Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Expression of activin subunits, activin receptors and follistatin in postimplantation mouse embryos suggests specific developmental functions for different activins
A. Feijen, M.J. Goumans, A.J. van den, Eijnden-van Raaij
Development 1994 120: 3621-3637;
A. Feijen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.J. Goumans
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.J. van den
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eijnden-van Raaij
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Using in situ hybridization we have studied the localization of the messenger RNAs encoding the inhibin/activin subunits (alpha, beta A, beta B), the activin-binding protein follistatin and activin receptors (IIA, IIB) in mouse embryos during postimplantation development. From 6.5- to 9.5-days post coitum (p.c.) activin beta A and beta B subunit expression was restricted to the decidua, while activin receptor type IIB messages were exclusively detected in the embryo. Expression of activin receptor type IIA was apparent in the embryo as early as 9.5 days p.c. In contrast, follistatin transcripts were present in both the decidua and the embryo at the early postimplantation stages. In particular, the primitive streak region, specific rhombomeres in the developing hindbrain, somites, paraxial mesoderm and parietal endoderm cells attached to the Reichert's membrane showed strong expression of follistatin. In 10.5- and 12.5-day embryos expression of the beta A subunit message was abundant in mesenchymal tissue, in particular in the developing face, the body wall, the heart, precartilage condensations in the limb and in the mesenchyme of structures that show both epithelial and mesenchymal components, including tissues of the embryonic digestive, respiratory and genital tracts. The distribution of beta B transcripts was quite different from that observed for beta A. beta B is strongly expressed in selected regions of the brain, in particular the fore- and hindbrain, and in the spinal cord. Specific hybridization signals were also present in the epithelium of the stomach and oesophagus. Common sites of beta A and beta B expression are blood vessels, intervertebral disc anlagen, mesenchymal condensations in the flank region and the gonad primordium. The latter organ is the only site in the embryo where the alpha subunit is expressed, and thus where inhibit activity may be present. During the period of organogenesis the sites of expression of activin receptors type IIA and IIB messenger RNA (mRNA) generally coincide with or are adjacent to the sites of beta subunit expression. Differences in the expression patterns of the receptor RNAs are the whisker follicles, where type IIA is expressed, and the metanephros and the forebrain where type IIB transcripts are present. Taken together, the present data suggest that follistatin, but not one of the known activin forms (A,B,AB) is involved in early postimplantation development.(ABSTRACT TRUNCATED AT 400 WORDS)

REFERENCES

    1. Albano R. M.,
    2. Godsave S. F.,
    3. Huylebroeck D.,
    4. van Nimmen K.,
    5. Isaacs H. V.,
    6. Slack J. M. W.,
    7. Smith J. C.
    (1990) A mesoderm-inducing factor produced by WEHI-3 murine myelomonocytic leukemia cells is activin A. Development 110, 435–443
    OpenUrlAbstract/FREE Full Text
    1. Albano R. M.,
    2. Groome N.,
    3. Smith J. C.
    (1993) Activins are expressed in preimplantation mouse embryos and in ES and EC cells and are regulated on their differentation. Development 117, 711–723
    OpenUrlAbstract
    1. Albano R. M.,
    2. Arkell R.,
    3. Beddington R. S. P.,
    4. Smith J. C.
    (1994) Expression of inhibin subunits and follistatin during postimplantation mouse development: decidual expression of activin and expression of follistatin in primitive streak, somites and hindbrain. Development 120, 803–813
    OpenUrlAbstract
    1. Attisano L.,
    2. Carcamo J.,
    3. Ventura F.,
    4. Weis F. M. B.,
    5. Massague J.,
    6. Wrana J. L.
    (1993) Identification of human activin and TGF-type I receptors that form heteromeric kinase complexes with type II receptors. Cell 75, 671–680
