Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Forebrain patterning defects in Small eye mutant mice
A. Stoykova, R. Fritsch, C. Walther, P. Gruss
Development 1996 122: 3453-3465;
A. Stoykova
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Fritsch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Walther
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Gruss
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Pax6 is a member of the Pax gene family of transcriptional regulators that exhibits a restricted spatiotemporal expression in the developing central nervous system, eye and nose. Mutations in Pax6 are responsible for inherited malformations in man, rat and mouse. To evaluate the role of Pax6 in forebrain development, we studied in detail mouse Small eye/Pax6 mutant brains. This analysis revealed severe defects in forebrain regions where Pax6 is specifically expressed. The establishment of some expression boundaries along the dorsoventral axis of the secondary prosencephalon is distorted and the specification of several ventral structures and nuclei is abolished. Specifically, the development of the hypothalamo-telencephalic transition zone and the ventral thalamus is distorted. Our detailed analysis included a comparison of the expression of Pax6, Dlx1 and several other genes during embryonic mouse brain development in wild-type and in the mutant Small eye (Sey) brain. The results from the analysis of normal brain development show that the restricted expression of Pax6 and Dlx1 at E12.5 dpc respect domains within the forebrain, consistent with the implications of the prosomeric model for the organisation of the forebrain (L. Puelles and J. L. R. Rubenstein (1993) Trends Neurosci. 16, 472–479). Furthermore, we found an early restriction of Pax6 and Dlx1 expression into presumptive histogenetic fields that correlate with the formation of distinct forebrain structures and nuclei. Our results are discussed in light of changes in adhesive properties in the Sey brain that might control segregation, assembly and cell migration of progenitors of specific forebrain regions.

Reference

    1. Alvarez-Bonaldo G.,
    2. Rosenfeld M. G.,
    3. Swanson L. W.
    (1995) Model of forebrain regionalization based onspatiotemporal patterns of POU-III homeobox gene expression, birthdates, and morphological features. J. Comp. Neurol 355, 237–295
    OpenUrlCrossRefPubMedWeb of Science
    1. Bergquist H.,
    2. Källen B.
    (1954) Notes on the early histogenesis and morphogenesis of the central nervous system in vertebrates. J. Comp. Neurol 100, 627–660
    OpenUrlPubMed
    1. Boncinelli E.
    (1994) Early CNS development: distal-less related genes and forebrain development. Curr. Opin. Neurobiol 4, 29–36
    OpenUrlCrossRefPubMed
    1. Bopp D.,
    2. Burri M.,
    3. Baumgartner S.,
    4. Frigerio G.,
    5. Noll M.
    (1986) Conservation of a large protein domain in the segmentation gene paired and in functionally related genes of Drosophila. Cell 47, 1033–1040
    OpenUrlCrossRefPubMedWeb of Science
    1. Bulfone A.,
    2. Puelles L.,
    3. Porteus M. H.,
    4. