Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Caudalization by the amphibian organizer: brachyury, convergent extension and retinoic acid
T. Yamada
Development 1994 120: 3051-3062;
T. Yamada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Caudalization, which is proposed to be one of two functions of the amphibian organizer, initiates posterior pathways of neural development in the dorsalized ectoderm. In the absence of caudalization, dorsalized ectoderm only expresses the most anterior (archencephalic) differentiation. In the presence of caudalization, dorsalized ectorderm develops various levels of posterior neural tissues, depending on the extent of caudalization. A series of induction experiments have shown that caudalization is mediated by convergent extension: cell motility that is based on directed cell intercalation, and is essential for the morphogenesis of posterior axial tissues. During amphibian development, convergent extension is first expressed all-over the mesoderm and, after mesoderm involution, it becomes localized to the posterior mid-dorsal mesoderm, which produces notochord. This expression pattern of specific down regulation of convergent extension is also followed by the expression of the brachyury homolog. Furthermore, mouse brachyury has been implicated in the regulation of tissue elongation on the one hand, and in the control of posterior differentiation on the other. These observations suggest that protein encoded by the brachyury homolog controls the expression of convergent extension in the mesoderm. The idea is fully corroborated by a genetic study of mouse brachyury, which demonstrates that the gene product produces elongation of the posterior embryonic axis. However, there exists evidence for the induction of posterior dorsal mesodermal tissues, if brachyury homolog protein is expressed in the ectoderm. In both cases the brachyury homolog contributes to caudalization. A number of other genes appear to be involved in caudalization. The most important of these is pintavallis, which contains a fork-head DNA binding domain. It is first expressed in the marginal zone. After mesoderm involution, it is present not only in the presumptive notochord, but also in the floor plate. This is in contrast to the brachyury homolog, whose expression is restricted to mesoderm. The morphogenetic effects of exogenous RA on anteroposterior specification during amphibian embryogenesis are reviewed. The agent inhibits archencephalic differentiation and enhances differentiation of deuterencephalic and trunk levels. Thus the effect of exogenous RA on morphogenesis of CNS is very similar to that of caudalization, which is proposed to occur through the normal action of the organizer. According to a detailed analysis of the effect of lithium on morphogenesis induced by the Cynops organizer, lithium has a caudalizing effect closely comparable with that of RA. Furthermore, lithium induces convergent extension in the prechordal plate, which normally does not show cell motility.(ABSTRACT TRUNCATED AT 400 WORDS)

REFERENCES

    1. Amaya E.,
    2. Stein P. A.,
    3. Musci T. J.,
    4. Kirschner M. W.
    (1993) FGF signalling in the early specification of mesoderm in Xenopus. Development 118, 477–487
    OpenUrlAbstract
    1. Asashima M.,
    2. Nakano H.,
    3. Uchiyama H.,
    4. Sugino H.,
    5. Nakamura T.,
    6. Eto Y.,
    7. Ejima D.,
    8. Nishimatsu S.,
    9. Ueno N.,
    10. Kinoshita K.
    (1991) Presence of activin (erythroid differentiation factor) in unfertilized eggs and blastulae of Xenopus laevis. Proc. Natl. Acad. Sci. USA 88, 6511–6514
    OpenUrlAbstract/FREE Full Text
    1. Beddington R. S. P.,
    2. Rashbass P.,
    3. Wilson V.
    (1992) Brachyury- a gene affecting mouse gastrulation and early organogenesis. Development 1992, 157–165
    OpenUrl
    1. Blumberg B.,
    2. Wright C. V. E.,
    3. De Robertis E. M.,
    4. Cho K. W. Y.
    (1991) Organizer-specific genes in Xenopus laevis. Development 103, 193–209
    OpenUrl
    1. Busa W. B.,
    2. Gimmlich R. L.
    (1989) Lithium-induced teratogenesis in frog embryos prevented by a polyphsphoinositide cycle intermediate or a diacylglycerol analog. Dev. Biol 132, 315–324