    OpenUrlCrossRefPubMedWeb of Science
    1. Attisano L.,
    2. Wrana J. L.,
    3. Cheifetz S.,
    4. Massague J.
    (1992) Novel activin receptors: distinct genes and alternative mRNA splicing generate a repertoire of serine/threonine kinase receptors. Cell 68, 97–108
    OpenUrlCrossRefPubMedWeb of Science
    1. Blum M.,
    2. Gaunt S. J.,
    3. Cho K. W. Y.,
    4. Steinbeisser H.,
    5. Blumberg B.,
    6. Bittner D.,
    7. DeRobertis E. M.
    (1992) Gastrulation in the mouse: the role of the homeobox gene goosecoid. Cell 69, 1097–1106
    OpenUrlCrossRefPubMedWeb of Science
    1. Carcamo J.,
    2. Weis F. M. B.,
    3. Ventura F.,
    4. Wieser R.,
    5. Wrana J.,
    6. Attisano L.,
    7. Massague J.
    (1994) Type I receptors specify growth-inhibitory and transcriptional responses to transforming growth factorand activin. Mol. Cell. Biol 14, 3810–3821
    OpenUrlAbstract/FREE Full Text
    1. Centrella M.,
    2. McCarthy T. L.,
    3. Canalis E.
    (1991) Activin-A binding and biochemical effects in osteoblast-enriched cultures from fetal-rat parietal bone. Mol. Cell. Biol. 11, 250
    OpenUrlAbstract/FREE Full Text
    1. Childs S. R.,
    2. Wrana J. L.,
    3. Arora K.,
    4. Attisano L.,
    5. O'Connor M. B.,
    6. Massague J.
    (1993). Identification of a Drosophila activin receptor. Proc. Natl. Acad. Sci. USA 90, 9475–9479
    OpenUrlCrossRefPubMedWeb of Science
    1. Donaldson C. J.,
    2. Mathews L. S.,
    3. Vale W. W.
    (1992) Molecular cloningand binding properties of the human type II activin receptor. Biochem. Biophys. Res. Commun 184, 310–316
    OpenUrlAbstract/FREE Full Text
    1. Ebner R.,
    2. Chen R. H.,
    3. Shum L.,
    4. Lawler S.,
    5. Zioncheck T. F.,
    6. Lee A.,
    7. Lopez A. R.,
    8. Derynck R.
    (1993) Cloning of a type I TGF-receptor and its effect on TGF- binding to the type II receptor. Science 260, 1344–1348
    OpenUrlAbstract/FREE Full Text
    1. Ebner R.,
    2. Chen R. H.,
    3. Lawler S.,
    4. Zioncheck T.,
    5. Derynck R.
    (1993) Determination of type I receptor specificity by the type II receptors for TGF- or activin. Science 262, 900–902
    OpenUrlCrossRefPubMedWeb of Science
    1. Esch F. S.,
    2. Shimasaki S.,
    3. Cooksey K.,
    4. Mercado M.,
    5. Mason A. J.,
    6. Ying S. Y.,
    7. Ueno N.,
    8. Ling N.
    (1987) Complementary deoxyribonucleic acid (cDNA) cloning and DNA sequence analysis of rat ovarian inhibins. Mol. Endocrinol 1, 388–396
    OpenUrlCrossRefPubMedWeb of Science
    1. Fukui A.,
    2. Nakamura T.,
    3. Sugino K.,
    4. Takio K.,
    5. Uchiyama H.,
    6. Asashima M.,
    7. Sugino H.
    (1993) Isolation and characterization of Xenopus follistatin and activins. Dev. Biol 159, 131–139
    OpenUrlCrossRefPubMed
    1. Green J. B. A.,
    2. Smith J. C.
    (1990) Graded changes in dose of a Xenopus activin A homologue elicit stepwise transitions in embryonic cell fate. Nature 347, 391–394
