Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Expression of the c-ret proto-oncogene during mouse embryogenesis
V. Pachnis, B. Mankoo, F. Costantini
Development 1993 119: 1005-1017;
V. Pachnis
Department of Genetics and Development, Columbia University, New York, NY 10032.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B. Mankoo
Department of Genetics and Development, Columbia University, New York, NY 10032.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F. Costantini
Department of Genetics and Development, Columbia University, New York, NY 10032.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The c-ret proto-oncogene encodes a receptor tyrosine kinase whose normal function has yet to be determined. To begin to investigate the potential role of this gene in vertebrate development, we have isolated cDNA clones representing the murine c-ret gene, and have analyzed the pattern of expression during mouse embryogenesis, using northern blotting, in situ hybridization to histological sections and whole-mount hybridization histochemistry. c-ret transcripts were detected beginning at day 8.5 of embryogenesis, and were observed in a number of cell lineages in the developing peripheral and central nervous systems, as well as in the excretory system. In the cranial region at day 8.5-9.5, c-ret mRNA was restricted to a population of neural crest cells migrating from rhombomere 4 and forming the anlage of the facioacoustic ganglion, as well as to a closely associated domain of surface ectoderm and pharyngeal endoderm. At later stages (10.5-14.5 days), c-ret mRNA was observed in all cranial ganglia. In the peripheral nervous system of the trunk, c-ret was expressed in the autonomic ganglia and in subsets of cells in the dorsal root ganglia. In the enteric nervous system, c-ret was expressed in the presumptive enteric neuroblasts of the vagal crest (day 9.0-11.5), and in the myenteric ganglia of the gut (day 13.5-14.5). c-ret mRNA was observed in several regions of the central nervous system, including the undifferentiated neuroepithelial cells of the ventral neural tube (8.5 days), the motor neurons in the spinal cord and the hindbrain (10.5-14.5 days), the embryonic neuroretina (day 13.5) and the layers of the postnatal retina containing ganglion, amacrine and horizontal cells. Outside the nervous system, c-ret was expressed in the nephric (Wolffian) duct at day 8.5-10.5, the ureteric bud epithelium (but not the surrounding metanephric mesenchyme) at day 11.0-11.5, and the growing tips of the renal collecting ducts (but not the previously formed, subcortical portions of the collecting ducts, or the mesenchyme-derived renal vesicles) at day 13.5-17.5. Our results suggest that the c-ret gene may encode the receptor for a factor involved in the proliferation, migration, differentiation or survival of a variety of neuronal cell lineages, as well as in inductive interactions during organogenesis of the kidney.

REFERENCES

    1. Altman J.,
    2. Bayer S.
    (1982). Development of the cranial nerve ganglia and related nuclei in the rat. Adv. Anat. Embryol. Cell Biol. 74
    1. Auffray C.,
    2. Rougeon F.
    (1980). Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur. J. Biochem 107, 303–314
    OpenUrlCrossRefPubMedWeb of Science
    1. Baetge G.,
    2. Gershon M. D.
    (1989). Transient catecholaminergic (TC) cells in the vagus nerves and bowel of fetal mice: relationship to the development of enteric neurons. Dev. Biol 132, 189–211
    OpenUrlCrossRefPubMedWeb of Science
    1. Baetge G.,
    2. Pintar J. E.,
    3. Gershon M. D.
    (1990). Transiently catecholaminergic (TC) cells in the bowel of the fetal rat: precursors of noncatecholaminergic enteric neurons. Dev. Biol 141, 353–380
    OpenUrlAbstract/FREE Full Text
    1. Bongarzone I.,
    2. Monzini N.,
    3. Borrello M. G.,
    4. Carcano C.,
    5. Ferraresi G.,
    6. Arighi E.,
    7. Mondellini P.,
    8. Della-Porta G.,
    9. Pierotti M. A.
    (1993). Molecular characterization of a thyroid tumor-specific transforming sequence formed by the fusion of ret tyrosine kinase and the regulatory subunit RI alpha of cyclic AMP-dependent protein kinase A. Mol. Cell Biol 13, 358–366
