Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Rhombomere transplantation repatterns the segmental organization of cranial nerves and reveals cell-autonomous expression of a homeodomain protein
S.C. Kuratani, G. Eichele
Development 1993 117: 105-117;
S.C. Kuratani
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G. Eichele
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The developing vertebrate hindbrain consists of segmental units known as rhombomeres. Hindbrain neuroectoderm expresses 3′ Hox 1 and 2 cluster genes in characteristic patterns whose anterior limit of expression coincides with rhombomere boundaries. One particular Hox gene, referred to as Ghox 2.9, is initially expressed throughout the hindbrain up to the anterior border of rhombomere 4 (r4). Later, Ghox 2.9 is strongly upregulated in r4 and Ghox 2.9 protein is found in all neuroectodermal cells of r4 and in the hyoid crest cell population derived from this rhombomere. Using a polyclonal antibody, Ghox 2.9 was immunolocalized after transplanting r4 within the hindbrain. Wherever r4 was transplanted, Ghox 2.9 expression was cell-autonomous, both in the neuroectoderm of the graft and in the hyoid crest cell population originating from the graft. In all vertebrates, rhombomeres and cranial nerves (nerves V, VII+VIII, IX, X) exhibit a stereotypic relationship: nerve V arises at the level of r2, nerve VII+VIII at r4 and nerves IX-X extend caudal to r6. To examine how rhombomere transplantation affects this pattern, operated embryos were stained with monoclonal antibodies E/C8 (for visualization of the PNS and of even-numbered rhombomeres) and HNK-1 (to detect crest cells and odd-numbered rhombomeres). Upon transplantation, rhombomeres did not change E/C8 or HNK-1 expression or their ability to produce crest cells. For example, transplanted r4 generated a lateral stream of crest cells irrespective of the site into which it was grafted. Moreover, later in development, ectopic r4 formed an additional cranial nerve root. In contrast, transplantation of r3 (lacks crest cells) into the region of r7 led to inhibition of nerve root formation in the host. These findings emphasize that in contrast to spinal nerve segmentation, which entirely depends on the pattern of somites, cranial nerve patterning is brought about by factors intrinsic to rhombomeres and to the attached neural crest cell populations. The patterns of the neuroectoderm and of the PNS are specified early in hindbrain development and cannot be influenced by tissue transplantation. The observed cell-autonomous expression of Ghox 2.9 (and possibly also of other Hox genes) provides further evidence for the view that Hox gene expression underlies, at least in part, the segmental specification within the hindbrain neuroectoderm.

