Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Defects in heart and lung development in compound heterozygotes for two different targeted mutations at the N-myc locus
C.B. Moens, B.R. Stanton, L.F. Parada, J. Rossant
Development 1993 119: 485-499;
C.B. Moens
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B.R. Stanton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L.F. Parada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Rossant
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Two types of mutant allele, one leaky and one null, have been generated by gene targeting at the N-myc locus in embryonic stem cells and the phenotypes of mice homozygous for these mutations have been described. These mutations have shown that N-myc has a number of functions during development, including a role in branching morphogenesis in the lung, which manifests itself at birth in mice homozygous for the leaky allele, and roles in the development of the mesonephric tubules, the neuroepithelium, the sensory ganglia, the gut and the heart, which become evident at midgestation in embryos homozygous for the null allele. In an attempt to define roles for N-myc at other stages of development, we have combined the two types of N-myc mutant allele in a compound heterozygote that as a result contains approximately 15% of normal levels of N-Myc protein. Compound heterozygotes died during gestation at a time intermediate to the times of death of embryos homozygous for either mutation individually, and their death appeared to result from cardiac failure stemming from hypoplasia of the compact subepicardial layer of the myocardium. Investigation of the expression pattern of N-myc and various markers of differentiation in wild-type and compound heterozygote mutant hearts has suggested that N-myc may function in maintaining the proliferation and/or preventing the differentiation of compact layer myocytes. This study illustrates the importance of generating different mutations at a given locus to elucidate fully the function of a particular gene during development.

REFERENCES

    1. Adams J. M.,
    2. Harris A. W.,
    3. Pinkert C. A.,
    4. Corcoran L. M.,
    5. Alexander W. S.,
    6. Cory S.,
    7. Palmiter R. D.,
    8. Brinster R. L.
    (1985). The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318, 533–538
    OpenUrlCrossRefPubMedWeb of Science
    1. Alex R.,
    2. Soezeri O.,
    3. Meyer S.,
    4. Dildrop R.
    (1992). Determination of the DNA sequence recognized by the bHLH-zip domain of the N-Myc protein. Nucleic Acids Res 20, 2257–2263
    OpenUrlAbstract/FREE Full Text
    1. Amati B.,
    2. Dalton S.,
    3. Brooks M. W.,
    4. Littlewood T. D.,
    5. Evan G. I.,
    6. Land H.
    (1992). Transcriptional activation by the human c-Myc oncoprotein in yeast requires interaction with Max. Nature 359, 423–426
    OpenUrlCrossRefPubMed
    1. Amati B.,
    2. Brooks M. W.,
    3. Levy N.,
    4. Littlewood T. D.,
    5. Evan G. I.,
    6. Land H.
    (1993). Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell 72, 233–245
    OpenUrlCrossRefPubMedWeb of Science
    1. Ayer D. E.,
    2. Kretzner L.,
    3. Eisenman R. N.
    (1993). Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 72, 211–222
    OpenUrlCrossRefPubMedWeb of Science
    1. Barrett J.,
    2. Birrer M. J.,
    3. Kato G. J.,
    4. Dosaka-Akita H.,
    5. Dang C. V.
    (1992). Activation domains of L-Myc and c-Myc determine their transforming potencies in rat embryo cells. Mol. Cell Biol 12, 3130–3137
    OpenUrlAbstract/FREE Full Text
    1. Blackwell T. K.,
    2. Kretzner L.,
    3. Blackwood E. M.,
    4. Eisenman R. N.,
    5. Weintraub H.
    (1990). Sequence-specific DNA binding by the c-Myc protein. Science 250, 1149–1151