    OpenUrlCrossRefPubMed
    1. Hashimoto M.,
    2. Kondo S.,
    3. Sakurai T.,
    4. Etoh Y.,
    5. Shibai H.,
    6. Muramatsu M.
    (1990) Activin/EDF as an inibitor of neural differentiation. Biochem. Biophys. Res. Commun 173, 193–200
    OpenUrlAbstract/FREE Full Text
    1. Hashimoto M.,
    2. Shoda A.,
    3. Inoue S.,
    4. Yamada R.,
    5. Kondo T.,
    6. Sakurai T.,
    7. Ueno N.,
    8. Muramatsu M.
    (1992) Functional regulation of osteoblastic cells by the interaction of activin A with follistatin. J. Biol. Chem 267, 4999–5004
    OpenUrlCrossRefPubMedWeb of Science
    1. He W. W.,
    2. Gustafson M. L.,
    3. Hirobe S.,
    4. Donahoe P. K.
    (1993) Developmental expression of four novel serine/threonine kinase receptors homologous to the activin/transforming growth factor-type II receptor family. Dev. Dynamics 196, 133–142
    OpenUrlCrossRefPubMed
    1. Hemmati-Brivanlou A.,
    2. Melton D. A.
    (1992) A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Nature 359, 609–614
    OpenUrlCrossRefPubMedWeb of Science
    1. Hemmati-Brivanlou A.,
    2. Melton D. A.
    (1994) Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 77, 273–281
    OpenUrlCrossRefPubMedWeb of Science
    1. Hemmati-Brivanlou A.,
    2. Kelly O. G.,
    3. Melton D. A.
    (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77, 283–295
    OpenUrlAbstract/FREE Full Text
    1. Hino M.,
    2. Tojo A.,
    3. Miyazono K.,
    4. Miura Y.,
    5. Chiba S.,
    6. Eto Y.,
    7. Shibai H.,
    8. Takaku F.
    (1989) Characterization of cellular receptors for erythroid differentiation factor on murine erythroleukemia cells. J. Biol. Chem 264, 10309–10314
    OpenUrlCrossRefPubMedWeb of Science
    1. Inouye S.,
    2. Guo Y.,
    3. De Paolo L.,
    4. Shimonaka M.,
    5. Ling N.,
    6. Shimasaki S.
    (1991) Recombinant expression of human follistatin with 315 and 288 amino acids: chemical and biological comparison with native porcine follistatin. Endocrinology 129, 815–822
    OpenUrlCrossRefPubMedWeb of Science
    1. Kogawa K.,
    2. Nakamura T.,
    3. Sugino T.,
    4. Takio K.,
    5. Titani K.,
    6. Sugino H.
    (1991) Activin-binding protein is present in pituitary. Endocrinology 128, 1434–1440
    OpenUrlCrossRefPubMedWeb of Science
    1. Kondo S.,
    2. Hashimoto M.,
    3. Etoh Y.,
    4. Murata M.,
    5. Shibai H.,
    6. Muramatsu M.
    (1989) Identification of the two types of specific receptor for activin/EDF expressed on Friend leukemia and embryonal carcinoma cells. Biochem. Biophys. Res. Commun 161, 1267–1272
    OpenUrlCrossRefPubMedWeb of Science
    1. Kondo M.,
    2. Tashiro K.,
    3. Fuji G.,
    4. Asano M.,
    5. Miyoshi R.,
    6. Yamada R.,
    7. Muramatsu M.,
    8. Shiokawa K.
    (1991) Activin receptor mRNA is expressed early in Xenopus embryogenesis and the level of the expression affects the body axis formation. Biochem. Biophys. Res. Commun 181, 684–690
