Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
Anti-dorsalizing morphogenetic protein is a novel TGF-beta homolog expressed in the Spemann organizer
M. Moos, S. Wang, M. Krinks
Development 1995 121: 4293-4301;
M. Moos
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Krinks
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

We have identified a novel growth factor in Xenopus, which is most closely related to human Bone Morphogenetic Protein-3. Its expression peaks during gastrulation, most prominently in the Spemann organizer, and persists in the posterior neural floor plate and prechordal plate during neurulation. Injection of the corresponding mRNA into dorsal blastomeres results in dose-dependent suppression of dorsal and anterior structures, even in the presence of lithium chloride. Overexpression of the gene downregulates the dorsalizing factors noggin, goosecoid and follistatin, as well as the dorsal markers NCAM, muscle actin and MyoD; conversely, ventral markers are induced. We therefore designate this gene product Anti-Dorsalizing Morphogenetic Protein (ADMP). Though development of dorsoanterior structures is suppressed when exogenous ADMP is injected, the gene is induced by lithium chloride treatment or activin, both of which are known to produce the opposite effect. Thus, the expression of ADMP resembles that of several dorsalizing signals, but its product exerts dorsal-suppressing activity. This suggests that ADMP may moderate organizer-associated dorsalizing influences. These findings are also consistent with the recently advanced proposal of dorsally expressed inhibitory activin-like signals.

