Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
Rhodopsin plays an essential structural role in Drosophila photoreceptor development
J.P. Kumar, D.F. Ready
Development 1995 121: 4359-4370;
J.P. Kumar
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.F. Ready
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Null mutations of the Drosophila Rh1 rhodopsin gene, ninaE, result in developmental defects in the photosensitive membranes, the rhabdomeres, of compound eye photoreceptors R1-R6. In normal flies, Rh1 expression begins at about 78% of pupal life. At approximately 90% of pupal life, a specialized catacomb-like membrane architecture develops at the base of normal rhabdomeres. In ninaE null mutants, these catacombs do not form and developing rhabdomere membrane involutes into the cell as curtains of apposed plasma membrane. A filamentous cytoskeletal complex that includes F-actin and the unconventional myosin, NINAC, decorates the cytoplasmic surface of these curtains.

Reference

    1. Arikawa K.,
    2. Hicks J. L.,
    3. Williams D. S.
    (1990) Identification of actin filaments in the rhabdomeral microvilli of Drosophila photoreceptors. J. Cell Biol 110, 1993–1998
    OpenUrlAbstract/FREE Full Text
    1. Boschek C. B.
    (1971) On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. Z. Zellforsch 118, 369–409
    OpenUrlCrossRefPubMedWeb of Science
    1. Chomczynski P.,
    2. Sacchi N.
    (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analyt. Biochem 162, 156–159
    OpenUrlCrossRefPubMedWeb of Science
    1. Colley N. J.,
    2. Cassill A.,
    3. Baker E. K.,
    4. Zuker C. S.
    (1995) Defective intracellular transport is the molecular basis of rhodopsin-dependent dominant retinal degeneration. Proc. Natl. Acad. Sci. USA 92, 3070–3074
    OpenUrlAbstract/FREE Full Text
    1. Coudrier E.,
    2. Reggio H.,
    3. Louvard D.
    (1981) Immunolocalization of the 110,000 molecular weight cytoskeletal protein of intestinal microvilli. J. Mol. Biol 152, 49–66
    OpenUrlCrossRefPubMed
    1. de Couet H. G.,
    2. Sigmund C.
    (1987) Monoclonal antibodies provide evidence that rhodopsin in the outer rhabdomeres of Drosophila melanogaster is not glycosylated. Eur. J. Cell Biol 44, 50–56
    OpenUrl
    1. Dryja T. P.,
    2. McGee T. L.,
    3. Hahn L. B.,
    4. Cowley G. S.,
    5. Olsson J. E.,
    6. Reichel E.,
    7. Sandberg M. A.,
    8. Berson E. L.
    (1990) Mutations within the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa. N. Engl. J. Med 323, 1302–1307
    OpenUrlCrossRefPubMedWeb of Science
    1. Fath K. R.,
    2. Burgess D. R.
    (1994) Membrane motility mediated by unconventional myosin. Current Opinion in Cell Biology 6, 131–135
    OpenUrlCrossRefPubMedWeb of Science
    1. Fryxell K. J.,
    2. Meyerowitz E. M.
    (1987) An opsin gene that is expressed only in the R7 photoreceptor cell of Drosophila. EMBO J 6, 443–451
    OpenUrlPubMedWeb of Science
    1. Harris W. A.,
    2. Ready D. F.,
    3. Lipson E. D.,
    4. Hudspeth A.,
    5. Stark W. S.
    (1977) Vitamin A deprivation and Drosophila photopigments. Nature 266, 648–650
    OpenUrlCrossRefPubMedWeb of Science
    1. Hicks J. L.,
    2. Williams D. S.
    (1992) Distribution of the myosin I-likeproteins in the Drosophila retina and ultrastructural analysis of mutant phenotypes. J. Cell Sci 101, 247–254
    OpenUrlAbstract/FREE Full Text
    1. Humphries P.,
    2. Kenna P.,
    3. Farrar J.
    (1992) On the molecular genetics of retinitis pigmentosa. Science 256, 804–808
    OpenUrlAbstract/FREE Full Text
    1. Johnson M. A.,
    2. Frayer K. C.,
    3. Stark W. S.
    (1982) Characterization of rdgA: mutants with retinal degeneration in Drosophila. J. Insect Physiol 28, 233–242