    OpenUrlAbstract
    1. Lawler S.,
    2. Candia A. F.,
    3. Ebner R.,
    4. Shum L.,
    5. Lopez A. R.,
    6. Moses H. L.,
    7. Wright C. V. E.,
    8. Derynck R.
    (1994) The murine type II TGF-receptor has a coincident embryonic expression and binding preference for TGF- 1. Development 120, 165–175
    OpenUrlCrossRefPubMed
    1. Legerski R.,
    2. Zhou X.,
    3. Dresback J.,
    4. Eberspaecker H.,
    5. McKinney S.,
    6. Segarini P.,
    7. De Crombrugghe B.
    (1992) Molecular cloning and characterization of a novel rat activin receptor. Biochem. Biophys. Res. Commun 183, 672–679
    OpenUrlCrossRefPubMed
    1. Ling N.,
    2. Ueno N.,
    3. Ying S.,
    4. Esch F.,
    5. Shimasaki S.,
    6. Hotta M.,
    7. Cuevas P.,
    8. Guillemin R.
    (1988) Inhibins and activins. Vitamins and hormones 44, 1–46
    OpenUrlAbstract
    1. Lu R. Z.,
    2. Matsuyama S.,
    3. Nishihara M.,
    4. Takahashi M.
    (1993) Developmental expression of activin/inhibinA, B andsubunits and activin receptor IIB genes in preimplantation mouse embryos. Biol. Reprod 49, 1163–1169
    OpenUrlCrossRefPubMedWeb of Science
    1. Manova K.,
    2. Paynton B. V.,
    3. Bachvarova R. F.
    (1992) Expresssion ofactivins and TGF 1 and2 RNAs in early postimplantation mouse embryos and uterine decidua. Mech. Dev 36, 141–152
    OpenUrlCrossRefPubMed
    1. Mason J.,
    2. Berkemeier L. M.,
    3. Schmelzer C. H.,
    4. Schwall R. H.
    (1989) Activin B: Precursor sequences, genomic structure and in vitro activities. Mol. Endocrinol 3, 1352–1358
    OpenUrlCrossRefPubMedWeb of Science
    1. Mathews L. S.,
    2. Vale W. W.
    (1991) Expression cloning of an activin receptor, a predicted transmembrane serine kinase. Cell 65, 973–982
    OpenUrlAbstract/FREE Full Text
    1. Mathews L. S.,
    2. Vale W. W.,
    3. Kintner C. R.
    (1992) Cloning of a second type of activin receptor and functional characterization in Xenopus embryos. Science 255, 1702–1705
    OpenUrlCrossRefPubMedWeb of Science
    1. Matzuk M. M.,
    2. Bradley A.
    (1992) Structure of the mouse activin receptor type II gene. Biochem. Biophys. Res. Commun 185, 404–413
    OpenUrlCrossRefPubMedWeb of Science
    1. Matzuk M. M.,
    2. Finegold M. J.,
    3. Su J. G. J.,
    4. Hsueh A. J. W.,
    5. Bradley A.
    (1992) -Inhibin is a tumour-suppressor gene with gonadal specificity in mice. Nature 360, 313–319
    OpenUrlCrossRefPubMedWeb of Science
    1. Michel U.,
    2. Farnworth P.,
    3. Findlay J. K.
    (1993) Follistatins: more than follicle-stimulating hormone suppressing proteins. Mol. Cell. Endocrinol 91, 1–11
    OpenUrlAbstract
    1. Millan F. A.,
    2. Denhez F.,
    3. Kondaiah P.,
    4. Akhurst R. J.
    (1991) Embryonic gene expression patterns of TGF1, 2 and3 suggest different developmental functions in vivo. Development 111, 131–144
    OpenUrlAbstract/FREE Full Text
    1. Mitrani E.,
    2. Shimoni Y.
    (1990) Induction by soluble factors of organized axial structures in chick epiblasts. Science 247, 1092–1094
    OpenUrlCrossRefPubMedWeb of Science
    1. Mitrani E.,
    2. Ziv T.,
    3. Thomsen G.,
    4. Shimoni Y.,
    5. Melton D.,
    6. Bril A.
    (1990) Activin can induce the formation of axial structures and is expressed in the hypoblast of the chick. Cell 63, 495–501
    OpenUrlCrossRef
    1. Moriya N.,
    2. Asashima M.
    (1992) Mesoderm and neural inductions on newt ectoderm by activin A. Dev. Growth Differ 34, 589–594
    OpenUrlCrossRefPubMedWeb of Science
    1. Mummery C. L.,
    2. Feijen A.,
    3. van der Saag P. T.,
    4. van den Brink C. E.,
    5. de Laat S. W.