    OpenUrlAbstract/FREE Full Text
    1. Blackwood E. M.,
    2. Luescher B.,
    3. Eisenman R. N.
    (1992). Myc and Max associate in vivo. Genes Dev 6, 71–80
    OpenUrlAbstract/FREE Full Text
    1. Blackwood E. M.,
    2. Eisenman R. N.
    (1991). Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251, 1211–1217
    OpenUrlAbstract/FREE Full Text
    1. Bossone S. A.,
    2. Asselin C.,
    3. Patel A. J.,
    4. Marcu K. B.
    (1992). Maz, a zinc finger protein, binds to c-MYC and C2 gene sequences regulating transcriptional initiation and termination. Proc. Natl. Acad. Sci. USA 89, 7452–7456
    OpenUrlAbstract/FREE Full Text
    1. Challice C. E.,
    2. Viragh S.
    (1973). The architectural development of the early mammalian heart. Tissue Cell 6, 447–462
    OpenUrlCrossRef
    1. Charron J.,
    2. Malynn B. A.,
    3. Robertson E. J.,
    4. Goff S. P.,
    5. Alt F. W.
    (1990). High-frequency disruption of the N-myc gene in embryonic stem and pre-B cell lines by homologous recombination. Mol. Cell Biol 10, 1799–1804
    OpenUrlAbstract/FREE Full Text
    1. Charron J.,
    2. Malynn B. A.,
    3. Fisher P.,
    4. Stewart V.,
    5. Jeannotte L.,
    6. Goff S. P.,
    7. Robertson E. J.,
    8. Alt F. W.
    (1992). Embryonic lethality in mice homozygous for a targeted disruption of the N-myc gene. Genes Dev 6, 2248–2257
    OpenUrlAbstract/FREE Full Text
    1. Davis A. C.,
    2. Wims M.,
    3. Spotts G. D.,
    4. Hann S. R.,
    5. Bradley A.
    (1993). A null c- myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice. Genes Dev 7, 671–682
    OpenUrlAbstract/FREE Full Text
    1. DePinho R. A.,
    2. Legouy E.,
    3. Feldman L. B.,
    4. Kohl N. E.,
    5. Yancopoulos G. D.,
    6. Alt F. W.
    (1986). Structure and expression of the murine N-myc gene. Proc. Natl. Acad. Sci. USA 83, 1827–1831
    OpenUrlAbstract/FREE Full Text
    1. DePinho R. A.,
    2. Schreiber-Agus N.,
    3. Alt F. W.
    (1991). myc family oncogenes in the development of normal and neoplastic cells. Adv. Cancer Res 57, 1–46
    OpenUrlCrossRefPubMedWeb of Science
    1. Dildrop R.,
    2. Ma A.,
    3. Zimmerman K.,
    4. Hsu E.,
    5. Tesfaye A.,
    6. DePinho R. A.,
    7. Alt F. W.
    (1989). IgH enhancer-mediated deregulation of N-myc gene expression in transgenic mice: generation of lymphoid neoplasias that lack c-myc expression. EMBO J 8, 1121–1128
    OpenUrlPubMedWeb of Science
    1. Frohman M. A.,
    2. Boyle M.,
    3. Martin G. R.
    (1990). Isolation of the mouse Hox-2.9 gene; Analysis of embryonic expression suggests that positional information along the anterior-posterior axis is specified by mesoderm. Development 110, 589–607
    OpenUrlAbstract/FREE Full Text
    1. Garrell J.,
    2. Campuzano S.
    (1991). The helix-loop-helix domain: A common motif for bristles, muscles and sex. BioEssays 13, 493–498
    OpenUrlCrossRefPubMed
    1. Hirning U.,
    2. Schmid P.,
    3. Schulz W. A.,
    4. Rettenberger G.,
    5. Hameister H.
    (1991). A comparative analysis of N-myc and c-myc expression and cellular proliferation in mouse organogenesis. Mech. Dev 33, 119–126
    OpenUrlCrossRefPubMedWeb of Science
    1. Ikegaki N.,
    2. Bukovsky J.,
    3. Kennett R. H.
    (1986). Identification and characterization of the NMYC gene product in human neuroblastoma cells by monoclonal antibodies with defined specificities. Proc. Natl. Acad. Sci. USA 83, 5929–5933