    OpenUrlCrossRefPubMedWeb of Science
    1. Cantley L.,
    2. Auger K.,
    3. Carpenter C. D.,
    4. Duckworth B.,
    5. Graziani A.,
    6. Kapeller R.,
    7. Soltoff S. P.
    (1991). Oncogenes and signal transduction. Cell 64, 281–302
    OpenUrlCrossRefPubMed
    1. Carnahan J. F.,
    2. Anderson D. J.,
    3. Patterson P. H.
    (1991). Evidence that enteric neurons may derive from the sympathoadrenal lineage. Dev. Biol 148, 552–561
    OpenUrlCrossRefPubMedWeb of Science
    1. Carroll S. L.,
    2. Silos-Santiago I.,
    3. Frese S. E.,
    4. Ruit K. G.,
    5. Milbrandt J.,
    6. Snider W. D.
    (1992). Dorsal root ganglion neurons expressing trk are selectively sensitive to NGF deprivation in utero. Neuron 9, 779–788
    OpenUrlCrossRefPubMed
    1. Dodd J.,
    2. Solter D.,
    3. Jessell T. M.
    (1984). Monoclonal antibodies against carbohydrate differentiation antigens identify subsets of primary sensory neurons. Nature 311, 469–472
    OpenUrlAbstract
    1. Dodd J.,
    2. Jessell T. M.
    (1985). Lactoseries carbohydrates specify subsets of dorsal root ganglion neurons projecting to the superficial dorsal horn of rat spinal cord. J. Neurosci 5, 3278–3294
    OpenUrlCrossRefPubMed
    1. Erickson R. A.
    (1968). Inductive interactions in the development of the mouse metanephros. J. Exp. Zool 169, 33–42
    OpenUrlCrossRefPubMedWeb of Science
    1. Fabien N.,
    2. Paulin C.,
    3. Santoro M.,
    4. Berger N.,
    5. Grieco M.,
    6. Galvain D.,
    7. Barbier Y.,
    8. Dubois P. M.,
    9. Fusco A.
    (1992). Detection of RET oncogene activation in human papillary thyroid carcinomas by in situ hybridisation. Br. J. Cancer 66, 1094–1098
    OpenUrlCrossRefPubMedWeb of Science
    1. Gershon M. D.,
    2. Chalazonitis A.,
    3. Rothman T. P.
    (1993). From neural crest to bowel: development of the enteric nervous system. J. Neurobiol 24, 199–214
    OpenUrlCrossRefPubMedWeb of Science
    1. Grieco M.,
    2. Santoro M.,
    3. Berlingieri M. T.,
    4. Melillo R. M.,
    5. Donghi R.,
    6. Bongarzone I.,
    7. Pierotti M. A.,
    8. Della-Porta G.,
    9. Fusco A.,
    10. Vecchio G.
    (1990). PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 60, 557–563
    OpenUrlFREE Full Text
    1. Grobstein C.
    (1953). Inductive epithelio-mesenchymal interaction in cultured organ rudiments of the mouse. Science 118, 52–55
    OpenUrlCrossRefWeb of Science
    1. Grobstein C.
    (1955). Inductive interaction in the development of the mouse metanephros. J. Exp. Zool 130, 319–340
    OpenUrlCrossRefPubMedWeb of Science
    1. Grobstein C.
    (1956). Trans-filter induction of tubules in mouse metanephrogenic mesenchyme. Exp. Cell Res 10, 424–440
    OpenUrlAbstract
    1. Guillemot F.,
    2. Cepko C. L.
    (1992). Retinal fate and ganglion cell differentiation are potentiated by acidic FGF in an in vitro assay of early retinal development. Development 114, 743–754
    OpenUrlPubMed
    1. Hafen E.,
    2. Basler K.
    (1990). Role of receptor tyrosine kinases during Drosophila development. Ciba. Found. Symp 150, 191–204
    OpenUrlAbstract
    1. Hunt P.,
    2. Wilkinson D.,
    3. Krumlauf R.
    (1991). Patterning the vertebrate head: murine Hox-2 genes mark distinct subpopulations of premigratory and migrating cranial neural crest. Development 112, 43–50