    OpenUrlCrossRefPubMedWeb of Science
    1. Chen Y.,
    2. Huang L.,
    3. Solursh M.
    (1994) A concentration gradient of retinoids in the early Xenopus laevis embryos. Dev. Biol 161, 70–76
    OpenUrlCrossRefPubMedWeb of Science
    1. Chesley P.
    (1935) Development of the short-tailed mutation in the house mouse. Proc. Soc. Exp. Biol 29, 437–438
    OpenUrl
    1. Condie B. G.,
    2. Harland R. M.
    (1987) Posterior expression of a homeobox gene in early Xenopus embryos. Development 101, 93–105
    OpenUrlAbstract/FREE Full Text
    1. Cunliffe V.,
    2. Smith J. C.
    (1992) Ectopic mesoderm formation in Xenopus embryos caused by widespread expression of a Brachyury homologue. Nature 358, 427–430
    OpenUrlCrossRefPubMed
    1. Dalcq A. M.
    (1957) Sur la terminologie de l'induction. Acta anatomica 30, 242–253
    OpenUrlPubMed
    1. Dekker E. J.,
    2. Pannese M.,
    3. Houtzager E.,
    4. Timmermans A.,
    5. Boncinelli E.,
    6. Durston A.
    (1992) Xenopus Hox-2 genes are expressed sequentially after the onset of gastrulation, and are differentially inducible by retinoic acid. Development 1992, 195–202
    OpenUrl
    1. Dekker E. J.,
    2. Pannese M.,
    3. Houtzager E.,
    4. Boncinelli E.,
    5. Durston A.
    (1993) Colinearity in the Xenopus laevis Hox-2 complex. Mech. Dev 40, 3–12
    OpenUrlCrossRefPubMedWeb of Science
    1. De Robertis E. M.,
    2. Blum M.,
    3. Niehrs C.,
    4. Steinbeisser H.
    (1992) goosecoid and the organizer. Development 1992, 167–171
    OpenUrl
    1. Diaz M. R. M.,
    2. Takahashi T. C.,
    3. Takeshima K.,
    4. Takata K.
    (1990) Concanavalin A acts as a factor in establishing the dorsoventral gradient in the ventral mesoderm of newt gastrula embryos. Dev. Growth Differ 32, 117–124
    OpenUrlPubMed
    1. Dirksen M. L.,
    2. Jamrich M.
    (1992) A novel, activin-inducible, blastopore lip-specific gene of Xenopus laevis contains a fork head DNA-binding domain. Genes Dev 6, 599–608
    OpenUrlAbstract/FREE Full Text
    1. Durston A. J.,
    2. Timmermans J. P. M.,
    3. Hage W. J.,
    4. Hendriks H. F. L.,
    5. de Vries N. J.,
    6. Heideveld M.,
    7. Nieuwkoop P. D.
    (1989) Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340, 140–144
    OpenUrlCrossRefPubMed
    1. Echelard Y.,
    2. Epstein D. J.,
    3. St-Jacques B.,
    4. Shen L.,
    5. Mohler J.,
    6. McMahon J. A.,
    7. McMahon A. P.
    (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75, 1417–1430
    OpenUrlCrossRefPubMedWeb of Science
    1. Fukui A.,
    2. Nakamura T.,
    3. Uchiyama H.,
    4. Sugino K.,
    5. Sugino H.,
    6. Asashima M.
    (1994) Identification and characterization of Xenopus follistatin and activins. Dev. Biol 159, 131–139
    OpenUrl
    1. Gaunt S. J.,
    2. Sharpe P. T.,
    3. Duboule D.
    (1988) Spatially restricted domains of homeogene transcripts in mouse embryos: relation to a segmented body plan. Development 104, 169–180
    OpenUrlAbstract/FREE Full Text
    1. Gerhart J.,
    2. Danilchik M.,
    3. Doniach T.,
    4. Roberts S.,
    5. Rowning B.,
    6. Stewart R.
    (1989) Cortical rotation of the Xenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development. Development 107, 37–51
    OpenUrlAbstract/FREE Full Text
    1. Gluecksohn-Schoenheimer S.
    (1944) The development of normal and homozygous Brachyury (T/T) mouse embryos in the extra-embryonic coelome of the chick. Proc. Natl. Acad. Sci. USA 30, 134–140