Reference

    1. Amaya E.,
    2. Musci T. J.,
    3. Kirschner M. W.
    (1991) Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell 66, 257–270
    OpenUrlCrossRefPubMedWeb of Science
    1. Basler K.,
    2. Edlund T.,
    3. Jessell T. M.,
    4. Yamada T.
    (1993) Control of cell pattern in the neural tube: regulation of cell differentiation by dorsalin-1, a novel TGFfamily member. Cell 73, 687–702
    OpenUrlCrossRefPubMedWeb of Science
    1. Bolce M. E.,
    2. Hemmati-Brivanlou A.,
    3. Harland R. M.
    (1993) XFKH2, a Xenopus HNF-3 alpha homologue, exhibits both activin-inducible and autonomous phases of expression in early embryos. Dev. Biol 160, 413–423
    OpenUrlCrossRefPubMed
    1. Chang S.,
    2. Hoang B.,
    3. Thomas J. T.,
    4. Vukicevic S.,
    5. Luyten F. P.,
    6. Ryba N. J. P.,
    7. Filie J. D.,
    8. Kozak C. A.,
    9. Reddi A. H.,
    10. Moos M.
    (1994) Cartilage-Derived Morphogenetic Proteins: New members of the TGF-superfamily predominantly expressed in long bones during human embryonic development. J. Biol. Chem 269, 28227–28234
    OpenUrlAbstract/FREE Full Text
    1. Cho K. W.,
    2. Blumberg B.,
    3. Steinbeisser H.,
    4. De Robertis E. M.
    (1991) Molecular nature of Spemann's organizer: the role of the Xenopus homeobox gene goosecoid. Cell 67, 1111–1120
    OpenUrlCrossRefPubMedWeb of Science
    1. Chomczynski P.
    (1992) One hour downward alkaline capillary transfer for blotting of DNA and RNA. Anal. Biochem 201, 134–139
    OpenUrlCrossRefPubMedWeb of Science
    1. Christian J. L.,
    2. McMahon J. A.,
    3. McMahon A. P.,
    4. Moon R. T.
    (1991) XWnt −8, a Xenopus Wnt - 1/int-1 -related gene responsive to mesoderm-inducing growth factors, may play a role in ventral mesodermal patterning during embryogenesis. Development 111, 1045–1055
    OpenUrlAbstract/FREE Full Text
    1. Christian J. L.,
    2. Moon R. T.
    (1993) Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Genes Dev 7, 13–28
    OpenUrlAbstract/FREE Full Text
    1. Cunliffe V.,
    2. Smith J. C.
    (1994) Specification of mesodermal pattern in Xenopus laevis by interactions between Brachyury, noggin and Xwnt-8. EMBO J 13, 349–359
    OpenUrlPubMedWeb of Science
    1. Dawid I. B.
    (1994) Intercellular signaling and gene regulation during early embryogenesis of Xenopus laevis. J. Biol. Chem 269, 6259–6262
    OpenUrlFREE Full Text
    1. Edwards J. B.,
    2. Delort J.,
    3. Mallet J.
    (1991) Oligodeoxyribonucleotide ligation to single-stranded cDNAs: a new tool for cloning 5ends of mRNAs and for constructing cDNA libraries by in vitro amplification. Nucleic Acids Res 19, 5227–5232
    OpenUrlAbstract/FREE Full Text
    1. Fainsod C.,
    2. Steinbeisser H.,
    3. De Robertis E. M.
    (1994) On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo. EMBO J 13, 5015–5025
    OpenUrlPubMedWeb of Science
    1. Frank D.,
    2. Harland R. M.
    (1992) Localized expression of a Xenopus POU gene depends on cell-autonomous transcriptional activation and induction-dependent inactivation. Development 115, 439–448
    OpenUrlAbstract
    1. Graff J. M.,
    2. Thies R. S.,
    3. Song J. J.,
    4. Celeste A. J.,
    5. Melton D. A.
    (1994) Studies with a Xenopus BMP receptor suggest that ventral mesoderm inducing signals override dorsal signals in vivo. Cell 79, 169–179
    OpenUrlCrossRefPubMedWeb of Science
    1. Gurdon J. B.
    (1977) Methods for nuclear transplantation in amphibia. Methods Cell Biol 16, 125–139
    OpenUrlCrossRefPubMed
    1. Hammonds R. G. J.,
    2. Schwall R.,
    3. Dudley A.,
    4. Berkemeier L.,
    5. Lai C.,
    6. Lee J.,
    7. Cunningham N.,
    8. Reddi A. H.,
    9. Wood W. I.,
    10. Mason A. J.
    (1991) Bone-inducing activity of mature BMP-2b produced from a hybrid BMP-2a/2b precursor. Mol Endocrinol 5, 149–155