    OpenUrlCrossRef
    1. Johnson E. C.,
    2. Pak W. L.
    (1986) Electrophysiological study of Drosophila rhodopsin mutants. J. Gen. Physiol 88, 651–673
    OpenUrlAbstract/FREE Full Text
    1. Krantz D. E.,
    2. Zipursky S. L.
    (1990) Drosophila chaoptin, a member of the leucine-rich repeat family, is a photoreceptor cell-specific adhesion molecule. EMBO J 9, 1969–1977
    OpenUrlPubMedWeb of Science
    1. Kurada P.,
    2. O'Tousa J. E.
    (1995) Retinal degeneration caused by dominant rhodopsin mutations in Drosophila. Neuron 14, 1–20
    OpenUrlCrossRefPubMedWeb of Science
    1. Leonard D. S.,
    2. Bowman V. D.,
    3. Ready D. F.,
    4. Pak W. L.
    (1992) Degeneration of photoreceptors in rhodopsin mutants of Drosophila. J. Neurobiology 23, 605–626
    OpenUrlCrossRefPubMedWeb of Science
    1. Masai I.,
    2. Okazaki A.,
    3. Hosoya T.,
    4. Hotta Y.
    (1993) Drosophila retinal degeneation A gene encodes an eye-specific dacylglycerol kinase with cysteine-rich zinc-finger motifs and ankyrin repeats. Proc. Natl. Acad. Sci. USA 90, 1157–1161
    OpenUrl
    1. Matsumoto H.,
    2. Isono K.,
    3. Pye Q.,
    4. Pak W. L.
    (1987) Gene encoding cytoskeletal proteins in Drosophila rhabdomeres. Proc. Natl. Acad. Sci. USA 84, 985–989
    OpenUrlAbstract/FREE Full Text
    1. Matsumoto E.,
    2. Hirosawa K.,
    3. Takagawa K.,
    4. Hotta Y.
    (1988) Structure of retinular cells in a Drosophila melanogaster viual mutant, rdgA, at early stages of degeneration. Cell Tissue Res 252, 293–300
    OpenUrlPubMed
    1. Meyertholen E. P.,
    2. Stein P. J.,
    3. Williams M. A.,
    4. Ostroy S. E.
    (1987) Studies of the Drosophila norpA phototransduction mutant II. Photoreceptor degeneration and rhodopsin maintenance. J. Comp. Physiol 161, 793–798
    OpenUrl
    1. Montell C.,
    2. Jones K.,
    3. Zuker C. S.,
    4. Rubin G. M.
    (1987) A second opsin gene expressed in the ultraviolet-senstive R7 photoreceptor cells of Drosophila melanogaster. J. Neurosci 7, 1558–1566
    OpenUrlAbstract
    1. Montell C.,
    2. Rubin G. M.
    (1988) The Drosophila ninaC locus encodes two photoreceptor cell specific proteins with domains homologous to protein kinases and the myosin heavy chain head. Cell 52, 757–772
    OpenUrlCrossRefPubMedWeb of Science
    1. O'Tousa J. E.,
    2. Baehr W.,
    3. Martin R. L.,
    4. Hirsh J.,
    5. Pak W. L.,
    6. Applebury M.
    (1985) The Drosophila ninaE gene encodes an opsin. Cell 40, 839–850
    OpenUrlCrossRefPubMedWeb of Science
    1. O'Tousa J. E.,
    2. Leonard D. S.,
    3. Pak W. L.
    (1989) Morphological defects in oraJK84photoreceptors caused by a mutation in R1-R6 opsin gene of Drosophila. J. Neurogenet 6, 41–52
    OpenUrlCrossRefPubMedWeb of Science
    1. Paulsen R.,
    2. Schwemer J.
    (1979) Vitamin A deficiency reduces the concentration of visual pigment protein within blowfly photoreceptor membranes. Biochim. Biophys. Acta 557, 385–390
    OpenUrlPubMed
    1. Porter J. A.,
    2. Hicks J. L.,
    3. Williams D. S.,
    4. Montell C.
    (1992) Differential localizations of and requirements for the two Drosophila ninaC kinase/myosins in photoreceptor cells. J. Cell Biol 116, 683–693
    OpenUrlAbstract/FREE Full Text
    1. Portera-Cailliau C.,
    2. Sung C. H.,
    3. Nathans J.,
    4. Adler R.
    (1994) Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa. Proc. Natl. Acad. Sci. USA 91, 974–978
    OpenUrlAbstract/FREE Full Text
    1. Reinke R.,
    2. Krantz D. E.,
    3. Yen D.,
    4. Zipursky S. L.
    (1988) Chaoptin, a cell surface glycoprotein for Drosophila photoreceptor cell morphogenesis, contains a repeat motif found in yeast and human. Cell 52, 291–301
    OpenUrlCrossRefPubMedWeb of Science
