Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Mice with targeted disruption of Hoxb-1 fail to form the motor nucleus of the VIIth nerve
J.M. Goddard, M. Rossel, N.R. Manley, M.R. Capecchi
Development 1996 122: 3217-3228;
J.M. Goddard
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Rossel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N.R. Manley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.R. Capecchi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Mice were generated with targeted disruptions in the hoxb-1 gene. Two separate mutations were created: the first disrupts only the homeodomain and the second inactivates the first exon as well as the homeodomain. The phenotypes associated with these two mutant alleles are indistinguishable in surviving adult mice. The predominant defect in these mutant mice is a failure to form the somatic motor component of the VIIth (facial) nerve, possibly through a failure to specify these neurons. The phenotype of hoxb-1 mutant homozygotes closely resembles features of the clinical profile associated with humans suffering from Bell's Palsy or Moebius Syndrome. These animals should therefore provide a useful animal model for these human diseases.

Reference

    1. Altman J.,
    2. Bayer S.
    (1982) Development of the cranial nerve ganglia and related nuclei in the rat. In. Advances in Anatomy, Embryology and Cell Biology, 74, 1–90
    OpenUrlPubMed
    1. Beck E.,
    2. Ludwig G.,
    3. Auserwald E. A.,
    4. Reiss B.,
    5. Schaller H.
    (1982) Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 19, 327–336
    OpenUrlCrossRefPubMedWeb of Science
    1. Boulet A. M.,
    2. Capecchi M. R.
    (1996) Targeted disruption of hoxc-4 causes esophageal defects and vertebral transformations. Dev. Biol 177, 232–249
    OpenUrlCrossRefPubMedWeb of Science
    1. Carpenter E. M.,
    2. Goddard J. M.,
    3. Chisaka O.,
    4. Manley N. R.,
    5. Capecchi M. R.
    (1993). Loss of Hox-A1 (Hox-1.6) function results in the reorganization of the murine hindbrain. Development 118, 1063–1075
    OpenUrlAbstract/FREE Full Text
    1. Chisaka O.,
    2. Capecchi M. R.
    (1991). Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox-1.5. Nature 350, 473–479
    OpenUrlCrossRefPubMed
    1. Chisaka O.,
    2. Musci T. S.,
    3. Capecchi M. R.
    (1992). Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox gene Hox-1.6. Nature 355, 516–520
    OpenUrlCrossRefPubMedWeb of Science
    1. Davis A. P.,
    2. Capecchi M. R.
    (1994) Axial homeosis and appendicular skeleton defects in mice with a targeted disruption of hoxd-11. Development 120, 2187–2198
    OpenUrlAbstract
    1. Davis A. P.,
    2. Witte D. P.,
    3. Hsieh-Li H. M.,
    4. Potter S. S.,
    5. Capecchi M. R.
    (1995) Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature 375, 791–795
    OpenUrlCrossRefPubMedWeb of Science
    1. Davis A. P.,
    2. Capecchi M. R.
    (1996) A mutational analysis of the 5Hox D genes: Dissection of genetic interactions during limb development in the mouse. Development 122, 1175–1185
    OpenUrlAbstract
    1. Dodd J.,
    2. Morton S. B.,
    3. Karagogeos D.,
    4. Yamamoto M.,
    5. Jessell T. M.
    (1988) Spatial regulation of axonal glycoprotein expression on subsets of embryonic spinal neurons. Neuron 1, 105–116
    OpenUrlCrossRefPubMedWeb of Science
    1. Dolle P.,
    2. Izpisúa-Belmonte J.-C.,
    3. Falkenstein H.,
    4. Renucci A.,
    5. Duboule D.
    (1989) Coordinate expression of the murine Hox-5 complex homeobox-containing genes during limb pattern formation. Nature 342, 767–772
    OpenUrlCrossRefPubMed
    1. Dolle P.,
    2. Izpisúa-Belmonte J.-C.,
    3. Boncinelli E.,
    4. Duboule D.
    (1991). The Hox-4.8 gene is localized at the 5extremity of the Hox-4 complex and is expressed in the most posterior parts of the body during development. Mech. Dev 36, 3–13
    OpenUrlCrossRefPubMedWeb of Science
    1. Dolle P.,
    2. Dierich A.,
    3. LeMeur M.,
    4. Schimmang T.,
    5. Schuhbaur B.,
    6. Chambon P.,
    7. Duboule D.
    (1993) Disruption of the Hoxd-13 gene induces localized heterochrony leading to mice with neotenic limbs. Cell 75, 431–441
    OpenUrlCrossRefPubMedWeb of Science
    1. Duboule D.,
    2. Dolle P.
    (1989) The structural and functional organization of the murine Hox gene family resembles that of Drosophila homeotic genes. EMBO J 8, 1497–1505
    OpenUrlPubMedWeb of Science
    1. Eriksson U.,
    2. Hansson E.,
    3. Nordlinder H.,
    4. Busch C.,
    5. Sundelin J.,
    6. Peterson P. A.
    (1987) Quantitation and tissue localization of the cellular retinoic acid-binding protein. J. Cell. Physiol 133, 482–490
    OpenUrlCrossRefPubMed
    1. Favier B.,
    2. Rijli F. M.,
    3. Fromental-Ramain C.,
    4. Fraulob V.,
    5. Chambon P.
    (1996) Functional cooperation between the non-paralogous genes Hoxa-10 and Hoxd-11 in the developing forelimb and axial skeleton. Development 122, 449–460
