal zone in early amphibian embryos. J. Embryol exp. Morph. 56, 283–299
    1. SLACK J. M. W.,
    2. ISAACS H.
    (1989). Presence of basic fibroblast growth factor in the early Xenopus embryo. Development 105, 147–153
    1. SLACK J. M. W.,
    2. ISAACS H. V.,
    3. DARLINGTON B. G.
    (1988). Inductive effects of fibroblast growth factor and lithium ion on Xenopus blastula ectoderm. Development 103, 581–590
    1. SMITH J. C.
    (1987). A mesoderm-inducing factor is produced by a Xenopus cell line. Development 99, 3–14
    1. Browder L.
    1. SMITH J. C.
    (1988). Cellular interactions in establishment of regional patterns of cell fate during development. In Developmental Biology: A Comprehensive Synthesis, vol. 5 (ed. Browder L.) pp. 79–125. New York: Plenum Press.
    1. SMITH J. C.,
    2. DALE L.,
    3. SLACK J. M. W.
    (1985). Cell lineage labels and region-specific marker s in the analysis of inductive interactions. J. Embryol. exp. Morph. 89 Supplement, 317–331
    1. SMITH J. C.,
    2. SLACK J. M. W.
    (1983). Dorsalization and neural induction: properties of the organizer in Xenopus laevis. J. Embryol. exp. Morph. 78, 299–317
    1. SMITH J. C.,
    2. TICKLE C.,
    3. WOLPERT L.
    (1978). Attenuation of positional signalling in the chick limb by high doses of γ-radiation. Nature, Lond. 272, 612–613
    1. SMITH J. C.,
    2. YAOOOB M.,
    3. SYMES K.
    (1988). Purification, partial characterization and biological effects of the XTC mesoderm-inducing factor. Development 103, 591–600
    1. SPEMANN H.,
    2. MANGOLD H.
    (1924). Uber Induktion von Embryonenanlagen durch Implantation artfremder Organisatoren. Wilhelm Roux' Arch. EntwMech. Org. 100, 599–638
    1. SUDARWATI S.,
    2. NIEUWKOOP P. D.
    (1971). Mesoderm formation i n the Anuran Xenopus laevis (Daudin). Wilhelm Roux' Arch. EntwMech. Org. 166, 189–204
    1. SYMES K.,
    2. SMITH J. C.
    (1987). Gastrulation movements provide an early marker of mesoderm induction in Xenopus laevis. Development 101, 339–349
    1. SYMES K.,
    2. YAQOOB M.,
    3. SMITH J. C.
    (1988). Mesoderm induction in Xenopus laevis: responding cells must be in contact for mesoderm formation but suppression of epidermal differentiation can occur in single cells. Development 104, 609–618
    1. THALLER C.,
    2. EICHELE G.
    (1987). Identification and spatial distribution of retinoids in the developing chick limb bud. Nature, Lond. 327, 625–628
    1. TICKLE C.,
    2. ALBERTS B. M.,
    3. WOLPERT L.,
    4. LEE J.
    (1982). Loca l application of retinoic acid to the limb bud mimics the action of the polarizing region. Nature, Lond. 296, 564–565
    1. TICKLE C.,
    2. SUMMERBELL D.,
    3. WOLPERT L.
    (1975). Positional signalling and specification of digits in chick limb morphogenesis. Nature, Lond. 254, 199–202
    1. TOIVONEN S.
    (1953). Bone-marrow of the guinea-pig as a mesoderm inductor in implantation experiments with embryos of Triturus. J. Embryol. exp. Morph. 1, 97–104
    1. VINCENT J.-P.,
    2. OSTER G.,
    3. GERHART J. C.
    (1986). Kinematics of gray crescent formation in amphibian eggs: the displacement of sub-cortical cytoplasm relative to the egg surface. Devi Biol. 113, 484–500
    1. WEEKS D. L.,
    2. MELTON D. A.
    (1987). A maternal mRNA localized to the vegetal hemisphere in Xenopus eggs codes for a growth factor related to TGFβ. Cell 51, 861–867
    1. WOLPERT L.
    (1969). Positional information and the spatial pattern of cellular differentiation. J. theor. Biol. 25, 1–47
    1. WOODLAND H. R.,
    2. JONES E. A.
    (1987). The development of an assay to detect mRNAs that affect early development. Development 101, 925–930
    1. YISRAELI J. K.,
    2. MELTON D. A.
    (1988). The maternal mRNA Vgl is correctly localized following injection into Xenopus oocytes. Nature, Lond. 336, 592–595
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Mesoderm induction and mesoderm-inducing factors in early amphibian development
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Mesoderm induction and mesoderm-inducing factors in early amphibian development
J. C. SMITH
Development 1989 105: 665-677;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Mesoderm induction and mesoderm-inducing factors in early amphibian development
J. C. SMITH
Development 1989 105: 665-677;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • even skipped is required to produce a trans-acting signal for larval neuroblast proliferation that can be mimicked by ecdysone
  • Groucho augments the repression of multiple Even skipped target genes in establishing parasegment boundaries
  • Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992