    1. Rosenfeld P. J.,
    2. Cowly G. S.,
    3. McGee T. L.,
    4. Sandberg M. A.,
    5. Berson E. L.,
    6. Dryja T. P.
    (1992) A null mutation in the rhodopsin gene causes rod photoreceptor dysfunction and autosomal recessive retinitis pigmentosa. Nature Genetics 1, 209–213
    OpenUrlCrossRefPubMedWeb of Science
    1. Rubenstein C. T.,
    2. Bar-Nachum S.,
    3. Selinger Z.,
    4. Minke B.
    (1989) Light-induced retinal degeneration in rdgB (retinal degeneration B) mutant of Drosophila: electrophysiological and morphological manifestations of degeneration. Vis. Neurosci 2, 529–539
    OpenUrlPubMed
    1. Scavarda N. J.,
    2. O'Tousa J. E.,
    3. Pak W. L.
    (1983) Drosophila locus with gene-dosage effects on rhodopsin. Proc. Natl. Acad. Sci. USA 80, 4441–4445
    OpenUrlAbstract/FREE Full Text
    1. Schinz R. H.,
    2. Lo M. V. C.,
    3. Larivee D. C.,
    4. Pak W. L.
    (1982) Freeze-fracture study of the Drosophila photoreceptor membrane: mutations affecting membrane particle density. J. Cell. Biol 93, 961–969
    OpenUrlAbstract/FREE Full Text
    1. Schraermeyer U.
    (1993) Localization of subrhabdomeric haemolymph lacunae in the retina of Drosophila melanogaster and Calliphora erythrocephala. J. Neurocyt 22, 833–844
    OpenUrlCrossRefPubMed
    1. Schwemer J.,
    2. Henning U.
    (1984). Morphological correlates of visual pigment turnover in the photoreceptors of the fly, Calliphora erythrocephala (Meig.). Cell Tiss. Res 236, 293–303
    OpenUrlPubMed
    1. Stark W. S.,
    2. Carlson S. D.
    (1982) Ultrastructural pathology of the compound eye and optic neuropiles of the retinal degeration mutant (wrdgBKS222) Drosophila melanogaster. Cell Tiss. Res 225, 11–22
    OpenUrlCrossRefPubMed
    1. Stark W. S.,
    2. Carlson S. D.
    (1983) Ultrastructure of the compound eye and first optic neuropile of the photoreceptor mutant oraJK84of Drosophila. Cell Tiss. Res 233, 305–317
    OpenUrlPubMedWeb of Science
    1. Stark W. S.,
    2. Sapp R.,
    3. Carlson S. D.
    (1989) Photoreceptor maintenance and degeneration in the norpA (no receptor potential-A) mutant of Drosophila melanogaster. J. Neurogenet 1, 49–59
    1. Steele F.,
    2. O'Tousa J. E.
    (1990) Rhodopsin activation causes retinal degeneration in Drosophila rdgC mutant. Neuron 4, 883–890
    OpenUrlCrossRefPubMedWeb of Science
    1. Steele F.,
    2. Washburn T.,
    3. Rieger R.,
    4. O'Tousa J. E.
    (1992) Drosophila retinal degeneration C (rdgC) encodes a novel serine/threonine protein phosphatase. Cell 69, 669–676
    OpenUrlCrossRefPubMedWeb of Science
    1. Stowe S.,
    2. Davis D. T.
    (1990) Anti-actin immunoreactivity is retained in rhabdoms of Drosophila ninaC photoreceptors. Cell Tissue Res 260, 431–434
    OpenUrlCrossRefPubMedWeb of Science
    1. Sung C. H.,
    2. Makino C.,
    3. Baylor D.,
    4. Nathans J.
    (1994) A rhodopsin gene mutation responsible for autosomal dominant retinitis pigmentosa results in a protein that is defective in localization to the photoreceptor outer segment. J. Neurosci 14, 5818–5833
    OpenUrlAbstract
    1. Suzuki E.,
    2. Hirosawa K.,
    3. Hotta Y.
    (1990) Analysis of photoreceptor membrane turnover in a Drosophila visual mutant, rdgA, by electron microscope autoradiography. J. Electron Microsc 39, 50–53
    OpenUrlAbstract/FREE Full Text
    1. Van Vactor D.,
    2. Krantz D. E.,
    3. Reinke R.,
    4. Zipursky S. L.
    (1988) Analysis of mutants in chaoptin, a photoreceptor cell-specific glycoprotein in Drosophila, reveals its role in cellular morphogenesis. Cell 52, 281–290
    OpenUrlCrossRefPubMedWeb of Science
    1. Washburn T.,
    2. O'Tousa J. E.
    (1989) Molecular defects in Drosophila rhodopsin mutants. J. Biol. Chem 264, 15464–15466