    OpenUrlFREE Full Text
    1. Graham A.,
    2. Papalopulu N.,
    3. Krumlauf R.
    (1989) The murine and Drosophila homeobox complexes have common features of organization and expression. Cell 57, 367–378
    OpenUrlCrossRefPubMedWeb of Science
    1. Gruneberg H.
    (1958) Genetical studies on the skeleton of the mouse. XXIII. The development of Brachyury and Anury. J. Embryol. Exp. Morphol 6, 424–443
    OpenUrlPubMedWeb of Science
    1. Gurdon J. B.,
    2. Kao K.,
    3. Kato K.,
    4. Hopwood N. D.
    (1992) Muscle gene activation in Xenopus requires intercellular communication during gastrula as well as blastula stages. Development 1992, 137–142
    OpenUrl
    1. Hallcher L.,
    2. Sherman W.
    (1980) The effects of lithium and other agents on the activity of myo-inositol-phosphatase from bovine brain. J. Biol. Chem 255, 10896–10901
    OpenUrlAbstract/FREE Full Text
    1. Hama T.,
    2. Tsujimura H.,
    3. Kaneda T.,
    4. Takata K.,
    5. Ohara A.
    (1985) Inductive capacities for the dorsal mesoderm of the marginal zone and pharyngeal endoderm in the very early gastrula of the newt, and presumptive pharyngeal endoderm as an initiator of the organization centre. Dev. Growth Diff 27, 419–433
    OpenUrl
    1. Hashimoto K.,
    2. Fujimoto H.,
    3. Nakatsuji N.
    (1987) An ECM substratum allows mouse mesoderm cells isolated from the primitive streak to exhibit motility similar to that inside the embryo and reveals a deficiency in the T/T mutant cells. Development 110, 325–330
    OpenUrl
    1. Hemmati-Brivanlou A.,
    2. Harland R. M.
    (1989) Expression of an engrailed-related protein is induced in the anterior ectoderm of early Xenopus embryos. Development 106, 611–617
    OpenUrlAbstract
    1. Herrmann B. G.
    (1991) Expression pattern of the Brachyury gene in whole mount TWis/TWismutant embryos. Development 113, 913–917
    OpenUrlAbstract
    1. Herrmann B. G.,
    2. Labeit S.,
    3. Poustka A.,
    4. King T. R.,
    5. Lehrach H.
    (1990) Cloning of the T gene required in mesoderm formation in the mouse. Nature 343, 617–622
    OpenUrlCrossRefPubMed
    1. Holtfreter J.
    (1947) Neural induction in explants which have passed through a sublethal cytolysis. J. Exp. Zool 106, 197–222
    OpenUrlPubMed
    1. Hornbruch A.,
    2. Wolpert L.
    (1986) Positional signalling by Hensen's node when grafted to the chick limb bud. J. Embryol. Exp. Morphol 94, 257–265
    OpenUrlPubMed
    1. Jones C. M.,
    2. Lyons K. M.,
    3. Lapan P. M.,
    4. Wright C. V. E.,
    5. Hogan B. M. L.
    (1992) DVR-4 (bone morphogenetic protein-4) as a posterior-ventralizing factor in Xenopus mesoderm induction. Development 115, 639–648
    OpenUrlAbstract
    1. Kao K. R.,
    2. Elinson R. P.
    (1988) The entire mesodermal mantle behaves as Spemann's organizer in dorso-anterior enhanced Xenopus laevis embryos. Dev. Biol 127, 64–77
    OpenUrlCrossRefPubMedWeb of Science
    1. Kao K. R.,
    2. Elinson R. P.
    (1989) Dorsalization of mesoderm induction by lithium. Dev. Biol 132, 81–90
    OpenUrlCrossRefPubMedWeb of Science
    1. Kao K. R.,
    2. Masui Y.,
    3. Elinson R. P.
    (1986) Lithium-induced respecification of pattern in Xenopus laevis embryos. Nature 322, 371–373
