Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Cis-regulatory control of the SM50 gene, an early marker of skeletogenic lineage specification in the sea urchin embryo
K.W. Makabe, C.V. Kirchhamer, R.J. Britten, E.H. Davidson
Development 1995 121: 1957-1970;
K.W. Makabe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.V. Kirchhamer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.J. Britten
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E.H. Davidson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The SM50 gene encodes a minor matrix protein of the sea urchin embryo spicule. We carried out a detailed functional analysis of a cis-regulatory region of this gene, extending 440 bp upstream and 120 bp downstream of the transcription start site, that had been shown earlier to confer accurate skeletogenic expression of an injected expression vector. The distal portion of this fragment contains elements controlling amplitude of expression, while the region from −200 to +105 contains spatial control elements that position expression accurately in the skeletogenic lineages of the embryo. A systematic mutagenesis analysis of this region revealed four adjacent regulatory elements, viz two copies of a positively acting sequence (element D) that are positioned just upstream of the transcription start site; an indispensable spatial control element (element C) that is positioned downstream of the start site; and further downstream, a second positively acting sequence (element A). We then constructed a series of synthetic expression constructs. These contained oligonucleotides representing normal and mutated versions of elements D, C, and A, in various combinations. We also changed the promoter of the SM50 gene from a TATA-less to a canonical TATA box form, without any effect on function. Perfect spatial regulation was also produced by a final series of constructs that consisted entirely of heterologous enhancers from the CyIIIa gene, the SV40 early promoter, and synthetic D, C, and A elements. We demonstrate that element C exercises the primary spatial control function of the region we analyzed. We term this a ‘locator’ element. This differs from conventional ‘tissue-specific enhancers’ in that while it is essential for expression, it has no transcriptional activity on its own, and it requires other, separable, positive regulatory elements for activity. In the normal configuration these ancillary positive functions are mediated by elements A and D. Only positively acting control elements were observed in the SM50 regulatory domain throughout this analysis.

Reference

    1. Anstrom J. A.,
    2. Chin J. E.,
    3. Leaf D. S.,
    4. Parks A. L.,
    5. Raff R. A.
    (1987) Localization and expression of msp130, a primary mesenchyme lineage-specific cell surface protein of the sea urchin embryo. Development 101, 255–265
    OpenUrlAbstract
    1. Benson S. C.,
    2. Sucov H. M.,
    3. Stephens L.,
    4. Davidson E. H.,
    5. Wilt F.
    (1987) A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. I. Authentication of the cloned gene and its developmental expression. Dev. Biol 120, 499–506
    OpenUrlCrossRefPubMed
    1. Briggs M. R.,
    2. Kadonaga J. T.,
    3. Bell S. P.,
    4. Tjian R.
    (1986) Purification and biochemical characterization of the promoter-specific transcription factor Sp1. Science 234, 47–52
    OpenUrlAbstract/FREE Full Text
    1. Calzone F. J.,
    2. Theze N.,
    3. Thiebaud P.,
    4. Hill R. L.,
    5. Britten R. J.,
    6. Davidson E. H.
    (1988) Developmental appearance of factors that bind specifically to cis-regulatory sequences of a gene expressed in the sea urchin embryo. Genes Dev 2, 1074–1088
    OpenUrlAbstract/FREE Full Text
    1. Calzone F. J.,
    2. Höög C.,
    3. Teplow D. B.,
    4. Cutting A. E.,
    5. Zeller R. W.,
    6. Britten R. J.,
    7. Davidson E. H.
    (1991) Gene regulatory factors of the sea urchin embryo. I. Purification by affinity chromatography and cloning of P3A2, a novel DNA-binding protein. Development 112, 335–350
    OpenUrlAbstract
    1. Cameron R. A.,
    2. Hough-Evans B. R.,
    3. Britten R. J.,
    4. Davidson E. H.
    (1987) Lineage and fate of each blastomere of the eight-cell sea urchin embryo. Genes Dev 1, 75–85
    OpenUrlAbstract/FREE Full Text
    1. Chen J.-L.,
    2. Attardi L. D.,
    3. Verrijzer C. P.,
    4. Yokomori K.,
    5. Tjian R.
    (1994) Assembly of recombinant TFIID reveals differential coactivator requirements for distinct transcriptional activators. Cell 79, 93–105