    OpenUrlAbstract
    1. Frohman M. A.,
    2. Boyle M.,
    3. Martin G. R.
    (1990). Isolation of the mouse Hox-2.9 gene; analysis of embryonic expression suggests that positional information along the anterior-posterior axis is specified by mesoderm. Development 110, 589–607
    OpenUrlAbstract/FREE Full Text
    1. Fromental-Ramain C.,
    2. Warot X.,
    3. Lakkaraju S.,
    4. Favier B.,
    5. Haack H.,
    6. Birling C.,
    7. Dierich A.,
    8. Dolle P.,
    9. Chambon P.
    (1996) Specific and redundant functions of the paralogous Hoxa-9 and Hoxd-9 genes in forelimb and axial skeleton patterning. Development 122, 461–472
    OpenUrlAbstract
    1. Gendron-Maguire M.,
    2. Mallo M.,
    3. Zhang M.,
    4. Gridley T.
    (1993) Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell 75, 1317–1331
    OpenUrlCrossRefPubMedWeb of Science
    1. Graham A.,
    2. Papalopulu N.,
    3. Krumlauf R.
    (1989) The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 57, 367–378
    OpenUrlCrossRefPubMedWeb of Science
    1. Horan G. S. B.,
    2. Ramírez-Solis R.,
    3. Featherstone M. S.,
    4. Wolgemuth D. J.,
    5. Bradley A.,
    6. Behringer R. R.
    (1995) Compound mutants for the paralogous hoxa-4, hoxb-4, and hoxd-4 genes show more complete homeotic transformations and a dose-dependent increase in the number of vertebrae transformed. Genes Dev 9, 1667–1677
    OpenUrlAbstract/FREE Full Text
    1. Hunt P.,
    2. Gulisano M.,
    3. Cook M.,
    4. Sham M.-H.,
    5. Faiella A.,
    6. Wilkinson D.,
    7. Boncinelli E.,
    8. Krumlauf R.
    (1991) A distinct Hox code for the branchial region of the vertebrate head. Nature 353, 861–864
    OpenUrlCrossRefPubMed
    1. Izpisúa-Belmonte J.-C.,
    2. Falkenstein H.,
    3. Dolle P.,
    4. Renucci A.,
    5. Duboule D.
    (1991) Murine genes related to the Drosophila AbdB homeotic gene are sequentially expressed during development of the posterior part of the body. EMBO J 10, 2279–2289
    OpenUrlPubMedWeb of Science
    1. Jeannotte L.,
    2. Lemieux M.,
    3. Charron J.,
    4. Poirier F.,
    5. Robertson E. J.
    (1993). Specification of axial identity in the mouse: role of the Hoxa-5 (Hox-1.3) gene. Genes Dev 7, 2085–2096
    OpenUrlAbstract/FREE Full Text
    1. Kostic D.,
    2. Capecchi M. R.
    (1994) Targeted disruptions of the murine hoxa-4 and hoxa-6 genes result in homeotic transformations of components of the vertebral column. Mech. Dev 46, 231–247
    OpenUrlCrossRefPubMedWeb of Science
    1. Kumar D.
    (1990) Moebius syndrome. J. Med. Genet 27, 122–126
    OpenUrlFREE Full Text
    1. LeMouellic H.,
    2. Lallemand Y.,
    3. Brûlet P.
    (1992). Homeosis in the mouse induced by a null mutation in the Hox-3.1 gene. Cell 69, 251–264
    OpenUrlCrossRefPubMedWeb of Science
    1. Lewis E. B.
    (1978) A gene complex controlling segmentation in Drosophila. Nature 276, 565–570
    OpenUrlCrossRefPubMedWeb of Science
    1. Lufkin T.,
    2. Dierich A.,
    3. LeMeur M.,
    4. Mark M.,
    5. Chambon P.
    (1991). Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell 66, 1105–1119
    OpenUrlCrossRefPubMedWeb of Science
    1. Lumsden A.,
    2. Keynes R.
    (1989) Segmental patterns of neuronal development in the chick hindbrain. Nature 337, 424–428
    OpenUrlCrossRefPubMedWeb of Science
    1. Maden M.,
    2. Horton C.,
    3. Graham A.,
    4. Leonard L.,
    5. Pizzey J.,
    6. Siegenthaler G.,
    7. Lumsden A.,
    8. Eriksson U.
    (1992) Domains of cellular retinoic acid-binding protein I (CRA BP I) expression in the hindbrain and neural crest of the mouse embryo. Mech. Dev 37, 13–23
    OpenUrlCrossRefPubMedWeb of Science
    1. Manley N. R.,
    2. Capecchi M. R.
    (1995) The role of hoxa-3 in mouse thymus and thyroid development. Development 121, 1989–2003
    OpenUrlAbstract
    1. Mansour S. L.,
    2. Thomas K. R.,
    3. Capecchi M. R.
    (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352
    OpenUrlCrossRefPubMed
    1. Mansour S. L.,
    2. Goddard J. M.,
    3. Capecchi M. R.
    (1993) Mice homozygous for a targeted disruption of the proto-oncogene int-2 have developmental defects in the tail and inner ear. Development 117, 13–28
    OpenUrlAbstract/FREE Full Text
    1. Mark M.,
    2. Lufkin T.,
    3. Vonesch J.-L.,
    4. Ruberte E.,
    5. Olivo J.-C.,
    6. Dolle P.,
    7. Gorry P.,
    8. Lumsden A.,
    9. Chambon P.
    (1993) Two rhombomeres are altered in Hoxa-1 mutant mice. Development 119, 319–338
    OpenUrlAbstract
    1. Marshall H.,
    2. Nonchev S.,
    3. Sham M. H.,
    4. Muchamore I.,
    5. Lumsden A.,
    6. Krumlauf R.
    (1992) Retinoic acid alters hindbrain Hox code and induces transformation of rhombomeres 2/3 into a 4/5 identity. Nature 360, 737–741
    OpenUrlCrossRefPubMedWeb of Science
    1. Murphy P.,
    2. Hill R. E.