    OpenUrlAbstract/FREE Full Text
    1. Ikegaki N.,
    2. Kennett R. H.
    (1989). Glutaraldehyde fixation of the primary antibody-antigen complex on nitrocellulose paper increases the overall sensitivity of immunoblot assay. J. Immunol. Met 124, 205–210
    OpenUrlCrossRefPubMed
    1. Jackson T.,
    2. Allard M. F.,
    3. Sreenan C. M.,
    4. Doss L. K.,
    5. Bishop S. P.,
    6. Swain J. L.
    (1990). The c-myc proto-oncogene regulates cardiac development in transgenic mice. Mol. Cell Biol 10, 3709–3716
    OpenUrlAbstract/FREE Full Text
    1. Kato G. J.,
    2. Barrett J.,
    3. Villa-Garcia M.,
    4. Dang C. V.
    (1990). AnC. B. Moens and others499N-mycmutant miceamino-terminal c-Myc domain required for neoplastic transformation activates transcription. Mol. Cell Biol 10, 5914–5920
    OpenUrlAbstract/FREE Full Text
    1. Kato G. J.,
    2. Lee W. M. F.,
    3. Chen L.,
    4. Dang C. V.
    (1992). Max: Functional domains and interaction with c-Myc. Genes Dev 6, 81–92
    OpenUrlAbstract/FREE Full Text
    1. Katoh K.,
    2. Kanamori A.,
    3. Wakamatsu Y.,
    4. Sawai S.,
    5. Kondoh H.
    (1991). Tissue distribution of N-myc expression in the early organogenesis period of the mouse embryo. Dev. Growth Diff 33, 29–36
    OpenUrlCrossRef
    1. Kohl N. E.,
    2. Kanda N.,
    3. Schrenck R. R.,
    4. Bruns G.,
    5. Latt S. A.,
    6. Gilbert F.,
    7. Alt F. W.
    (1983). Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell 35, 359–367
    OpenUrlCrossRefPubMedWeb of Science
    1. Kretzner L.,
    2. Blackwood E. M.,
    3. Eisenman R. N.
    (1992). Myc and Max proteins possess distinct transcriptional activities. Nature 359, 426–429
    OpenUrlCrossRefPubMed
    1. Lee W. H.,
    2. Murphree A. L.,
    3. Benedict W. F.
    (1984). Expression and amplification of the N-myc gene in primary retinoblastoma. Nature 309, 458–460
    OpenUrlCrossRefPubMed
    1. Makela T. P.,
    2. Koskinen P. J.,
    3. Vastrik I.,
    4. Alitalo K.
    (1992). Alternative forms of Max as enhancers or suppressors of Myc-Ras cotransformation. Science 256, 373–377
    OpenUrlAbstract/FREE Full Text
    1. Markwald R. R.,
    2. Mjaatvedt C. H.,
    3. Krug E. L.,
    4. Sinning A. R.
    (1990). Inductive interactions in heart development: role of cardiac adherons in cushion tissue formation. Ann. NY Acad. Sci 588, 13–25
    OpenUrlPubMedWeb of Science
    1. Millauer B.,
    2. Wizigmann-Voos S.,
    3. Schnurch H.,
    4. Martinez R.,
    5. Moller N. P. H.,
    6. Risau W.,
    7. Ullrich A.
    (1993). High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72, 835–846
    OpenUrlCrossRefPubMedWeb of Science
    1. Moens C.,
    2. Bernelot,
    3. Auerbach A. B.,
    4. Conlon R. A.,
    5. Joyner A. L.,
    6. Rossant J.
    (1992). A targeted mutation reveals a role for N-myc in branching morphogenesis in the embryonic mouse lung. Genes Dev 6, 691–704
    OpenUrlAbstract/FREE Full Text
    1. Mugrauer G.,
    2. Alt F. W.,
    3. Ekblom P.
    (1988). N-myc proto-oncogene expression during organogenesis in the developing mouse as revealed by in situ hybridization. J. Cell Biol 107, 1325–1335