REFERENCES

    1. Alvarado-Mallart R. M.,
    2. Martinez S.,
    3. Lance-Jones C. C.
    (1990). Pluripotentiality of the 2-day-old avian germinative neuroepithelium. Dev. Biol. 139, 75–88
    1. Bartelmez G. W.,
    2. Dekaban A. S.
    (1962). The early development of the human brain.Contr. Embryol. 253, 13–32
    1. Beraneck E.
    (1884). Etude sur les replis medullaires du poulet. Rec. Zool Suisse. 4, 305–364
    1. Bronner-Fraser M.,
    2. Stern C. D.
    (1991). Effects of mesodermal tissues on avian neural crest cell migration. Dev. Biol. 143, 213–217
    1. Chisaka O.,
    2. Musci T. S.,
    3. Capecchi M. R.
    (1992). Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox gene Hox-1. 6. Nature 355, 516–520
    1. Chang S.,
    2. Fan J.,
    3. Nayak J.
    (1992). Pathfinding by cranial nerve VII (facial) motorneurons in the chick hindbrain. Development 114, 815–823
    1. Ciment G.,
    2. Weston J. A.
    (1985). Segregation of developmental abilities in neural-crest-derived cells: Identification of partially restricted intermediate cell types in the branchial arches of avian embryos. Dev. Biol 111, 73–83
    1. Ciment G.,
    2. Ressler A.,
    3. Letourneau C.,
    4. Weston J. A.
    (1986). A novel intermediate filament-associated protein, NAPA-73, that binds to different filament types at different stages of nervous system development. J. Cell Biol. 102, 246–251
    1. Detwiler S. R.
    (1934). An experimental study of spinal nerve segmentation in Amblystoma will reference to the plurisegmental contribution to the brachial plexus. J. Exp. Zool. 67, 395–441
    1. Detwiler S. R.
    (1937). Observations upon the migration of neural crest cells and upon the development of the spinal ganglia and vertebral arches in Amblystoma. Am. J. Anat. 61, 63–94
    1. Dohrn A.
    (1875). Der Ursprung der Wirbeltiere und das Prinzip des Funktionswechsels. Leipzig: Engelmann (cited by Hill, 1900).
    1. Feulgen R.,
    2. Rossenbeck H.
    (1924). Mikroskopisch-chemischer Nachweis einer Nucleinsäure vom Typus der Thymonucleinsäure und die darauf beruhende selektive Färbung von Zellkernen der mikroskopischen Präparaten. Hoppe-Seyler's Z. physiol. Chem. 135, 203–248
    1. Fraser S.,
    2. Keynes R.,
    3. Lumsden A.
    (1990). Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 334, 431–435
    1. Frohman M. A.,
    2. Boyle M.,
    3. Martin G. R.
    (1990). Isolation of the mouse Hox-2.9 gene; analysis of embryonic expression suggests that positional information along the anterior-posterior axis is specified by mesoderm. Development 110, 589–607
    1. Graham A.,
    2. Papalopulu N.,
    3. Krumlauf R.
    (1989). The murine and Drosophila homeobox gene complex have common features of organization and expression. Cell 57, 367–378
    1. Guthrie S.,
    2. Lumsden A.
    (1991). Formation and regeneration of rhombomere boundaries in the developing chick hindbrain. Development 112, 221–229
    1. Guthrie S.,
    2. Muchamore I.,
    3. Kuroiwa A.,
    4. Marshall H.,
    5. Krumlauf R.,
    6. Lumsden A.
    (1992). Neuroectodermal autonomy of Hox-2.9 expression revealed by rhombomere transpositions. Nature 356, 157–159
    1. Hamburger V.
    (1961). Experimental analysis of the dual origin of the trigeminal ganglion in the chick embryo. J. Exp. Zool. 148, 91–124
    1. Hamburger V.,
    2. Hamilton H.
    (1951). A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49–92
    1. Hill C.
    (1900). Developmental history of primary segments of the vertebrate head. Zool. Jb. 13, 393–446
    1. His W.
    (1887). Die morphologische Betrachtung der Kopfnerven. Eine kritische Studie. Arch. Anat. Physiol. 1887, 379–453
    1. Holland P. W. H.,
    2. Hogan B. L. M.
    (1988). Expression of homeobox genes during mouse development. A review. Genes Dev. 2, 773–782
    1. Hunt P.,
    2. Wilkinson D.,
    3. Krumlauf R.
    (1991). Patterning the vertebrate head: murine Hox 2 genes mark distinct subpopulations of premigratory and migrating cranial neural crest. Development 112, 43–50
    1. Itasaki N.,
    2. Ichijo H.,
    3. Hama C.,
    4. Matsuno T.,
    5. Nakamura H.
    (1991). Establishment of rostrocaudal polarity in tectal primordium: engrailed expression and subsequent tectal polarity. Development 113, 1133–1144
    1. Jones F. S.,
    2. Prediger E. A.,
    3. Bittner D. A.,
    4. DeRobertis E. M.,
    5. Edelman G. M.
    (1992). Cell adhesion molecules as targets for Hox genes: Neural cell adhesion molecule promoter activity is modulated by cotransfection with Hox-2.5 and -2.4. Proc. Natl. Acad. Sci. USA 89, 2086–2090
    1. Kalcheim C.,
    2. LeDouarin N. M.
    (1986). Requirement of a neural tube signal(s) for the differentiation of neural crest cells into dorsal root ganglia. Dev. Biol. 116, 451–466
    1. Kalcheim C.,
    2. Teillet M.-A.
    (1989). Consequences of somite manipulation on the pattern of dorsal root ganglion development. Development 106, 85–93
    1. Källen B.
    (1956). Experiments on neuromery in Ambystoma punctatum embryos. J. Embryol. Exp. Morphol. 4, 66–72