    OpenUrlCrossRefPubMed
    1. Harland R. M.
    (1991) In situ hybridization: An improved whole-mount method for Xenopus embryos. Methods Cell Biol 36, 685–695
    OpenUrlCrossRefPubMedWeb of Science
    1. Harland R. M.
    (1994) The transforming growth factorfamily and induction of the vertebrate mesoderm: Bone morphogenetic proteins are ventral inducers. Proc. Natl Acad. Sci. USA 91, 10243–10246
    OpenUrlFREE Full Text
    1. Hemmati-Brivanlou A.,
    2. Kelly O. G.,
    3. Melton D. A.
    (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77, 283–295
    OpenUrlCrossRefPubMedWeb of Science
    1. Hemmati-Brivanlou A.,
    2. Melton D. A.
    (1994) Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 77, 273–281
    OpenUrlCrossRefPubMedWeb of Science
    1. Kao K. R.,
    2. Elinson R. P.
    (1988) The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos. Dev. Biol 127, 64–77
    OpenUrlCrossRefPubMedWeb of Science
    1. Kay B. K.
    (1991) Injection of oocytes and embryos. Methods Cell Biol 36, 663–669
    OpenUrlPubMed
    1. Kingsley D. M.
    (1994) The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8, 133–146
    OpenUrlFREE Full Text
    1. Kozak M.
    (1991) Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol. Chem 266, 19867–19870
    OpenUrlFREE Full Text
    1. Krieg P. A.,
    2. Varnum S. M.,
    3. Wormington W. M.,
    4. Melton D. A.
    (1989) The mRNA encoding elongation factor 1-alpha (EF-1 alpha) is a major transcript at the midblastula transition in Xenopus. Dev. Biol 133, 93–100
    OpenUrlCrossRefPubMedWeb of Science
    1. Lamb T. M.,
    2. Knecht A. K.,
    3. Smith W. C.,
    4. Stachel S. E.,
    5. Economides A. N.,
    6. Stahl N.,
    7. Yancopolous G. D.,
    8. Harland R. M.
    (1993) Neural induction by the secreted polypeptide noggin. Science 262, 713–718
    OpenUrlAbstract/FREE Full Text
    1. Lemaire P.,
    2. Gurdon J. B.
    (1994) A role for cytoplasmic determinants in mesoderm patterning: cell-autonomous activation of the goosecoid and Xwnt-8 genes along the dorsoventral axis of early Xenopus embryos. Development 120, 1191–1199
    OpenUrlAbstract
    1. Lin L.-F. H.,
    2. Doherty D. H.,
    3. Lile J. D.,
    4. Bektesh S.,
    5. Collins F.
    (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130–1132
    OpenUrlAbstract/FREE Full Text
    1. Maeno M.,
    2. Ong R. C.,
    3. Suzuki A.,
    4. Ueno N.,
    5. Kung H.-F.
    (1994) A truncated bone morphogenetic protein 4 receptor alters the fate of ventral mesoderm: Roles of animal pole tissue in the development of ventral mesoderm. Proc. Natl Acad. Sci. USA 91, 10260–10264
    OpenUrlAbstract/FREE Full Text
    1. Niehrs C.,
    2. Keller R.,
    3. Cho K. W.,
    4. De Robertis E. M.
    (1993) The homeobox gene goosecoid controls cell migration in Xenopus embryos. Cell 72, 491–503
    OpenUrlCrossRefPubMedWeb of Science
    1. Niehrs C.,
    2. Steinbeisser H.,
    3. De Robertis E. M.
    (1994) Mesodermal patterning by a gradient of the vertebrate homeobox gene goosecoid. Science 263, 817–820
    OpenUrlAbstract/FREE Full Text
    1. Ozkaynak E.,
    2. Schnegelsberg P. N.,
    3. Jin D. F.,
    4. Clifford G. M.,
    5. Warren F. D.,
    6. Drier E. A.,
    7. Oppermann H.
    (1992) Osteogenic protein-2. A new member of the transforming growth factor-beta superfamily expressed early in embryogenesis. J. Biol. Chem 267, 25220–25227
    OpenUrlAbstract/FREE Full Text
    1. Padgett R. W.,
    2. St. Johnston R. D.,
    3. Gelbart W. M.
    (1987) A transcript from a Drosophila pattern gene predicts a protein homologous to the transforming growth factor-beta family. Nature 325, 81–84
    OpenUrlCrossRefPubMed
    1. Paralkar V. M.,
    2. Nandedkar A. K. N.,
    3. Pointer R. H.,
    4. Kleinman H. K.,
    5. Reddi A. H.