    OpenUrlAbstract/FREE Full Text
    1. Mugrauer G.,
    2. Ekblom P.
    (1991). Contrasting expression patterns of three members of the myc family of protooncogenes in the developing and adult mouse kidney. J. Cell Biol 112, 13–25
    OpenUrlAbstract/FREE Full Text
    1. Mukherjee B.,
    2. Morgenbesser S. D.,
    3. DePinho R. A.
    (1992). Myc family oncoproteins function through a common pathway to transform normal cells in culture: cross-interference by Max and trans-acting dominant mutants. Genes Dev 6, 1480–1492
    OpenUrlAbstract/FREE Full Text
    1. Nau M. M.,
    2. Brooks B. J., Jr.,
    3. Carney D. N.,
    4. Gazdar A. F.,
    5. Battey J. F.,
    6. Sausville E. A.,
    7. Minna J. D.
    (1986). Human small-cell lung cancers show amplification and expression of the N-myc gene. Proc. Natl. Acad. Sci. USA 83, 1092–1096
    OpenUrlAbstract/FREE Full Text
    1. Nisen P. D.,
    2. Zimmerman K.,
    3. Cotter S. V.,
    4. Gilbert F.,
    5. Alt F. W.
    (1986). Enhanced expression of the N-myc gene in Wilms' tumours. Cancer Res 46, 6217–6222
    OpenUrlAbstract/FREE Full Text
    1. Pfeifer-Ohlsson S.,
    2. Rydnert J.,
    3. Goustin A. S.,
    4. Larsson E.,
    5. Betsholtz C.,
    6. Ohlsson R.
    (1985). Cell-type-specific pattern of myc protooncogene expression in developing human embryos. Proc. Natl. Acad. Sci. USA 82, 5050–5054
    OpenUrlAbstract/FREE Full Text
    1. Prendergast G. C.,
    2. Lawe D.,
    3. Ziff E. B.
    (1991). Association of Myn, the murine homolog of Max, with c-Myc stimulates methylation-sensitive DNA binding and Ras cotransformation. Cell 65, 395–407
    OpenUrlCrossRefPubMedWeb of Science
    1. Prendergast G. C.,
    2. Hopewell R.,
    3. Gorham B. J.,
    4. Ziff E. B.
    (1992). Biphasic effect of Max on Myc cotransformation activity and dependence on amino-and carboxy-terminal Max functions. Genes Dev 6, 2429–2439
    OpenUrlAbstract/FREE Full Text
    1. Prendergast G. C.,
    2. Ziff E. B.
    (1991). Methylation-sensitive sequence-specific DNA binding by the c-myc basic region. Science 251, 186–189
    OpenUrlAbstract/FREE Full Text
    1. Resar L. M. S.,
    2. Dolde C.,
    3. Barrett J. F.,
    4. Dang C. V.
    (1993). B-myc inhibits neoplastic transformation and transcriptional activation by c-myc. Mol. Cell Biol 13, 1130–1136
    OpenUrlAbstract/FREE Full Text
    1. Rosenbaum H.,
    2. Webb E.,
    3. Adams J. M.,
    4. Cory S.,
    5. Harris A. W.
    (1989). N-myc transgene promotes B lymphoid proliferation, elicits lymphomas and reveals cross-regulation with c-myc. EMBO J 8, 749–755
    OpenUrlPubMedWeb of Science
    1. Rumyantsev P. P.
    (1977). Interrelations of the proliferation and differentiation processes during cardiac myogenesis and regeneration. Int. Rev. Cytol 51, 187–273
    OpenUrlCrossRef
    1. Sassoon D. A.,
    2. Garner I.,
    3. Buckingham M.
    (1988). Transcripts of-cardiac and -skeletal actins are early markers for myogenesis in the mouse embryo. Development 104, 155–164
    OpenUrlAbstract
    1. Sawai S.,
    2. Shimono A.,
    3. Hanaoka K.,
    4. Kondoh H.
    (1991). Embryonic lethality resulting from disruption of both N-myc alleles in mouse zygotes. New Biologist 3, 861–869