    OpenUrlPubMed
    1. Ikeda I.,
    2. Ishizaka Y.,
    3. Tahira T.,
    4. Suzuki T.,
    5. Onda M.,
    6. Sugimura T.,
    7. Nagao M.
    (1990). Specific expression of the ret proto-oncogene in human neuroblastoma cell lines. Oncogene 5, 1291–1296
    OpenUrlPubMedWeb of Science
    1. Iwamoto T.,
    2. Taniguchi M.,
    3. Asai N.,
    4. Ohkusu K.,
    5. Nakashima I.,
    6. Takahashi M.
    (1993). cDNA cloning of mouse ret proto-oncogene and its sequence similarity to the cadherin superfamily. Oncogene 8, 1087–1091
    OpenUrlPubMedWeb of Science
    1. Jhiang S. M.,
    2. Caruso D. R.,
    3. Gilmore E.,
    4. Ishizaka Y.,
    5. Tahira T.,
    6. Nagao M.,
    7. Chiu I. M.,
    8. Mazzaferri E. L.
    (1992). Detection of the PTC/retTPC oncogene in human thyroid cancers. Oncogene 7, 1331–1337
    OpenUrlCrossRefPubMedWeb of Science
    1. Johnson J. E.,
    2. Birren S. J.,
    3. Anderson D. J.
    (1990). Two rat homologues of Drosophila achaete-scute specifically expressed in neuronal precursors. Nature 346, 858–861
    OpenUrlAbstract/FREE Full Text
    1. Kaplan D. R.,
    2. Hempstead B. L.,
    3. Martin-Zanca D.,
    4. Chao M. V.,
    5. Parada L. F.
    (1991). The trk proto-oncogene product: a signal transducing receptor for nerve growth factor. Science 252, 554–558
    OpenUrlCrossRefPubMedWeb of Science
    1. Kaplan D. R.,
    2. Martin-Zanca D.,
    3. Parada L. F.
    (1991). Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature 350, 158–160
    OpenUrlAbstract
    1. Kapur R. P.,
    2. Yost C.,
    3. Palmiter R. D.
    (1992). A transgenic model for studying development of the enteric nervous system in normal and aganglionic mice. Development 116, 167–175
    OpenUrlCrossRefPubMedWeb of Science
    1. Klein R.,
    2. Jing S. Q.,
    3. Nanduri V.,
    4. O'Rourke E.,
    5. Barbacid M.
    (1991). The trk proto-oncogene encodes a receptor for nerve growth factor. Cell 65, 189–197
    OpenUrlCrossRefPubMedWeb of Science
    1. Klein R.,
    2. Nanduri V.,
    3. Jing S. A.,
    4. Lamballe F.,
    5. Tapley P.,
    6. Bryant S.,
    7. Cordon-Cardo C.,
    8. Jones K. R.,
    9. Reichardt L. F.,
    10. Barbacid M.V.,
    11. Pachnis B.,
    12. Mankoo,
    13. Costantini F.
    (1991). The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell 66, 395–4031017Expression of c-retproto-oncogene in mouse
    OpenUrlCrossRefPubMedWeb of Science
    1. Lairmore T. C.,
    2. Howe J. R.,
    3. Korte J. A.,
    4. Dilley W. G.,
    5. Aine L.,
    6. Aine E.,
    7. Wells S. A. J.,
    8. Donis-Keller H.
    (1991). Familial medullary thyroid carcinoma and multiple endocrine neoplasia type 2B map to the same region of chromosome 10 as multiple endocrine neoplasia type 2A. Genomics 9, 181–192
    OpenUrlCrossRefPubMedWeb of Science
    1. Lamballe F.,
    2. Klein R.,
    3. Barbacid M.
    (1991). trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell 66, 967–979
    OpenUrlPubMedWeb of Science
    1. Le Douarin N.,
    2. Teillet M. A.
    (1973). The migration of neural crest cells to the wall of the digestive tract in avian embryo. J. Embryol. exp. Morph 30, 31–48
    OpenUrlFREE Full Text
    1. Levi-Montalcini R.
    (1987). The nerve growth factor 35 years later. Science 237, 1154–1162
    OpenUrlAbstract
    1. Lillien L.,
    2. Cepko C.
    (1992). Control of proliferation in the retina: temporal changes in responsiveness to FGF and TGF alpha. Development 115, 253–266