    (1990) Interaction of Osteogenin, a heparin binding bone morphogenetic protein, with type IV collagen. J. Biol. Chem 265, 17281–17284
    OpenUrlAbstract/FREE Full Text
    1. Paralkar V. M.,
    2. Vukicevic S.,
    3. Reddi A. H.
    (1991) Transforming growth factor beta type 1 binds to collagen IV of basement membrane matrix: implications for development. Dev. Biol 143, 303–308
    OpenUrlCrossRefPubMedWeb of Science
    1. Peng H. B.
    (1991) Solutions and Protocols. Methods Cell Biol 36, 657–662
    OpenUrlCrossRefPubMed
    1. Reddi A. H.
    (1992) Regulation of cartilage and bone differentiation by bone morphogenetic proteins. Curr. Opin. Cell Biol 4, 850–855
    OpenUrlCrossRefPubMed
    1. Richter K.,
    2. Grunz H.,
    3. Dawid I. B.
    (1988) Gene expression in theembryonic nervous system of Xenopus laevis. Proc. Natl Acad. Sci.USA 85, 8086–8090
    OpenUrlAbstract/FREE Full Text
    1. Ruiz i Altaba A.,
    2. Melton D. A.
    (1989) Bimodal and graded expression of the Xenopus homeobox gene Xhox3 during embryonic development. Development 106, 173–183
    OpenUrlAbstract
    1. Rupp R. A.,
    2. Weintraub H.
    (1991) Ubiquitous MyoD transcription at the midblastula transition precedes induction-dependent MyoD expression in presumptive mesoderm of X. laevis. Cell 65, 927–937
    OpenUrlCrossRefPubMedWeb of Science
    1. Sampath T. K.,
    2. Maliakal J. C.,
    3. Hauschka P. V.,
    4. Jones W. K.,
    5. Sasak H.,
    6. Tucker R. F.,
    7. White K. H.,
    8. Coughlin J. E.,
    9. Tucker M. M.,
    10. Pang R. H.
    (1992) Recombinant human osteogenic protein-1 (hOP-1) induces new bone formation in vivo with a specific activity comparable with natural bovine osteogenic protein and stimulates osteoblast proliferation and differentiation in vitro. J. Biol. Chem 267, 20352–20362
    OpenUrlAbstract/FREE Full Text
    1. Sanger F.,
    2. Nicklen S.,
    3. Coulson A. R.
    (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74, 5463–5467
    OpenUrlAbstract/FREE Full Text
    1. Sato S. M.,
    2. Sargent T. D.
    (1989) Development of neural inducing capacity in dissociated Xenopus embryos. Dev. Biol 134, 263–266
    OpenUrlCrossRefPubMedWeb of Science
    1. Schulte-Merker S.,
    2. Smith J. C.,
    3. Dale L.
    (1994) Effects of truncated activin and FGF receptors and of follistatin on the inducing activities of BVg1 and activin: does activin play a role in mesoderm induction?. EMBO J 13, 3533–3541
    OpenUrlPubMedWeb of Science
    1. Sive H. L.
    (1993) The frog prince-ss: a molecular formula for dorsoventral patterning in Xenopus. Genes Dev 7, 1–12
    OpenUrlFREE Full Text
    1. Slack J. M.,
    2. Tannahill D.
    (1992) Mechanism of anteroposterior axis specification in vertebrates. Lessons from the amphibians. Development 114, 285–302
    OpenUrlAbstract
    1. Smith W. C.,
    2. Harland R. M.
    (1991) Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center. Cell 67, 753–765
    OpenUrlCrossRefPubMedWeb of Science
    1. Smith W. C.,
    2. Harland R. M.
    (1992) Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70, 829–840
    OpenUrlCrossRefPubMedWeb of Science
    1. Sokol S.,
    2. Wong G. G.,
    3. Melton D. A.
    (1990) A mouse macrophage factor induces head structures and organizes a body axis in Xenopus. Science 249, 561–564
    OpenUrlAbstract/FREE Full Text
    1. Sokol S.,
    2. Christian J. L.,
    3. Moon R. T.,
    4. Melton D. A.
    (1991) Injected Wnt RNA induces a complete body axis in Xenopus embryos. Cell 67, 741–752
    OpenUrlCrossRefPubMedWeb of Science
    1. Storm E. E.,
    2. Huynh T. V.,
    3. Copeland N. G.,
    4. Jenkins N. A.,
    5. Kingsley D. M.,
    6. Lee S. J.
    (1994) Limb alterations in brachypodism mice due to mutations in a new member of the TGF beta-superfamily. Nature 368, 639–643
    OpenUrlCrossRefPubMedWeb of Science
    1. Suzuki A.,