    OpenUrlCrossRefPubMedWeb of Science
    1. Coffman J. A.,
    2. Davidson E. H.
    (1992) Expression of spatially regulated genes in the sea urchin embryo. Curr. Opinion Genet. Dev 2, 260–268
    OpenUrlCrossRefPubMed
    1. Davidson E. H.
    (1989) Lineage-specific gene expression and the regulative capacities of the sea urchin embryo: a proposed mechanism. Development 105, 421–445
    OpenUrlAbstract/FREE Full Text
    1. Davidson E. H.
    (1990) How embryos work: A comparative view of diverse modes of cell fate specification. Development 108, 365–389
    OpenUrlAbstract
    1. Drager B. J.,
    2. Harkey M. A.,
    3. Iwata M.,
    4. Whiteley A. H.
    (1989) The expression of embryonic primary mesenchyme genes of the sea urchin, Strongylocentrotus purpuratus, in the adult skeletogenic tissues of this and other species of echinoderms. Dev. Biol 133, 14–23
    OpenUrlCrossRefPubMedWeb of Science
    1. Ernst S. G.,
    2. Hough-Evans B. R.,
    3. Britten R. J.,
    4. Davidson E. H.
    (1980) Limited complexity of the RNA in micromeres of sixteen-cell sea urchin embryos. Dev. Biol 79, 119–127
    OpenUrlCrossRefPubMedWeb of Science
    1. Fischer J. A.,
    2. Maniatis T.
    (1988) Drosophila Adh: a promoter element expands the tissue specificity of an enhancer. Cell 53, 451–461
    OpenUrlCrossRefPubMedWeb of Science
    1. Flytzanis C. N.,
    2. McMahon A. P.,
    3. Hough-Evans B. R.,
    4. Katula K. S.,
    5. Britten R. J.,
    6. Davidson E. H.
    (1985) Persistence and integration of cloned DNA in postembryonic sea urchins. Dev. Biol 108, 431–442
    OpenUrlCrossRefPubMed
    1. Flytzanis C. N.,
    2. Britten R. J.,
    3. Davidson E. H.
    (1987) Ontogenic activation of a fusion gene introduced into sea urchin eggs. Proc. Natl. Acad. Sci. USA 84, 151–155
    OpenUrlAbstract/FREE Full Text
    1. Franks R. R.,
    2. Hough-Evans B. R.,
    3. Britten R. J.,
    4. Davidson E. H.
    (1988) Direct introduction of cloned DNA into the sea urchin zygote nucleus, and fate of injected DNA. Development 102, 287–299
    OpenUrlAbstract
    1. Franks R. R.,
    2. Anderson R.,
    3. Moore J. G.,
    4. Hough-Evans B. R.,
    5. Britten R. J.,
    6. Davidson E. H.
    (1990) Competitive titration in living sea urchin embryos of regulatory factors required for expression of the CyIIIa actin gene. Development 110, 31–40
    OpenUrlAbstract
    1. Gan L.,
    2. Wessel G. M.,
    3. Klein W. H.
    (1990) Regulatory elements from the related Spec genes of Strongylocentrotus purpuratus yield different spatial patterns with a lacZ reporter gene. Dev. Biol 142, 346–359
    OpenUrlCrossRefPubMedWeb of Science
    1. George N. C.,
    2. Killian C. E.,
    3. Wilt F. H.
    (1991). Characterization and expression of a gene encoding a 30.6 kDa Strongylocentrotus purpuratus spicule matrix protein. Dev. Biol 147, 334–342
    OpenUrlCrossRefPubMed
    1. Gorman C.,
    2. Moffat L. F.,
    3. Howard B. H.
    (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol 2, 1044–1051
    OpenUrlAbstract/FREE Full Text
    1. Hapgood H.,
    2. Patterton D.
    (1994) Purification of an oligo(dG)•oligo(dC)-binding sea urchin nuclear protein, suGF1: a family of G-string factors involved in gene regulation during development. Mol. Cell Biol 14, 1402–1409
    OpenUrlAbstract/FREE Full Text
    1. Harkey M. A.,
    2. Whiteley H. R.,
    3. Whiteley A. H.
    (1992) Differential expression of the msp130 gene among skeletal lineage cells in the sea urchin embryo: A three dimensional in situ hybridization analysis. Mech. Dev 37, 173–184