    OpenUrlCrossRefPubMed
    1. Karasaki S.
    (1957) On the mechanism of the dorsalization in the ectoderm of Triturus gastrulae caused by precytolytic treatments. I. Cytological and morphogenetic effects of various agents. Embryologia 3, 317–334
    OpenUrl
    1. Keller R. E.
    (1975). Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas amd morphogenetic movement of the superficial layer. Dev. Biol 42, 222–241
    OpenUrlCrossRefPubMedWeb of Science
    1. Keller R. E.
    (1976) Vital dye mapping of the gastrula and neurula of Xenopus laevis. II. Prospective areas and morphogenetic movement of the deep layer. Dev. Biol 51, 118–137
    OpenUrlCrossRefPubMedWeb of Science
    1. Keller R. E.,
    2. Shih J.,
    3. Domingo C.
    (1992) The patterning of protrusive activity during convergence and extension of the Xenopus organizer. Development 1992, 81–91
    OpenUrl
    1. Kimmel C. B.,
    2. Schilling T. F.,
    3. Hatta K.
    (1991) Patterning of body segment of the zebrafish embryo. Current Topics Dev. Biol 25, 77–110
    OpenUrlPubMed
    1. Kispert A.,
    2. Herrmann B. G.
    (1994) Immunohistochemical analysis of the brachyury protein in wild-type and mutant mouse embryos. Dev. Biol 161, 179–193
    OpenUrlCrossRefPubMedWeb of Science
    1. Knöchel W.
    (1992) Activin A induced expression of a fork head related gene in posterior chordamesoderm (notochord) of Xenopus laevis embryos. Mech. Dev 38, 157–165
    OpenUrlCrossRefPubMedWeb of Science
    1. Köster M.,
    2. Plessow S.,
    3. Clement J. H.,
    4. Lorenz A.,
    5. Tiedemann H.,
    6. Knöchel W.
    (1991). Bone morphogenetic protein 4 (BMP-4) a member of the TGF-b family, in early embryos of Xenopus laevis. An analysis of mesoderm-inducing activity. Mech. Dev 33, 191–199
    OpenUrlCrossRefPubMedWeb of Science
    1. Kraus S.,
    2. Concordet J.-P.,
    3. Ingham P. W.
    (1993) A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75, 1431–1444
    OpenUrlCrossRefPubMedWeb of Science
    1. Lamb T. M.,
    2. Knecht A. K.,
    3. Smith W. C.,
    4. Stachel S. E.,
    5. Economides A. N.,
    6. Stahl N.,
    7. Yancopoulose G. D.,
    8. Harland R. M.
    (1993) Neural induction by the secreted polypeptide Noggin. Science 262, 713–718
    OpenUrlAbstract/FREE Full Text
    1. Lettice L. A.,
    2. Slack J.M.W.
    (1993) Properties of the dorsalizing signal in gastrulae of Xenopus laevis. Development 117, 263–271
    OpenUrlAbstract/FREE Full Text
    1. McGinnis W.,
    2. Krumlaut R.
    (1992) Homeobox genes and axial patterning. Cell 68, 283–302
    OpenUrlCrossRefPubMedWeb of Science
    1. Mitrani E.,
    2. Ziv T.,
    3. Thomsen G.,
    4. Shimoni Y.,
    5. Melton D. A.,
    6. Bril A.
    (1990) Activin can induce the formation of axial structures and is expressed in the hypoblast of the chick. Cell 63, 495–501
    OpenUrlCrossRefPubMedWeb of Science
    1. Niehrs C.,
    2. Keller R.,
    3. Cho K. W. Y.,
    4. De Robertis E. M.
    (1993) The homeobox gene goosecoid controls cell migration in Xenopus embryo. Cell 72, 491–503
    OpenUrlCrossRefPubMedWeb of Science
    1. Nieuwkoop P. D.,
    2. Albers B.
    (1990) The role of competence in the cranio-caudal segregation of the central nervous system. Dev. Growth Differ 32, 23–31