    (1985) Clonal variants of differentiated P19 EC cells exhibit EGF receptor kinase activity. Dev. Biol 109, 402–410
    OpenUrlCrossRefPubMedWeb of Science
    1. Mummery C. L.,
    2. Feijen A.,
    3. van den Brink C. E.,
    4. Moolenaar W. H.,
    5. de Laat S. W.
    (1986) Establishment of a differentiated mesodermal line from P19 EC cells expressing functional PDGF and EGF receptors. Exp. Cell Res 165, 229–242
    OpenUrlCrossRefPubMed
    1. Mummery C. L.,
    2. Feijen A.,
    3. Freund E.,
    4. Shen S.
    (1990) Characteristics of embryonic stem cell differentiation: A comparison with two embryonal carcinoma cell lines. Cell Differ. Dev 30, 195–206
    OpenUrlCrossRefPubMed
    1. Mummery C. L.,
    2. Slager H.,
    3. Kruijer W.,
    4. Feijen A.,
    5. Freund E.,
    6. Koornneef I.,
    7. van den Eijnden-van Raaij A. J. M.
    (1990) Expression of transforming growth factor2 during the differentiation of murine embryonal carcinoma and embryonic stem cells. Dev. Biol 137, 161–170
    OpenUrlPubMedWeb of Science
    1. Mummery C. L.,
    2. van den Eijnden-van Raaij A. J. M.
    (1993) Typetransforming growth factors and activins in differentiating embryonal carcinoma cells, embryonic stem cells and early embryonic development. Int. J. Dev. Biol 37, 169–182
    OpenUrlAbstract/FREE Full Text
    1. Nakamura T.,
    2. Asashima M.,
    3. Eto Y.,
    4. Takio K.,
    5. Uchiyama H.,
    6. Moriya N.,
    7. Ariizumi T.,
    8. Yashiro T.,
    9. Sugino K.,
    10. Titani K.,
    11. Sugino H.
    (1992) Isolation and characterization of native activin B. J. Biol. Chem 267, 16385–16389
    OpenUrlAbstract/FREE Full Text
    1. Nakamura T.,
    2. Sugino K.,
    3. Kurosawa N.,
    4. Sawai M.,
    5. Takio K.,
    6. Eto Y.,
    7. Iwashita S.,
    8. Muramatsu M.,
    9. Titani K.,
    10. Sugino H.
    (1992) Isolation and characterization of activin receptor from mouse embryonal carcinoma cells. J. Biol. Chem 267, 18924–18928
    OpenUrlAbstract/FREE Full Text
    1. Nakamura T.,
    2. Sugino K.,
    3. Titani K.,
    4. Sugino H.
    (1991) Follistatin, an activin-binding protein associated with heparan sulfate chains of proteoglycans on follicular granulosa cells. J. Biol. Chem 266, 19432–19437
    OpenUrlAbstract/FREE Full Text
    1. Nakamura T.,
    2. Takio K.,
    3. Eto Y.,
    4. Shibai H.,
    5. Titani K.,
    6. Sugino H.
    (1990) Activin-binding protein from rat ovary is follistatin. Science 247, 836–838
    OpenUrlCrossRefPubMed
    1. Nishimatsu S.,
    2. Oda S.,
    3. Murakami K.,
    4. Ueno N.
    (1992) Multiple genes for Xenopus activin receptor expressed during early embryogenesis. FEBS Lett 303, 81–84
    OpenUrlCrossRefPubMed
    1. Paulusma C. C.,
    2. van der Kruijssen C. M. M.,
    3. van den Eijnden-van Raaij A. J. M.