    2. Thies R. S.,
    3. Yamaji N.,
    4. Song J. J.,
    5. Wozney J. M.,
    6. Murakami K.,
    7. Ueno N.
    (1994) A truncated bone morphogenetic protein receptor affects the dorsal-ventral patterning in the early Xenopus embryo. Proc. Natl Acad. Sci. USA 91, 10255–10259
    OpenUrlAbstract/FREE Full Text
    1. Thomsen G.,
    2. Woolf T.,
    3. Whitman M.,
    4. Sokol S.,
    5. Vaughan J.,
    6. Vale W.,
    7. Melton D. A.
    (1990) Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures. Cell 63, 485–493
    OpenUrlCrossRefPubMedWeb of Science
    1. Urist M. R.
    (1965) Bone formation by autoinduction. Science 150, 893–899
    OpenUrlAbstract/FREE Full Text
    1. von Heijne G.
    (1986) A new method for predicting signal sequence cleavage sites. Nucl. Acids Res 14, 4683–4690
    OpenUrlAbstract/FREE Full Text
    1. Wang E. A.,
    2. Rosen V.,
    3. Cordes P.,
    4. Hewick R. M.,
    5. Kriz M. J.,
    6. Luxenberg D. P.,
    7. Sibley B. S.,
    8. Wozney J. M.
    (1988) Purification and characterization of other distinct bone-inducing factors. Proc. Natl Acad. Sci. USA 85, 9484–9488
    OpenUrlAbstract/FREE Full Text
    1. Wang S.,
    2. Krinks M.,
    3. Moos M.
    (1995) DNA Sequencing from single phage plaques using solid-phase magnetic capture. Biotechniques 18, 130–135
    OpenUrlPubMed
    1. Weeks D. L.,
    2. Melton D. A.
    (1987) A maternal mRNA localized to the vegetal hemisphere in Xenopus eggs codes for a growth factor related to TGF-beta. Cell 51, 861–867
    OpenUrlCrossRefPubMedWeb of Science
    1. Wharton K. A.,
    2. Thomsen G. H.,
    3. Gelbart W. M.
    (1991) Drosophila 60A gene, another transforming growth factor beta family member, is closely related to human bone morphogenetic proteins. Proc. Natl Acad. Sci USA 88, 9214–9218
    OpenUrlAbstract/FREE Full Text
    1. Wozney J. M.,
    2. Rosen V.,
    3. Celeste A. J.,
    4. Mitsock L. M.,
    5. Whitters M. J.,
    6. Kriz R. W.,
    7. Hewick R. M.,
    8. Wang E. A.
    (1988) Novel regulators of bone formation: molecular clones and activities. Science 242, 1528–1534
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Anti-dorsalizing morphogenetic protein is a novel TGF-beta homolog expressed in the Spemann organizer
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Anti-dorsalizing morphogenetic protein is a novel TGF-beta homolog expressed in the Spemann organizer
M. Moos, S. Wang, M. Krinks
Development 1995 121: 4293-4301;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Anti-dorsalizing morphogenetic protein is a novel TGF-beta homolog expressed in the Spemann organizer
M. Moos, S. Wang, M. Krinks
Development 1995 121: 4293-4301;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Groucho augments the repression of multiple Even skipped target genes in establishing parasegment boundaries
  • Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes
  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

A new society for regenerative biologists

Kenneth Poss and Elly Tanaka announce the launch of the International Society for Regenerative Biology (ISRB), which will promote research and education in the field of regenerative biology.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


An interview with Cagney Coomer

Over a virtual chat, we spoke to Cagney Coomer about her experiences in the lab, the classroom and the community centre, and why she thinks outreach and role models are vital to science.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Here, Michèle Romanos talks about her new preprint, which mixes experimentation in quail embryos and computational modelling to understand how heterogeneity in a tissue influences cell rate.

Save your spot at our next session:

10 March
Time: 9:00 (GMT)
Chaired by: Thomas Lecuit

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992