    OpenUrlCrossRef
    1. Nieuwkoop P. D.,
    2. Bloemsma F. F. S. N.,
    3. Broterenbrood E. C.,
    4. Hoessels E. L. M.,
    5. Kremer A.,
    6. Meyer G.,
    7. Verheyen F. J.
    (1952) Activation and organization of the central nervous system in amphibians. Part I, II, III. J. Exp. Zool 120, 1–108
    OpenUrlPubMed
    1. Ogi K.
    (1958) The effect of sodium thiocyanate on isolates of the presumptive ectoderm and medio-ventral marginal zone of Triturus gastrulae. J. Embryol. exp. Morphol 6, 412–417
    OpenUrlPubMed
    1. Ponzoni M.,
    2. Lanciotti M.
    (1990) Retinoic acid rapidly decreases phosphatidyl-inositol turn-over during neuroblastoma cell differentiation. J. Neurochem 54, 540–546
    OpenUrlCrossRefPubMed
    1. Riddle R. D.,
    2. Johnson R. L.,
    3. Laufer E.,
    4. Tabin C.
    (1993) Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401–1416
    OpenUrlCrossRefPubMedWeb of Science
    1. Roelink H.,
    2. Augsburger A.,
    3. Heemskerk J.,
    4. Korzh V.,
    5. Norlin S.,
    6. Ruiz i Altaba A.,
    7. Tanabe Y.,
    8. Placzek M.,
    9. Edlund T.,
    10. Jessell T. M.,
    11. Dodd J.
    (1994) Floor plate and motor neuron induction by vhh-1 a vertebrate homolog of hedgehog expressed by the notochord. Cell 76, 761–775
    OpenUrlCrossRefPubMedWeb of Science
    1. Ruiz i Altaba A.,
    2. Choi T.,
    3. Melton D. A.
    (1992) Expression of the Xhox-3 homeobox protein in Xenopus embryos. Blocking its early function suggests the requirement of Xhox-3 for normal posterior development of the neural axis. Dev. Growth Differ 33, 651–660
    OpenUrlCrossRef
    1. Ruiz i Altaba A.,
    2. Jessell T. M.
    (1991) Retinoic acid modifies mesodermal patterning in early Xenopus embryos. Genes Dev 5, 175–187
    OpenUrlAbstract/FREE Full Text
    1. Ruiz i Altaba A.,
    2. Jessell T. M.
    (1991) Retinoic acid modifies the pattern of cell differentiation in the central nervous system of neurula stage Xenopus embryos. Development 112, 945–958
    OpenUrlAbstract
    1. Ruiz i Altaba A.,
    2. Jessell T. M.
    (1992) Pintallavis, gene expressed in the organizer and mid-line cells of frog embryos: involvement in the development of the neural axis. Development 116, 81–93
    OpenUrlAbstract
    1. Ruiz i Altaba A.,
    2. Melton D. A.
    (1989) Involvement of the Xenopus homeobox gene Xhox-3 in pattern formation along the anterior-posterior axis. Cell 57, 317–329
    OpenUrlCrossRefPubMedWeb of Science
    1. Ruiz i Altaba A.,
    2. Melton D.A.
    (1989) Bimodal and graded expression of the Xenopus homeobox gene Xhox-3 during embryonic development. Development 106, 173–183
    OpenUrlAbstract
    1. Scharf S. R.,
    2. Gerhart J. C.
    (1983) Axis determination of Xenopus laevis: A critical period before first cleavage, identified by the common effects of cold, pressure and ultraviolet irradiation. Dev. Biol 99, 75–87
    OpenUrlCrossRefPubMedWeb of Science
    1. Sharpe C. R.
    (1992) Retinoic acid and the late phase of neural induction. Development 1992, 203–207
    OpenUrl
    1. Sharpe C. R.,
    2. Pluck A.,
    3. Gurdon J. B.
    (1989) XIF3, a Xenopus peripherin gene, requires an inductive signal for enhanced expression in anterior neural tissue. Development 107, 701–704
    OpenUrlAbstract/FREE Full Text
    1. Simeone A.,
    2. Acampra D.,
    3. Aricon L.,
    4. Andrews P. W.,
    5. Boncinelli E.,
    6. Mavilio F.
    (1990) Sequential activation of Hox 2 homeobox genes by retinoic acid in human embryonal carcinoma cells. Nature 346, 763–766