    OpenUrlCrossRefPubMedWeb of Science
    1. Henry J. J.,
    2. Amemiya S.,
    3. Wray G. A.,
    4. Raff R. A.
    (1989) Early inductive interactions are involved in restricting cell fates of mesomeres in sea urchin embryos. Dev. Biol 136, 140–153
    OpenUrlCrossRefPubMedWeb of Science
    1. Hörstadius S.
    (1939) The mechanics of sea urchin development, studied by operative methods. Biol. Rev. Cambr. Phil. Soc 14, 132–179
    OpenUrlCrossRef
    1. Hough-Evans B. R.,
    2. Britten R. J.,
    3. Davidson E. H.
    (1988) Mosaic incorporation of an exogenous fusion gene expressed exclusively in aboral ectoderm cells of the sea urchin embryo. Dev. Biol 129, 198–208
    OpenUrlCrossRefPubMedWeb of Science
    1. Hough-Evans B. R.,
    2. Franks R. R.,
    3. Zeller R. W.,
    4. Britten R. J.,
    5. Davidson E. H.
    (1990) Negative spatial regulation of the lineage specific CyIIIa actin gene in the sea urchin embryo. Development 108, 41–50
    OpenUrl
    1. Kabakoff B.,
    2. Hwang S.-P.L.,
    3. Lennarz W. J.
    (1992) Characterization of post-translational modifications common to three primary mesenchyme cell-specific glycoproteins involved in sea urchin embryonic skeleton formation. Dev. Biol 150, 294–305
    OpenUrlCrossRefPubMed
    1. Katoh-Fukui Y.,
    2. Noce T.,
    3. Ueda T.,
    4. Fujiwara Y.,
    5. Hashimoto N.,
    6. Higashinakagawa T.,
    7. Killian C. E.,
    8. Livingston B. T.,
    9. Wilt F. H.,
    10. Benson S. C.,
    11. Sucov H. M.,
    12. Davidson E. H.
    (1991) The corrected structure of the SM50 spicule matrix protein of Strongylocentrotus purpuratus. Dev. Biol 145, 201–202
    OpenUrlCrossRefPubMedWeb of Science
    1. Kaufmann J.,
    2. Smale S. T.
    (1994) Direct recognition of initiator elementsby a component of the transcription factor IID complex. Genes Dev 8, 821–829
    OpenUrlAbstract/FREE Full Text
    1. Khaner O.,
    2. Wilt F.
    (1990) The influence of cell interactions and tissue mass on differentiation of sea urchin mesomeres. Development 109, 625–634
    OpenUrlAbstract
    1. Khaner O.,
    2. Wilt F.
    (1991) Interactions of different vegetal cells with mesomeres during early stages of sea urchin development. Development 112, 881–890
    OpenUrlAbstract
    1. Khoury G.,
    2. Gruss P.
    (1983) Enhancer elements. Cell 33, 313–314
    OpenUrlCrossRefPubMedWeb of Science
    1. Killian C. E.,
    2. Wilt F. H.
    (1989) The accumulation and translation of a spicule matrix protein mRNA during sea urchin embryo development. Dev. Biol 133, 148–156
    OpenUrlCrossRefPubMed
    1. Leaf D. S.,
    2. Anstrom J. A.,
    3. Chin J. E.,
    4. Harkey M. A.,
    5. Showman R. M.,
    6. Raff R. A.
    (1987) Antibodies to a fusion protein identify a cDNA clone encoding msp130, a primary mesenchyme-specific cell surface protein of the sea urchin embryo. Dev. Biol 121, 29–40
    OpenUrlCrossRefPubMedWeb of Science
    1. Leahy P. S.
    (1986) Laboratory culture of Strongylocentrotus purpuratus adults, embryos, and larvae. Meth. Cell Biol 27, 1–13
    OpenUrlPubMedWeb of Science
    1. Livant D.,
    2. Cutting A.,
    3. Britten R. J.,
    4. Davidson E. H.
    (1988) An in vivo titration of regulatory factors required for expression of a fusion gene in transgenic sea urchin embryos. Proc. Natl. Acad. Sci. USA 85, 7607–7611
    OpenUrlAbstract/FREE Full Text
    1. Livant D. L.,
    2. Hough-Evans B. R.,
    3. Moore J. G.,
    4. Britten R. J.,
    5. Davidson E. H.
    (1991) Differential stability of expression of similarly specified endogenous and exogenous genes in the sea urchin embryo. Development 113, 385–398