    (1994) Localization of activin subunits in early murine development determined by subunit-specific antibodies. J. Immunol. Meth 169, 143–152
    OpenUrlAbstract/FREE Full Text
    1. Pelton R. W.,
    2. Nomura S.,
    3. Moses H. L.,
    4. Hogan B. L. M.
    (1989) Expression of transforming growth factor-2 RNA during murine embryogenesis. Development 106, 759–767
    OpenUrlCrossRefPubMedWeb of Science
    1. Roberts V. J.,
    2. Sawchenko P. E.,
    3. Vale W.
    (1991) Expression of inhibin/activin subunit messenger ribonucleic acids during rat embryogenesis. Endocrinology 128, 3122–3129
    OpenUrlCrossRefPubMedWeb of Science
    1. Roberts V. J.,
    2. Barth S. L.
    (1994) Expression of messenger ribonucleic acids encoding the inhibin/activin system during mid-and late-gestation rat embryogenesis. Endocrinology 134, 914–923
    OpenUrlAbstract
    1. Schmid P.,
    2. Cox D.,
    3. Bilbe G.,
    4. Maier R.,
    5. McMaster G. K.
    (1991) Differential expression of TGF1, 2 and3 genes during mouse embryogenesis. Development 111, 117–130
    1. Schubert D.,
    2. Kimura H.
    (1991) Substratum-growth factor collaborations are required for the mitogenic activities of activin and FGF on embryonal carcinoma cells. J. Cell. Biol 144, 841–846
    OpenUrlCrossRefPubMed
    1. Schubert D.,
    2. Kimura H.,
    3. Lacorbiere M.,
    4. Vaughan J.,
    5. Karr D.,
    6. Fischer W. H.
    (1990) Activin is a nerve cell survival molecule. Nature 344, 868–870
    OpenUrlAbstract/FREE Full Text
    1. Schulte-merker S.,
    2. Ho R. K.,
    3. Herrmann B. G.,
    4. Nusslein-Volhard C.
    (1992) The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ ring and the notochord of the early embryo. Development 116, 1021–1032
    OpenUrlAbstract/FREE Full Text
    1. Shimasaki S.,
    2. Koga M.,
    3. Esch F.,
    4. Cooksey K.,
    5. Mercado M.,
    6. Koba A.,
    7. Ueno N.,
    8. Ying S. Y.,
    9. Ling. N.,
    10. Guillemin R.
    (1988) Primary structure of the human follistatin precursor and its genomic organization. Proc. Natl. Acad. Sci. USA 85, 4218–4222
    OpenUrlCrossRefPubMedWeb of Science
    1. Shimasaki S.,
    2. Koga M.,
    3. Esch. F.,
    4. Mercado M.,
    5. Cooksey K.,
    6. Koba A.,
    7. Ling N.
    (1988) Porcine follistatin gene structure supports two forms of mature follistatin produced by alternative splicing. Biochem. Biophys. Res. Commun 152, 717–723
    OpenUrlCrossRefPubMedWeb of Science
    1. Shimonaka M.,
    2. Inouye S.,
    3. Shimasaki S.,
    4. Ling N.
    (1991) Follistatin binds to both activin and inhibin through the common beta-subunit. Endocrinology 128, 3313–3315