    OpenUrlAbstract/FREE Full Text
    1. Lo L. C.,
    2. Johnson J. E.,
    3. Wuenschell C. W.,
    4. Saito T.,
    5. Anderson D. J.
    (1991). Mammalian achaete-scute homolog 1 is transiently expressed by spatially restricted subsets of early neuroepithelial and neural crest cells. Genes Dev 5, 1524–1537
    OpenUrlAbstract
    1. Lumsden A.,
    2. Sprawson N.,
    3. Graham A.
    (1991). Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo. Development 113, 1281–1291
    OpenUrlAbstract/FREE Full Text
    1. Martinez H. J.,
    2. Dreyfus C. F.,
    3. Jonakait G. M.,
    4. Black I. B.
    (1985). Nerve growth factor promotes cholinergic development in brain atrial cultures. Proc. Natl. Acad. Sci. USA 82, 7777–7781
    OpenUrlCrossRefPubMedWeb of Science
    1. Mulligan L. M.,
    2. Kwok J. B. J.,
    3. Healy C. S.,
    4. Elsdon M. J.,
    5. Eng C.,
    6. Gardner E.,
    7. Love D. R.,
    8. Mole S. E.,
    9. Moore J. K.,
    10. Papi L.,
    11. Ponder M. A.,
    12. Telenius H.,
    13. Tunnacliffe A.,
    14. Ponder B. A. J.
    (1993). Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 363, 458–460
    OpenUrlPubMedWeb of Science
    1. Nichols D.
    (1981). Neural crest formation in the head of the mouse embryo as observed using a new histological technique. J. Embryol. Exp. Morph 64, 105–120
    OpenUrlCrossRefPubMedWeb of Science
    1. Nichols D.
    (1986). Formation and distribution of neural crest mesenchyme to the first pharyngeal arch region of the mouse embryo. Am. J. Anat 176, 221–231
    OpenUrlCrossRefPubMedWeb of Science
    1. Noden D. M.
    (1983). The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissue. Dev. Biol 96, 144–165
    OpenUrlCrossRefPubMedWeb of Science
    1. Noden D. M.
    (1988). Interactions and fates of avian craniofacial mesenchyme. Development 103, 121–140
    OpenUrlCrossRef
    1. Pankratz D. S.
    (1931). The development of the suprarenal gland in the albino rat. Anat. Rec 49, 31–39
    OpenUrlCrossRefPubMedWeb of Science
    1. Pawson T.,
    2. Bernstein A.
    (1990). Receptor tyrosine kinases: genetic evidence for their role in Drosophila and mouse development. Trends Genet 6, 350–356
    OpenUrlCrossRefPubMedWeb of Science
    1. Ruit K. G.,
    2. Elliott J. L.,
    3. Osborne P. A.,
    4. Yan Q.,
    5. Snider W. D.
    (1992). Selective dependence of mammalian dorsal root ganglion neurons on nerve growth factor during embryonic development. Neuron 8, 573–587
    OpenUrlPubMedWeb of Science
    1. Santoro M.,
    2. Rosati R.,
    3. Grieco M.,
    4. Berlingieri M. T.,
    5. D'Amato G. L.,
    6. de-Franciscis V.,
    7. Fusco A.
    (1990). The ret proto-oncogene is consistently expressed in human pheochromocytomas and thyroid medullary carcinomas. Oncogene 5, 1595–1598
    OpenUrlAbstract/FREE Full Text
    1. Serbedzija G. N.,
    2. Bronner-Fraser M.,
    3. Fraser S.
    (1992). Vital dye analysis of cranial neural crest cell migration in the mouse embryo. Development 116, 297–307