    (1991). Expression of the mouse labial- likehomeobox-containing genes, Hox-2.9 and Hox-1.6, during segmentation of the hindbrain. Development 111, 61–74
    OpenUrlAbstract
    1. Nagy A.,
    2. Rossant J.,
    3. Nagy R.,
    4. Abramow-Newerly W.,
    5. Roder J. C.
    (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90, 8424–8428
    OpenUrlAbstract/FREE Full Text
    1. Ramirez-Solis R.,
    2. Zheng H.,
    3. Whiting J.,
    4. Krumlauf R.,
    5. Bradley A.
    (1993). Hoxb-4 (Hox-2.6) mutant mice show homeotic transformation of a cervical vertebra and defects in the closure of the sternal rudiments. Cell 73, 279–294
    OpenUrlCrossRefPubMedWeb of Science
    1. Rancourt D. E.,
    2. Tsuzuki T.,
    3. Capecchi M. R.
    (1995) Genetic interaction between hoxb-5 and hoxb-6 is revealed by nonallelic noncomplementation. Genes Dev 9, 108–122
    OpenUrlAbstract/FREE Full Text
    1. Rijli F. M.,
    2. Mark M.,
    3. Lakkaraju S.,
    4. Dierich A.,
    5. Dolle P.,
    6. Chambon P.
    (1993) A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell 75, 1333–1349
    OpenUrlCrossRefPubMedWeb of Science
    1. Roberts D. J.,
    2. Johnson R. L.,
    3. Burke A. C.,
    4. Nelson C. E.,
    5. Morgan B. A.,
    6. Tabin C.
    (1995) Sonic hedgehog is an endodermal signal inducing Bmp-4 and Hox genes during induction and regionalization of the chick hindgut. Development 121, 3163–3174
    OpenUrlAbstract
    1. Satokata I.,
    2. Benson G.,
    3. Maas R.
    (1995) Sexually dimorphic sterility phenotypes in Hoxa10 -deficient mice. Nature 374, 460–463
    OpenUrlCrossRefPubMedWeb of Science
    1. Schneider-Maunoury S.,
    2. Topilko P.,
    3. Seitanidou T.,
    4. Levi G.,
    5. Cohen-Tannoudji M.,
    6. Pournin S.,
    7. Babinet C.,
    8. Charnay P.
    (1993) Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell 75, 1199–1214
    OpenUrlCrossRefPubMedWeb of Science
    1. Serbedzija G. N.,
    2. Bronner-Fraser M.,
    3. Fraser S. E.
    (1992) Vital dye analysis of cranial neural crest cell migration in the mouse embryo. Development 116, 297–307
    OpenUrlAbstract/FREE Full Text
    1. Small K. M.,
    2. Potter S. S.
    (1993) Homeotic transformations and limb defects in HoxA-11 mutant mice. Genes Dev 7, 2318–2328
    OpenUrlAbstract/FREE Full Text
    1. Smith D. B.,
    2. Johnson K. S.
    (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67, 31–40
    OpenUrlCrossRefPubMedWeb of Science
    1. Suemori W.,
    2. Takahashi N.,
    3. Noguchi S.
    (1995) Hoxc-9 mutant mice show anterior transformation of the vertebrae and malformation of the sternum and ribs. Mech. Dev 51, 265–273
    OpenUrlCrossRefPubMedWeb of Science
    1. Thomas K. R.,
    2. Capecchi M. R.
    (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512
    OpenUrlCrossRefPubMedWeb of Science
    1. Thomas K. R.,
    2. Deng C.,
    3. Capecchi M. R.
    (1992) High-fidelity gene targeting in embryonic stem cells by using sequence replacement vectors. Mol. Cell. Biol 12, 2919–2923
    OpenUrlAbstract/FREE Full Text
    1. Wall N. A.,
    2. Jones C. M.,
    3. Hogan B. L. M.,
    4. Wright C. V. E.
    (1992). Expression and modification of hox-2.1 protein in mouse embryos. Mech. Dev 37, 111–120
    OpenUrlCrossRefPubMedWeb of Science
    1. Wilkinson D. G.,
    2. Bhatt S.,
    3. Chavrier P.,
    4. Bravo R.,
    5. Charnay P.
    (1989) Segment-specific expression of a zinc-finger gene in the developing nervous system of the mouse. Nature 337, 461–464
    OpenUrlCrossRefPubMed
    1. Wilkinson D. G.,
    2. Bhatt S.,
    3. Cook M.,
    4. Boncinelli E.,
    5. Krumlauf R.
    (1989) Segmental expression of Hox-2 homeobox-containing genes in the developing mouse hindbrain. Nature 341, 405–409
    OpenUrlCrossRefPubMed
    1. Yokouchi Y.,
    2. Sasaki H.,
    3. Kuroiwa A.
    (1991) Homeobox gene expression correlated with the bifurcation process of limb cartilage development. Nature 353, 443–445
    OpenUrlCrossRefPubMedWeb of Science
    1. Yokouchi Y.,
    2. Nakazato S.,
    3. Yamamoto M.,
    4. Goto Y.,
    5. Kameda T.,
    6. Iba H.,
    7. Kuroiwa A.
    (1995) Misexpression of Hoxa-13 induces cartilage homeotic transformation and changes cell adhesiveness in chick limb buds. Genes Dev 9, 2509–2522
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Mice with targeted disruption of Hoxb-1 fail to form the motor nucleus of the VIIth nerve
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
Share
JOURNAL ARTICLES
Mice with targeted disruption of Hoxb-1 fail to form the motor nucleus of the VIIth nerve
J.M. Goddard, M. Rossel, N.R. Manley, M.R. Capecchi
Development 1996 122: 3217-3228;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Mice with targeted disruption of Hoxb-1 fail to form the motor nucleus of the VIIth nerve
J.M. Goddard, M. Rossel, N.R. Manley, M.R. Capecchi
Development 1996 122: 3217-3228;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Interviews — Bénédicte Sanson and Kate Storey

