Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
cactus, a maternal gene required for proper formation of the dorsoventral morphogen gradient in Drosophila embryos
S. Roth, Y. Hiromi, D. Godt, C. Nusslein-Volhard
Development 1991 112: 371-388;
S. Roth
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y. Hiromi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. Godt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Nusslein-Volhard
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The dorsoventral pattern of the Drosophila embryo is mediated by a gradient of nuclear localization of the dorsal protein which acts as a morphogen. Establishment of the nuclear concentration gradient of dorsal protein requires the activities of the 10 maternal ‘dorsal group’ genes whose function results in the positive regulation of the nuclear uptake of the dorsal protein. Here we show that in contrast to the dorsal group genes, the maternal gene cactus acts as a negative regulator of the nuclear localization of the dorsal protein. While loss of function mutations of any of the dorsal group genes lead to dorsalized embryos, loss of cactus function results in a ventralization of the body pattern. Progressive loss of maternal cactus activity causes progressive loss of dorsal pattern elements accompanied by the expansion of ventrolateral and ventral anlagen. However, embryos still retain dorsoventral polarity, even if derived from germline clones using the strongest available, zygotic lethal cactus alleles. In contrast to the loss-of-function alleles, gain-of-function alleles of cactus cause a dorsalization of the embryonic pattern. Genetic studies indicate that they are not overproducers of normal activity, but rather synthesize products with altered function. Epistatic relationships of cactus with dorsal group genes were investigated by double mutant analysis. The dorsalized phenotype of the dorsal mutation is unchanged upon loss of cactus activity. This result implies that cactus acts via dorsal and has no independent morphogen function. In all other dorsal group mutant backgrounds, reduction of cactus function leads to embryos that express ventrolateral pattern elements and have increased nuclear uptake of the dorsal protein at all positions along the dorsoventral axis. Thus, the cactus gene product can prevent nuclear transport of dorsal protein in the absence of function of the dorsal group genes. Genetic and cytoplasmic transplantation studies suggest that the cactus product is evenly distributed along the dorsoventral axis. Thus the inhibitory function that cactus product exerts on the nuclear transport of the dorsal protein appears to be antagonized on the ventral side. We discuss models of how the action of the dorsal group genes might counteract the cactus function ventrally.

Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
cactus, a maternal gene required for proper formation of the dorsoventral morphogen gradient in Drosophila embryos
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
cactus, a maternal gene required for proper formation of the dorsoventral morphogen gradient in Drosophila embryos
S. Roth, Y. Hiromi, D. Godt, C. Nusslein-Volhard
Development 1991 112: 371-388;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
cactus, a maternal gene required for proper formation of the dorsoventral morphogen gradient in Drosophila embryos
S. Roth, Y. Hiromi, D. Godt, C. Nusslein-Volhard
Development 1991 112: 371-388;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice
  • REF-1, a protein with two bHLH domains, alters the pattern of cell fusion in C. elegans by regulating Hox protein activity
  • Centrosome migration into the Drosophila oocyte is independent of BicD and egl, and of the organisation of the microtubule cytoskeleton
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

A new society for regenerative biologists

Kenneth Poss and Elly Tanaka announce the launch of the International Society for Regenerative Biology (ISRB), which will promote research and education in the field of regenerative biology.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


An interview with Cagney Coomer

Over a virtual chat, we spoke to Cagney Coomer about her experiences in the lab, the classroom and the community centre, and why she thinks outreach and role models are vital to science.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Here, Michèle Romanos talks about her new preprint, which mixes experimentation in quail embryos and computational modelling to understand how heterogeneity in a tissue influences cell rate.

Save your spot at our next session:

10 March
Time: 9:00 (GMT)
Chaired by: Thomas Lecuit

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992