    OpenUrlCrossRefPubMed
    1. Simeone A.,
    2. Acampora D.,
    3. Gulisano M.,
    4. Stornaiuolo A.,
    5. Boncinelli E.
    (1992) Nested expression domains of four homeobox genes in developing rostral brain. Nature 358, 687–690
    OpenUrlCrossRefPubMed
    1. Simeone A.,
    2. Gulisano M.,
    3. Acampora D.,
    4. Stornaiuolo A.,
    5. Rambaldi M.,
    6. Boncinelli E.
    (1992) Two vertebrate homeobox genes related to the Drosophila empty spiracles gene are expressed in the embryonic cerebral cortex. EMBO J 11, 2541–2550
    OpenUrlPubMedWeb of Science
    1. Simeone A.,
    2. Acampora D.,
    3. Mallamaci A.,
    4. Stornaiuolo A.,
    5. D'Apice M. R.,
    6. Nigro V.,
    7. Boncinelli E.
    (1933) A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J 12, 2735–2747
    OpenUrl
    1. Slack J. M. W.,
    2. Tannahill D.
    (1992) Mechanism of anteroposterior specification in vertebrates. Lessons from the amphibians. Development 114, 285–302
    OpenUrlAbstract
    1. Smith J. C.
    (1994) Hedgehog, the floor plate, and the zone of polarizing activity. Cell 76, 193–196
    OpenUrlCrossRefPubMedWeb of Science
    1. Smith W. C.,
    2. Harland R. M.
    (1992) Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70, 829–840
    OpenUrlCrossRefPubMedWeb of Science
    1. Smith J. C.,
    2. Howard J. E.
    (1992) Mesoderm-inducing factors and the control of gastrulation. Development 1992, 127–136
    OpenUrl
    1. Smith J. C.,
    2. Price B. M. J.,
    3. Green J. B. A.,
    4. Weigel D.,
    5. Herrmann B. G.
    (1991) Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell 67, 79–87
    OpenUrlCrossRefPubMedWeb of Science
    1. Smith W. C.,
    2. Knecht A. K.,
    3. Wu M.,
    4. Harland R. M.
    (1993) Secreted noggin protein mimics the Spemann Organizer in dorsalizing Xenopus mesoderm. Nature 361, 547–549
    OpenUrlCrossRefPubMed
    1. Spratt N. T.
    (1955) Analysis of the organizer center in the early chick embryo. I. Localization of prospective notochord and somite cells. J. Exp. Zool 128, 121–163
    OpenUrlCrossRef
    1. Spratt N. T.
    (1957) Analysis of the organizer center in the early chick embryo. II. Studies of the mechanics of notochord elongation, and somite formation. J. Exp. Zool 134, 577–612
    OpenUrlCrossRefPubMedWeb of Science
    1. Steinbeisser H.,
    2. De Robertis E. M.,
    3. Ku M.,
    4. Kesler D. S.,
    5. Melton D. A.
    (1993) Xenopus axis formation: induction of goosecoid by injected Xwnt-8 and activin mRNAs. Development 118, 499–507
    OpenUrlAbstract
    1. Stott D.,
    2. Kispert A.,
    3. Herrmann B. G.
    (1993) Rescue of the tail defect of Brachyury mice. Genes Dev 7, 199–203
    OpenUrl
    1. Suzuki A. S.,
    2. Mifune Y.,
    3. Kaneda T.
    (1984) Germ layer interactions in pattern formation of amphibian mesoderm during primary embryonic induction. Dev. Growth Differ 26, 81–94
    OpenUrlCrossRef
    1. Symes K.,
    2. Smith J. C.
    (1987) Gastrulation movement provides an early marker of mesoderm induction in Xenopus laevis. Development 101, 339–349
    OpenUrlAbstract
    1. Taira M.,
    2. Jamrich M.,
    3. Good P. J.,
    4. David I. B.
    (1992) The LIM domain-containing homeobox gene Xlim-1 is expressed specifically in the organizer region of Xenopus gastrula embryos. Genes Dev 6, 356–366