    1. Kessel M.,
    2. Gruss P.
    (1990). Variations of cervical vertebrae after expression of a Hox-1. 1 transgene in mice. Cell 61, 301–308
    1. Keynes R. J.,
    2. Stern C. D.
    (1984). Segmentation in the vertebrate nervous system. Nature 310, 786–789
    1. Kruse F.,
    2. Mailhammer R.,
    3. Wernecke H.,
    4. Faissner A.,
    5. Sommer I.,
    6. Gordis C.,
    7. Schachner M.
    (1984). Neural cell adhesion molecules and myelin-associated glycoprotein share a common carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-1. Nature 311, 153–155
    1. Kruse F.,
    2. Keilhaur G.,
    3. Faissner A.,
    4. Timpl R.,
    5. Schachner M.
    (1985). The J1 glycoprotein- A novel nervous system cell adhesion molecule of the L2/HNK-1 family. Nature 316, 146–148
    1. Kuhlenbeck H.
    (1935). Über die morphologische Bewertung der sekundären Neuromerie. Anat. Anz. 81, 129–148
    1. Kuratani S. C.
    (1991). Alternate expression of the HNK-1 epitope in rhombomeres of the chick embryo. Dev. Biol. 144, 215–219
    1. Kuratani S. C.,
    2. Kirby M. L.
    (1991). Initial migration and distribution of the cardiac neural crest in the avian embryo: An introduction to the concept of the circumpharyngeal crest. Am. J. Anat. 191, 215–227
    1. Kuratani S. C.,
    2. Kirby M. L.
    (1992). Migration and distribution of the circumpharyngeal crest cells in the avian embryo. Anat. Rec. 234, 263–280
    1. Kuratani S.,
    2. Tanaka S.
    (1990). Peripheral development of avian trigeminal nerves. Am. J. Anat. 187, 65–80
    1. Kuratani S. C.,
    2. Miyagawa-Tomita S.,
    3. Kirby M. L.
    (1991). Development of cranial nerves in the chick embryo with special reference to the alterations of cardiac branches after ablation of the cardiac neural crest. Anat. Embryol. 183, 501–514
    1. Le Douarin N. M.,
    2. Teillet M. A.,
    3. Fontaine-Perus J.
    (1984). Chimeras in the study of the peripheral nervous system of birds. In Chimeras in Developmental Biology. pp. 313–352. London: Academic Press.
    1. Lehmann F.
    (1927). Further studies on the morphogenetic role of somites in the development of the nervous system of amphibians. J. Exp. Zool. 49, 93–131
    1. Lim T. M.,
    2. Jaques K. F.,
    3. Stern C. D.,
    4. Keynes R. J.
    (1991). An evaluation of myelomeres and segmentation of the chick embryo spinal cord. Development 113, 227–238
    1. Lumsden A.
    (1990). The cellular basis of segmentation in the developing hindbrain. Trends Neurosci. 13, 329–335
    1. Lumsden A.,
    2. Keynes R.
    (1989). Segmental patterns of neuronal development in the chick hindbrain. Nature 337, 424–428
    1. Lumsden A.,
    2. Sprawson N.,
    3. Graham A.
    (1991). Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo. Development 113, 1281–1291
    1. Maden M.,
    2. Hunt P.,
    3. Eriksson U.,
    4. Kuroiwa A.,
    5. Krumlauf R.,
    6. Summerbell D.
    (1991). Retinoic acid-binding protein, rhombomeres and the neural crest. Development 111, 35–44
    1. Martinez S.,
    2. Alvarado-Mallart R.-M.
    (1990). Expression of the homeobox chick-en gene in chick/quail chimeras with inverted mes-metencephalic grafts. Dev. Biol. 139, 432–436
    1. Martinez S.,
    2. Wassef M.,
    3. Alvarado-Mallart R.-M.
    (1991). Induction of a mesencephalic phenotype in the 2-day-old chick prosencephalon is preceded by the early expression of the homeobox gene en. Neuron 6, 971–981
    1. McGarry R. C.,
    2. Helfand S. L.,
    3. Quarles R. H.,
    4. Roder J. C.
    (1983). Recognition of myelin-associated glycoprotein by the monoclonal antibody HNK-1. Nature 306, 376–378
    1. McGinnis W.,
    2. Krumlauf R.
    (1992). Homeobox genes and axial patterning. Cell 68, 283–302
    1. Miyagawa-Tomita S.,
    2. Waldo K.,
    3. Tomita H.,
    4. Kirby M. L.
    (1991). Temporospatial study of the migration and distribution of cardiac neural crest in quail/chick chimeras. Am. J. Anat. 192, 79–88
    1. Moody S. A.,
    2. Heaton M. B.
    (1983a). Developmental relationships between trigeminal motoneurons in chick embryos. I. Ganglion development is necessary for motoneuron migration. J. Comp. Neurol. 213, 327–343
    1. Moody S. A.,
    2. Heaton M. B.
    (1983b). Developmental relationships between trigeminal motoneurons in chick embryos. II. Ganglion axon ingrowth guides motoneuron migration. J. Comp. Neurol. 213, 344–349
    1. Moody S. A.,
    2. Heaton M. B.
    (1983c). Developmental relationships between trigeminal motoneurons in chick embryos. III. Ganglion perikarya direct motor axon growth in the periphery. J. Comp. Neurol. 213, 350–364
    1. Moody S. A.,
    2. Quigg M. S.,
    3. Little C. D.
    (1989). Extracellular matrix components of the peripheral pathway of chick trigeminal axons. J. Comp. Neurol. 283, 38–53
    1. Morriss-Kay G. M.,
    2. Murphy P.,
    3. Hill R. E.,
    4. Davidson D. R.
    (1991). Effects of retinoic acid excess on expression of Hox-2.9 and Krox-20 and on morphological segmentation in the hindbrain of mouse embryos. EMBO J. 10, 2985–2995
    1. Noden D. M.