    OpenUrlCrossRefPubMedWeb of Science
    1. Soppet D.,
    2. Escandon E.,
    3. Maragos J.,
    4. Middlemas D. S.,
    5. Reid S. W.,
    6. Blair J.,
    7. Burton L. E.,
    8. Stanton B. R.,
    9. Kaplan D. R.,
    10. Hunter T.,
    11. Nikolics K.,
    12. Parada L.
    (1991). The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cell 65, 895–903
    OpenUrlPubMedWeb of Science
    1. Szentirmay Z.,
    2. Ishizaka Y.,
    3. Ohgaki H.,
    4. Tahira T.,
    5. Nagao M.,
    6. Esumi H.
    (1990). Demonstration by in situ hybridization of ret proto-oncogene mRNA in developing placenta during mid-term of rat gestation. Oncogene 5, 701–705
    OpenUrlCrossRefPubMed
    1. Tahira T.,
    2. Ishizaka Y.,
    3. Sugimura T.,
    4. Nagao M.
    (1988). Expression of proto-ret mRNA in embryonic and adult rat tissues. Biochem. Biophys. Res. Commun 153, 1290–1295
    OpenUrlPubMedWeb of Science
    1. Tahira T.,
    2. Ishizaka Y.,
    3. Itoh F.,
    4. Sugimura T.,
    5. Nagao M.
    (1990). Characterization of ret proto-oncogene mRNAs encoding two isoforms of the protein product in a human neuroblastoma cell line. Oncogene 5, 97–102
    OpenUrlPubMedWeb of Science
    1. Tahira T.,
    2. Ishizaka Y.,
    3. Itoh F.,
    4. Nakayasu M.,
    5. Sugimura T.,
    6. Nagao M.
    (1991). Expression of the ret proto-oncogene in human neuroblastoma cell lines and its increase during neuronal differentiation induced by retinoic acid. Oncogene 6, 2333–2338
    OpenUrlCrossRefPubMedWeb of Science
    1. Takahashi M.,
    2. Ritz J.,
    3. Cooper G. M.
    (1985). Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell 42, 581–588
    OpenUrlAbstract/FREE Full Text
    1. Takahashi M.,
    2. Cooper G. M.
    (1987). Ret transforming gene encodes a fusion protein homologous to tyrosine kinases. Mol. Cell Biol 7, 1378–1385
    OpenUrlPubMedWeb of Science
    1. Takahashi M.,
    2. Buma Y.,
    3. Iwamoto T.,
    4. Inaguma Y.,
    5. Ikeda H.,
    6. Hiai H.
    (1988). Cloning and expression of the ret proto-oncogene encoding a tyrosine kinase with two potential transmembrane domains. Oncogene 3, 571–578
    OpenUrlPubMedWeb of Science
    1. Takahashi M.,
    2. Buma Y.,
    3. Taniguchi M.
    (1991). Identification of the ret proto-oncogene products in neuroblastoma and leukemia cells. Oncogene 6, 297–301
    OpenUrlCrossRefPubMedWeb of Science
    1. Tucker G.,
    2. Ciment G.,
    3. Thiery J. P.
    (1986). Pathways of avian neural crest cell migration in the developing gut. Dev. Biol 116, 439–450
    OpenUrlCrossRefPubMedWeb of Science
    1. Turner D. L.,
    2. Cepko C.
    (1987). A common progenitor for neurons and glia persists in rat retina late in development. Nature 328, 131–136
    OpenUrlCrossRefPubMedWeb of Science
    1. Turner D. L.,
    2. Snyder E. Y.,
    3. Cepko C. L.
    (1990). Lineage-independent determination of cell type in the embryonic mouse retina. Neuron 4, 833–845
    OpenUrlCrossRefPubMedWeb of Science
    1. Ullrich A.,
    2. Schlessinger J.
    (1990). Signal transduction by receptors with tyrosine kinase activity. Cell 61, 203–212
    OpenUrlCrossRefPubMedWeb of Science
    1. Wetts R.,
    2. Serbedzija G. N.,
    3. Fraser S. E.
    (1989). Cell lineage analysis reveals multipotent precursors in the ciliary margin of the frog retina. Dev. Biol 136, 254–263
    OpenUrlCrossRefPubMedWeb of Science
    1. Yarden Y.,
    2. Ullrich A.
    (1988). Growth factor receptor tyrosine kinases. Ann. Rev. Biochem 57, 443–478
    OpenUrlCrossRefPubMedWeb of Science
    1. Yntema C. L.,
    2. Hammond W. S.
    (1954). The origin of intrinsic gagnlia of trunk viscera from vagal neural crest in the chick embryo. J. Comp. Neurol 101, 515–542
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Expression of the c-ret proto-oncogene during mouse embryogenesis
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Expression of the c-ret proto-oncogene during mouse embryogenesis
V. Pachnis, B. Mankoo, F. Costantini
Development 1993 119: 1005-1017;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Expression of the c-ret proto-oncogene during mouse embryogenesis
V. Pachnis, B. Mankoo, F. Costantini
Development 1993 119: 1005-1017;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992