    OpenUrlAbstract/FREE Full Text
    1. Takata K.,
    2. Yamazaki-Yamamoto K.,
    3. Ishii I.,
    4. Takahashi N.
    (1984) Glycoproteins responsive to the neural-inducing effect of Concanavalin A in Cynops presumptive ectoderm. Cell Diff 14, 25–31
    OpenUrlCrossRefPubMed
    1. Thomsen G. T.,
    2. Woolf T.,
    3. Whitman M.,
    4. Sokol S.,
    5. Vaughan J.,
    6. Vale W.,
    7. Melton D. A.
    (1990) Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures. Cell 63, 485–493
    OpenUrlCrossRefPubMedWeb of Science
    1. von Dassow G.,
    2. Schmidt J. E.,
    3. Kimelman D.
    (1993) Induction of the Xenopus organizer: expression and regulation of Xnot, a novel FGF and activin-regulated homeobox gene. Genes Dev 7, 355–366
    OpenUrlAbstract/FREE Full Text
    1. von Woellwarth C.
    (1956) Entwicklungsphysiologie der Wirbeltiere. Fortschritte der Zoologie 10, 458–560
    OpenUrl
    1. Wagner M.,
    2. Thaller C.,
    3. Jessell M. T.,
    4. Eichele G.
    (1990) Polarizing activity and retinoid synthesis in the floor plate of the neural tube. Nature 345, 819–822
    OpenUrlCrossRefPubMed
    1. Wilkinson D. G.,
    2. Bhatt S. S.,
    3. Herrmann B. G.
    (1990) Expression pattern of the mouse T gene and its role in mesoderm formation. Nature 343, 657–659
    OpenUrlCrossRefPubMedWeb of Science
    1. Wright C. V. E.,
    2. Morita E. A.,
    3. Wilkin D. J.,
    4. De Robertis E. M.
    (1990) The Xenopus XIHbox-6 homeo protein, a marker of posterior neural induction, is expressed in proliferating neurons. Development 109, 225–234
    OpenUrlAbstract
    1. Yamada T.
    (1939) Über bedeutungsfremde Selbstdifferenzierung der präsumptiven Ruckemmuskulatur des Molchkeimes bei Isolation. Okajimas Folia Anatomica Japonica 18, 565–568
    OpenUrl
    1. Yamada T.
    (1940) Beeinflussung der Differenzierungsleistung desisoliertenMesoderms von Molchkeimen durch zugefugtes Chorda und neural Material. Okajimas Folia Anatomica Japonica 19, 131–197
    OpenUrl
    1. Yamada T.
    (1950) Regional differentiation of the isolated ectoderm of the Triturus gastrula induced through a protein extract. Embryologia 1, 1–20
    OpenUrl
    1. Yamada T.
    (1950) Dorsalization of the ventral marginal zone of the Triturus gastrula. I. Ammonia-treatment of the medioventral marginal zone. Biol. Bull 98, 98–121
    OpenUrlAbstract/FREE Full Text
    1. Yamada T.
    (1990) Regulations in the induction of the organized neural system in amphibian embryos. Development 110, 653–659
    OpenUrlAbstract/FREE Full Text
    1. Yanagisawa K. O.
    (1990) Does the T gene determine the anteroposterior axis of a mouse embryo?. Japanese J. Genet 65, 287–297
    OpenUrlCrossRefPubMed
    1. Yanagisawa K. O.,
    2. Fujimoto H.,
    3. Urushihara H.
    (1981) Effects of the Brachyury (T) mutation on morphogenetic movement in the mouse embryo. Dev. Biol 87, 242–248
    OpenUrlCrossRefPubMed
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Caudalization by the amphibian organizer: brachyury, convergent extension and retinoic acid
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Caudalization by the amphibian organizer: brachyury, convergent extension and retinoic acid
T. Yamada
Development 1994 120: 3051-3062;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Caudalization by the amphibian organizer: brachyury, convergent extension and retinoic acid
T. Yamada
Development 1994 120: 3051-3062;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Drosophila puckered regulates Fos/Jun levels during follicle cell morphogenesis
  • A BAC transgenic analysis of the Mrf4/Myf5 locus reveals interdigitated elements that control activation and maintenance of gene expression during muscle development
  • Visualization and functional characterization of the developing murine cardiac conduction system
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992