    (1980a). Somatotopic functional organization of the avian trigeminal ganglion: An HRP analysis in the hatchling chick. J. Comp. Neurol. 190, 405–428
    1. Noden D. M.
    (1980b). Somatotopic organization of the embryonic chick trigeminal ganglion. J. Comp. Neurol. 190, 429–444
    1. Noden D. M.
    (1988). Interactions and fates of avian craniofacial mesenchyme. Development 103, 121–140
    1. Orr H.
    (1887). Contribution to the embryology of the lizard. J. Morphol. 1, 311–372
    1. Papalopulu N.,
    2. Clarke J. D. W.,
    3. Bradley L.,
    4. Wilkinson D.,
    5. Krumlauf R.,
    6. Holder N.
    (1991). Retinoic acid causes abnormal development and segmental patterning of the anterior hindbrain in Xenopus embryos. Development 113, 1145–1158
    1. Remak R.
    (1855). Untersuchungen über die Entwicklung der Wirbeltiere. Berlin: Reimer (cited by Hill, 1900).
    1. Riggot M. J.,
    2. Moody S. A.
    (1987). Distribution of laminin and fibronectin along peripheral trigeminal axon pathway in the developing chick. J. Comp. Neurol. 258, 580–596
    1. Shashoua V. E.,
    2. Daniel P. F.,
    3. Moore M. E.,
    4. Jungawala F. B.
    (1986). Demonstration of glucuronic acid on brain glycoproteins which react with HNK-1 antibody. Biochem. Biophys. Res. Commun. 138, 902–909
    1. Barlow P. W.,
    2. Bray D.,
    3. Green P. B.,
    4. Slack J. M. W.
    1. Slack J. M. W.
    (1991). From Egg to Embryo. 2nd ed. Developmental Biology Series 26 (eds. Barlow P. W., Bray D., Green P. B., Slack J. M. W.). Cambridge: Cambridge University Press.
    1. Stern C. D.,
    2. Keynes R. J.
    (1987). Interactions between somite cells: the formation and maintenance of segment boundaries in the chick embryo. Development 99, 261–272
    1. Stern C. D.,
    2. Jaques K. F.,
    3. Lim T. M.,
    4. Fraser S. E.,
    5. Keynes R. J.
    (1991). Segmental lineage restrictions in the chick embryo spinal cord depend on the adjacent somites. Development 113, 239–244
    1. Sundin O.,
    2. Eichele G.
    (1990). A homeo domain protein reveals the metameric nature of the developing chick hindbrain. Genes Dev. 4, 1267–1276
    1. Sundin O.,
    2. Eichele G.
    (1992). An early marker of axial pattern in the chick embryo and its respecification by retinoic acid. Development 114, 841–852
    1. Tan S. S.,
    2. Morriss-Kay G. M.
    (1985). The development and distribution of the cranial neural crest in the rat embryo. Cell Tiss. Res. 240, 403–416
    1. Tello J. F.
    (1923). Les différenciations neuronales dans l'embryon du poulet pendent les premiers jours de l'incubation. Trav. Lab. Invest. Biol. Univ. Madrid. 21, 1–93
    1. Tosney K. W.
    (1988). Proximal tissues and patterned neurite outgrowth at the lumbosacral level of the chick embryo: Partial and complete deletion of the somite. Dev. Biol. 127, 266–286
    1. Tucker G. C.,
    2. Aoyama H.,
    3. Lipinski M.,
    4. Thomas T.,
    5. Thiery J. P.
    (1984). Identical reactivity of monoclonal antibodies HNK-1 and NC-1: conservation in vertebrates on cells derived from the neural primordium and on some leukocytes. Cell Differ. 14, 223–230
    1. Vaage S.
    (1969). The segmentation of the primitive neural tube in chick embryos (Gallusdomesticus). Adv. Anat. Embryol. Cell Biol. 41, 1–88
    1. von Baer
    (1828). Über die Entwickelungsgeschichte der Thiere, Königsberg.
    1. Wen I. C.
    (1928). The anatomy of human embryos with seventeen to twenty-three pairs of somites. J. Comp. Neurol. 45, 301–376
    1. Wilkinson D.,
    2. Bhatt S.,
    3. Chavrier P.,
    4. Bravo R.,
    5. Charnay P.
    (1989). Segment-specific expression of a zinc finger gene in the developing nervous system of the mouse. Nature 337, 461–464
    1. Yntema C. L.
    (1944). Experiments on the origin of sensory ganglia of the facial nerve in the chick. J. Comp. Neurol. 81, 147–167
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Rhombomere transplantation repatterns the segmental organization of cranial nerves and reveals cell-autonomous expression of a homeodomain protein
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
Share
JOURNAL ARTICLES
Rhombomere transplantation repatterns the segmental organization of cranial nerves and reveals cell-autonomous expression of a homeodomain protein
S.C. Kuratani, G. Eichele
Development 1993 117: 105-117;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Rhombomere transplantation repatterns the segmental organization of cranial nerves and reveals cell-autonomous expression of a homeodomain protein
S.C. Kuratani, G. Eichele
Development 1993 117: 105-117;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • A BAC transgenic analysis of the Mrf4/Myf5 locus reveals interdigitated elements that control activation and maintenance of gene expression during muscle development
  • Visualization and functional characterization of the developing murine cardiac conduction system
  • Activation and repression by the C-terminal domain of Dorsal
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Interviews — Bénédicte Sanson and Kate Storey