Bénédicte Sanson and Kate Storey

Hear from Bénédicte Sanson, winner of the BSDB’s Cheryll Tickle medal, and Kate Storey, winner of the BSDB’s Waddington Medal, as they discuss their research, the future of the field and the importance of collaboration.


Review Commons launches

We're excited to be an affiliate journal for Review Commons, the ASAPbio/EMBO platform for high-quality journal-independent peer-review in the life sciences, which went live on 09 December.


Have you heard about our Travelling Fellowships?

Peter Baillie-Johnson in Switzerland

Early-career researchers can apply for up to £2,500 to offset the cost of travel and expenses to make collaborative visits to other labs around the world. Read about Peter’s experience in Switzerland, where he joined forces with the Lutolf lab to refine a protocol for producing gastruloids.


Publishing peer review reports

To continue working towards transparency around the editorial process, Development now publishes a ‘Peer review history file’ alongside published papers. Read more about the policy and see the reports for yourself in one the first papers to publish the reports (under the ‘Info & metrics’ tab).


Development at a glance — Cell interactions in collective cell migration

Extract from the poster showing specific cell-cell interactions in metastasis.

Take a look at the latest poster and accompanying article by Denise Montell and her colleagues from the University of California, where they describe a sampling of both known and new cells that migrate collectively in vivo.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2019   The Company of Biologists Ltd   Registered Charity 277992