    OpenUrlCrossRefPubMed
    1. Shinozaki H.,
    2. Ito I.,
    3. Hasegawa Y.,
    4. Nakamura K.,
    5. Igarashi S.,
    6. Nakamura M.,
    7. Miyamoto K.,
    8. Eto Y.,
    9. Ibuki Y.,
    10. Minegishi T.
    (1992) Cloning and sequencing of a rat type II activin receptor. FEBS lett 312, 53–56
    OpenUrlAbstract/FREE Full Text
    1. Shiozaki M.,
    2. Sakai R.,
    3. Tabuchi M.,
    4. Nakamura. T.,
    5. Sugino K.,
    6. Sugino H.,
    7. Eto Y.
    (1992) Evidence for the participation of endogenous activin A/erythroid differentiation factor in the regulation of erythropoiesis. Proc. Natl. Acad. Sci. USA 89, 1553–1556
    OpenUrlCrossRefPubMedWeb of Science
    1. Shukovski L.,
    2. Dyson M.,
    3. Findlay J.
    (1993) The effects of follistatin, activin and inhibin on steroidogenesis by bovine thecal cells. Mol. Cell. Endocrinol 97, 19–27
    OpenUrlCrossRefPubMed
    1. Smith J. C.,
    2. Price B. M. J.,
    3. van Nimmen K.,
    4. Huylebroeck D.
    (1990) Identification of a potent Xenopus mesoderm-inducing factor as a homologue of activin A. Nature 345, 729–731
    OpenUrlAbstract/FREE Full Text
    1. Sugino K.,
    2. Kurosawa N.,
    3. Nakamura T.,
    4. Takio K.,
    5. Shimasaki S.,
    6. Ling. N.,
    7. Titani K.,
    8. Sugino H.
    (1993) Molecular heterogeneity of follistatin, an activin-binding protein. J. Biol. Chem 268, 15579–15587
    OpenUrlPubMedWeb of Science
    1. ten Dijke P.,
    2. Ichijo H.,
    3. Franzen P.,
    4. Schulz P.,
    5. Saras J.,
    6. Toyoshima H.,
    7. Heldin C. H.,
    8. Miyazono K.
    (1993) Activin receptor-like kinases; a novel subclass of cell surface receptors with predicted serine/threonine kinase activity. Oncogene 8, 2879–2887
    OpenUrlAbstract/FREE Full Text
    1. ten Dijke P.,
    2. Yamashita H.,
    3. Ichijo H.,
    4. Franzen P.,
    5. Laiho M.,
    6. Miyazono K.,
    7. Heldin C. H.
    (1994) Characterization of type I receptors for transforming growth factor-and activin. Science 264, 101–104
    OpenUrlCrossRefPubMedWeb of Science
    1. Thomsen G.,
    2. Woolf T.,
    3. Whitman M.,
    4. Sokol S.,
    5. Vaughan J.,
    6. Vale W.,
    7. Melton D. A.
    (1990) Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures. Cell 63, 485–493
    OpenUrlAbstract/FREE Full Text
    1. Tsuchida K.,
    2. Mathews L. S.,
    3. Vale W. W.
    (1993) Cloning and characterization of a transmembrane serine kinase that acts as an activin type I receptor. Proc. Natl. Acad. Sci. USA 90, 11242–11246
    OpenUrlAbstract/FREE Full Text
    1. Ueno N.,
    2. Ling N.,
    3. Ying S. Y.,
    4. Esch F.,
    5. Shimasaki S.,
    6. Guillemin R.
    (1987). Isolation and partial characterization of follistatin: a single chain Mr 35.000 monomeric protein that inhibits the release of follicle-stimulating hormone. Proc. Natl. Acad. Sci. USA 84, 8282–8286
    OpenUrlCrossRefPubMed
    1. Ueno N.,
    2. Nishimatsu S.,
    3. Murakami K.
    (1990) Activin as a cell differentiation factor. Progr. Growth factor Res 2, 113–124
