Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
J1/tenascin-related molecules are not responsible for the segmented pattern of neural crest cells or motor axons in the chick embryo
C.D. Stern, W.E. Norris, M. Bronner-Fraser, G.J. Carlson, A. Faissner, R.J. Keynes, M. Schachner
Development 1989 107: 309-319;
C.D. Stern
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W.E. Norris
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Bronner-Fraser
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G.J. Carlson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Faissner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.J. Keynes
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Schachner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

It has been suggested that substrate adhesion molecules of the tenascin family may be responsible for the segmented outgrowth of motor axons and neural crest cells during formation of the peripheral nervous system. We have used two monoclonal antibodies (M1B4 and 578) and an antiserum [KAF9(1)] to study the expression of J1/tenascin-related molecules within the somites of the chick embryo. Neural crest cells were identified with monoclonal antibodies HNK-1 and 20B4. Young somites are surrounded by J1/tenascin immunoreactive material, while old sclerotomes are immunoreactive predominantly in their rostral halves, as described by other authors (Tan et al. 1987—Proc. natn. Acad. Sci. U.S.A. 84, 7977; Mackie et al. 1988—Development 102, 237). At intermediate stages of development, however, immunoreactivity is found mainly in the caudal half of each sclerotome. After ablation of the neural crest, the pattern of immunoreactivity is no longer localised to the rostral halves of the older, neural-crest-free sclerotomes. SDS-polyacrylamide gel electrophoresis of affinity-purified somite tissue, extracted using M1B4 antibody, shows a characteristic set of bands, including one of about 230 × 10(3), as described for cytotactin, J1-200/220 and the monomeric form of tenascin. Affinity-purified somite material obtained from neural-crest-ablated somites reveals some of the bands seen in older control embryos, but the high molecular weight components (120–230 × 10(3] are missing. Young epithelial somites also lack the higher molecular mass components. The neural crest may therefore participate in the expression of J1/tenascin-related molecules in the chick embryo. These results suggest that these molecules are not directly responsible for the segmented outgrowth of precursors of the peripheral nervous system.

Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
J1/tenascin-related molecules are not responsible for the segmented pattern of neural crest cells or motor axons in the chick embryo
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
J1/tenascin-related molecules are not responsible for the segmented pattern of neural crest cells or motor axons in the chick embryo
C.D. Stern, W.E. Norris, M. Bronner-Fraser, G.J. Carlson, A. Faissner, R.J. Keynes, M. Schachner
Development 1989 107: 309-319;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
J1/tenascin-related molecules are not responsible for the segmented pattern of neural crest cells or motor axons in the chick embryo
C.D. Stern, W.E. Norris, M. Bronner-Fraser, G.J. Carlson, A. Faissner, R.J. Keynes, M. Schachner
Development 1989 107: 309-319;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
  • Genetic dissection of nodal function in patterning the mouse embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

A new society for regenerative biologists

Kenneth Poss and Elly Tanaka announce the launch of the International Society for Regenerative Biology (ISRB), which will promote research and education in the field of regenerative biology.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


An interview with Cagney Coomer

Over a virtual chat, we spoke to Cagney Coomer about her experiences in the lab, the classroom and the community centre, and why she thinks outreach and role models are vital to science.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Here, Michèle Romanos talks about her new preprint, which mixes experimentation in quail embryos and computational modelling to understand how heterogeneity in a tissue influences cell rate.

Save your spot at our next session:

10 March
Time: 9:00 (GMT)
Chaired by: Thomas Lecuit

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992