    OpenUrlPubMedWeb of Science
    1. Sawai S.,
    2. Shimono A.,
    3. Wakamatsu Y.,
    4. Palmes C.,
    5. Hanaoka K.,
    6. Kondoh H.
    (1993). Defects of embryonic organogenesis resulting from targeted disruption of the N- myc gene in the mouse. Development 117, 1445–1455
    OpenUrlAbstract
    1. Schwab M.,
    2. Alitalo K.,
    3. Klempnauer K.,
    4. Varmus H. E.,
    5. Bishop J. M.,
    6. Gilbert F.,
    7. Brodeur G. M.,
    8. Boldstein M.,
    9. Trent J.
    (1983). Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature 305, 245–248
    OpenUrlCrossRefPubMed
    1. Spooner B. S.,
    2. Wessells N. K.
    (1970). Mammalian lung development: interactions in primordium formation and bronchial morphogenesis. J. Exp. Zool 175, 445–454
    OpenUrlCrossRefPubMedWeb of Science
    1. Stanton B. R.,
    2. Reid S. W.,
    3. Parada L. F.
    (1990). Germ line transmission of an inactive N-myc allele generated by homologous recombination in mouse embryonic stem cells. Mol. Cell Biol 10, 6755–6758
    OpenUrlAbstract/FREE Full Text
    1. Stanton B. R.,
    2. Perkins A. S.,
    3. Tessarollo L.,
    4. Sassoon D. A.,
    5. Parada L. F.
    (1992). Loss of N-myc function results in embryonic lethality and failure of the epithelial component of the embryo to develop. Genes Dev 6, 2235–2247
    OpenUrlAbstract/FREE Full Text
    1. Viragh S.,
    2. Challice C. E.
    (1981). The origin of the epicardium and the embryonic myocardial circulation in the mouse. Anat. Rec 201, 157–168
    OpenUrlCrossRefPubMed
    1. Wenzel A.,
    2. Cziepluch C.,
    3. Hamann U.,
    4. Schuermann J.,
    5. Schwab M.
    (1991). The N-myc oncoprotein is associated in vivo with the phosphoprotein Max(p20/22) in human neuroblastoma cells. EMBO J 10, 3703–3712
    OpenUrlPubMedWeb of Science
    1. Wessells N. K.
    (1970). Mammalian lung development: interactions in the formation and morphogenesis of tracheal buds. J. Exp. Zool 175, 455–466
    OpenUrlCrossRefPubMedWeb of Science
    1. Wong A. J.,
    2. Ruppert J. M.,
    3. Eggleston J.,
    4. Hamilton S. R.,
    5. Baylin S. B.,
    6. Vogelstein B.
    (1986). Gene amplification of c-myc and N-myc in small cell carcinoma of the lung. Science 233, 461–464
    OpenUrlAbstract/FREE Full Text
    1. Zervos A. S.,
    2. Gyuris J.,
    3. Brent R.
    (1993). Mxi1, a protein that specifically interacts with Max to bind Myc-Max recognition sites. Cell 72, 223–232
    OpenUrlCrossRefPubMedWeb of Science
    1. Zimmerman K.,
    2. Yancopoulos G. D.,
    3. Collum R. G.,
    4. Smith R. K.,
    5. Kohl N. E.,
    6. Denis K. A.,
    7. Nau M. M.,
    8. Witte O. N.,
    9. Toran-Allerand D.,
    10. Gee C. E.,
    11. Minna J. D.,
    12. Alt F. W.
    (1986). Differential expression of myc family genes during murine development. Nature 319, 780–783
    OpenUrlCrossRefPubMed
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Defects in heart and lung development in compound heterozygotes for two different targeted mutations at the N-myc locus
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Defects in heart and lung development in compound heterozygotes for two different targeted mutations at the N-myc locus
C.B. Moens, B.R. Stanton, L.F. Parada, J. Rossant
Development 1993 119: 485-499;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Defects in heart and lung development in compound heterozygotes for two different targeted mutations at the N-myc locus
C.B. Moens, B.R. Stanton, L.F. Parada, J. Rossant
Development 1993 119: 485-499;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992