Bénédicte Sanson and Kate Storey

Hear from Bénédicte Sanson, winner of the BSDB’s Cheryll Tickle medal, and Kate Storey, winner of the BSDB’s Waddington Medal, as they discuss their research, the future of the field and the importance of collaboration.


Review Commons launches

We're excited to be an affiliate journal for Review Commons, the ASAPbio/EMBO platform for high-quality journal-independent peer-review in the life sciences, which went live on 09 December.


Have you heard about our Travelling Fellowships?

Peter Baillie-Johnson in Switzerland

Early-career researchers can apply for up to £2,500 to offset the cost of travel and expenses to make collaborative visits to other labs around the world. Read about Peter’s experience in Switzerland, where he joined forces with the Lutolf lab to refine a protocol for producing gastruloids.


Publishing peer review reports

To continue working towards transparency around the editorial process, Development now publishes a ‘Peer review history file’ alongside published papers. Read more about the policy and see the reports for yourself in one the first papers to publish the reports (under the ‘Info & metrics’ tab).


Development at a glance — Cell interactions in collective cell migration

Extract from the poster showing specific cell-cell interactions in metastasis.

Take a look at the latest poster and accompanying article by Denise Montell and her colleagues from the University of California, where they describe a sampling of both known and new cells that migrate collectively in vivo.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2019   The Company of Biologists Ltd   Registered Charity 277992