    OpenUrlAbstract
    1. Livingston B. T.,
    2. Wilt F. H.
    (1989) Lithium evokes expression of vegetal-specific molecules in the animal blastomeres of sea urchin embryos. Proc. Natl. Acad. Sci. USA 86, 3669–3673
    OpenUrlAbstract/FREE Full Text
    1. McMahon A. P.,
    2. Flytzanis C. N.,
    3. Hough-Evans B. R.,
    4. Katula K. S.,
    5. Britten R. J.,
    6. Davidson E. H.
    (1985) Introduction of cloned DNA into sea urchin egg cytoplasm: Replication and persistence during embryogenesis. Dev. Biol 198, 420–430
    OpenUrl
    1. Okazaki K.
    (1975) Spicule formation by isolated micromeres of the sea urchin embryo. Am. Zool 15, 567–581
    OpenUrlWeb of Science
    1. Ransick A.,
    2. Ernst S.,
    3. Britten R. J.,
    4. Davidson E. H.
    (1993) Whole mount in situ hybridization shows Endo16 to be a marker for the vegetal plate territory in sea urchin embryos. Mech. Dev 42, 117–124
    OpenUrlCrossRefPubMedWeb of Science
    1. Richardson W.,
    2. Kitajima T.,
    3. Wilt F.,
    4. Benson S.
    (1989) Expression of an embryonic spicule matrix gene in calcified tissues of adult sea urchins. Dev. Biol 132, 266–269
    OpenUrlCrossRefPubMedWeb of Science
    1. Ruffins S. W.,
    2. Ettensohn C. A.
    (1993) A clonal analysis of secondary mesenchyme cell fates in the sea urchin embryo. Dev. Biol 160, 285–288
    OpenUrlCrossRefPubMedWeb of Science
    1. Seed B.,
    2. Sheen J.-Y.
    (1988) A simple phase-extraction assay for chloramphenicol acetyltransferase activity. Gene 67, 271–277
    OpenUrlCrossRefPubMedWeb of Science
    1. Sucov H. M.,
    2. Benson S.,
    3. Robinson J. J.,
    4. Britten R. J.,
    5. Wilt F.,
    6. Davidson E. H.
    (1987) A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. Dev. Biol 120, 507–519
    OpenUrlCrossRefPubMed
    1. Sucov H. M.,
    2. Hough-Evans B. R.,
    3. Franks R. R.,
    4. Britten R. J.,
    5. Davidson E. H.
    (1988) A regulatory domain that directs lineage-specific expression of a skeletal matrix protein gene in the sea urchin embryo. Genes Dev 2, 1238–1250
    OpenUrlAbstract/FREE Full Text
    1. Theze N.,
    2. Calzone F. J.,
    3. Thiebaud P.,
    4. Hill R. L.,
    5. Britten R. J.,
    6. Davidson E. H.
    (1990) Sequences of the CyIIIa actin gene regulatory domain bound specifically by sea urchin embryo nuclear proteins. Mol. Reprod. Dev 25, 110–122
    OpenUrlCrossRefPubMed
    1. Wang D. G.-W.,
    2. Kirchhamer C. V.,
    3. Britten R. J.,
    4. Davidson E. H.
    (1995) SpZ12-1, a negative regulator required for spatial control of the territory-specific CyIIIa gene in the sea urchin embryo. Development 121, 1111–1122
    OpenUrlAbstract
    1. Xiang M.,
    2. Lu S.-Y.,
    3. Musso M.,
    4. Karsenty G.,
    5. Klein W. H.
    (1991) A G-string positive cis -regulatory element in the LpS1 promoter binds two distinct nuclear factors distributed non-uniformly in Lytechinus pictus embryos. Development 113, 1345–1355
    OpenUrlAbstract
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Cis-regulatory control of the SM50 gene, an early marker of skeletogenic lineage specification in the sea urchin embryo
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Cis-regulatory control of the SM50 gene, an early marker of skeletogenic lineage specification in the sea urchin embryo
K.W. Makabe, C.V. Kirchhamer, R.J. Britten, E.H. Davidson
Development 1995 121: 1957-1970;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Cis-regulatory control of the SM50 gene, an early marker of skeletogenic lineage specification in the sea urchin embryo
K.W. Makabe, C.V. Kirchhamer, R.J. Britten, E.H. Davidson
Development 1995 121: 1957-1970;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice
  • REF-1, a protein with two bHLH domains, alters the pattern of cell fusion in C. elegans by regulating Hox protein activity
  • The dermomyotome dorsomedial lip drives growth and morphogenesis of both the primary myotome and dermomyotome epithelium
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992