    OpenUrlAbstract/FREE Full Text
    1. Vaughan D. K.,
    2. Fisher S. K.
    (1989) Cytochalasin D disrupts outer segment disc morphogenesis in situ in rabbit retinal Invest. Ophthalmol. Vis. Sci 30, 339–342
    OpenUrl
    1. Vihtelic T. S.,
    2. Hyde D. R.,
    3. O'Tousa J. E.
    (1991) Isolation and characterization of the Drosophila retinal degeneration B (rdgB) gene. Genetics 127, 761–768
    OpenUrlAbstract/FREE Full Text
    1. Vihtelic T. S.,
    2. Goebl M.,
    3. Milligan S.,
    4. O'Tousa J. E.,
    5. Hyde D. R.
    (1993) Localization of Drosophila retinal degeneration B, a membrane-associated phosphatidylinositol transfer protein. J. Cell Biol 122, 1013–1022
    OpenUrlAbstract/FREE Full Text
    1. Williams D. S.,
    2. Linberg K. A.,
    3. Vaughan D. K.,
    4. Fariss R. N.,
    5. Fisher S. K.
    (1988) Disruption of microfilament organization and deregulation of disk morphogenesis by Cytochalasin D in rod and cone photoreceptors. J. Comp. Neurol 272, 161–176
    OpenUrlCrossRefPubMedWeb of Science
    1. Wright A. R.
    (1992) New insights into genetic eye disease. Trends in Genetics 8, 85–91
    OpenUrlCrossRefPubMedWeb of Science
    1. Zinkl G. M.,
    2. Maier L.,
    3. Studer K.,
    4. Chen D. M.,
    5. Stark W. S.
    (1990) Microphotometric, ultrastructural, and electrophysiological analysis of light-dependent processes on visual receptors in white-eyed wild-type and norpA (no receptor potential) mutant Drosophila. Vis. Neurosci 5, 429–439
    OpenUrlCrossRefPubMedWeb of Science
    1. Zuker C. S.,
    2. Cowman A. F.,
    3. Rubin G. M.
    (1985) Isolation and structure of a rhodopsin gene from D. melanogaster. Cell 40, 851–858
    OpenUrlCrossRefPubMedWeb of Science
    1. Zuker C. S.,
    2. Montell C.,
    3. Jones K.,
    4. Laverty T.,
    5. Rubin G. M.
    (1987) A rhodopsin gene expressed in photoreceptor cell R7 of the Drosophila eye: homologies with other signal-transducing molecules. J. Neurosci 7, 1550–1557
    OpenUrlAbstract
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Rhodopsin plays an essential structural role in Drosophila photoreceptor development
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Rhodopsin plays an essential structural role in Drosophila photoreceptor development
J.P. Kumar, D.F. Ready
Development 1995 121: 4359-4370;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Rhodopsin plays an essential structural role in Drosophila photoreceptor development
J.P. Kumar, D.F. Ready
Development 1995 121: 4359-4370;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Groucho augments the repression of multiple Even skipped target genes in establishing parasegment boundaries
  • Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes
  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

A new society for regenerative biologists

Kenneth Poss and Elly Tanaka announce the launch of the International Society for Regenerative Biology (ISRB), which will promote research and education in the field of regenerative biology.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


An interview with Cagney Coomer

Over a virtual chat, we spoke to Cagney Coomer about her experiences in the lab, the classroom and the community centre, and why she thinks outreach and role models are vital to science.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Here, Michèle Romanos talks about her new preprint, which mixes experimentation in quail embryos and computational modelling to understand how heterogeneity in a tissue influences cell rate.

Save your spot at our next session:

10 March
Time: 9:00 (GMT)
Chaired by: Thomas Lecuit

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992