    OpenUrlCrossRefPubMedWeb of Science
    1. van den Eijnden-van Raaij A. J. M.,
    2. van Achterberg T. A. E.,
    3. van der Kruijssen C. M. M.,
    4. Piersma A. H.,
    5. Huylebroeck D.,
    6. De Laat S. W.,
    7. Mummery C. L.
    (1991) Differentation of aggregated murine P19 embryonal carcinoma cells is induced by a novel visceral endoderm-specific FGF-like factor and inhibited by activin A. Mech. Dev 33, 157–166
    OpenUrlCrossRefPubMedWeb of Science
    1. van den Eijnden-van Raaij A. J. M.,
    2. Feijen A.,
    3. Lawson K. A.,
    4. Mummery C. L.
    (1992) Differential expression of inhibin subunits and follistatin, but not of activin receptor type II, during early murine embryonic development. Dev. Biol 154, 356–365
    OpenUrlCrossRefPubMed
    1. van den Eijnden-van Raaij A. J. M.,
    2. van Zoelen E. J. J.,
    3. van Nimmen K.,
    4. Koster C. H.,
    5. Snoek G. T.,
    6. Durston A. J.,
    7. Huylebroeck D.
    (1990) Activin-like factor from a Xenopus laevis cell line responsible for mesoderm induction. Nature 345, 732–734
    OpenUrlCrossRefPubMedWeb of Science
    1. van der Kruijssen C. M. M.,
    2. Feijen A.,
    3. Huylebroeck D.,
    4. van den Eijnden-van Raaij A. J. M.
    (1993) Modulation of activin expression by typetransforming growth factors. Exp. Cell Res 207, 407–412
    OpenUrlAbstract/FREE Full Text
    1. Vassalli A.,
    2. Matzuk M. M.,
    3. Gardner H. A. R.,
    4. Lee K. F.,
    5. Jaenisch R.
    (1994) Activin/inhibinB subunit gene disruption leads to defects in eyelid development and female reproduction. Genes Dev 8, 414–427
    OpenUrlAbstract/FREE Full Text
    1. Wrana J. L.,
    2. Tran H.,
    3. Attisano L.,
    4. Arora K.,
    5. Childs S. R.,
    6. Massague J.,
    7. O'Connor M. B.
    (1994) Two distinct transmembrane serine/threonine kinases from Drosophila melanogaster form an activin receptor complex. Mol. Cell. Biol 14, 944–950
    OpenUrlCrossRefPubMedWeb of Science
    1. Xiao S.,
    2. Findlay J. K.
    (1991) Interactions between activin and follicle-stimulating hormone-suppressing protein and their mechanisms of action on cultured rat granulosa cells. Mol. Cell. Endocrinol 79, 99–107
    OpenUrlCrossRefPubMedWeb of Science
    1. Ying S.
    (1988) Inhibins, activins and follistatins: gonadal proteins modulating the secretion of follicle-stimulating hormone. Endocr. Rev 9, 267–293
    OpenUrlCrossRefPubMedWeb of Science
    1. Ying S. Y.,
    2. Becker A.,
    3. Swanson G.,
    4. Tan P.,
    5. Ling W.,
    6. Esch F.,
    7. Ueno N.,
    8. Shimasaki S.,
    9. Guillemin R.
    (1987) Follistatin specifically inhibits pituitary follicle stimulating hormone release in vitro. Biochem. Biophys. Res. Commun 149, 133–139
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Expression of activin subunits, activin receptors and follistatin in postimplantation mouse embryos suggests specific developmental functions for different activins
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Expression of activin subunits, activin receptors and follistatin in postimplantation mouse embryos suggests specific developmental functions for different activins
A. Feijen, M.J. Goumans, A.J. van den, Eijnden-van Raaij
Development 1994 120: 3621-3637;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Expression of activin subunits, activin receptors and follistatin in postimplantation mouse embryos suggests specific developmental functions for different activins
A. Feijen, M.J. Goumans, A.J. van den, Eijnden-van Raaij
Development 1994 120: 3621-3637;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves
  • Drosophila puckered regulates Fos/Jun levels during follicle cell morphogenesis
  • A BAC transgenic analysis of the Mrf4/Myf5 locus reveals interdigitated elements that control activation and maintenance of gene expression during muscle development
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992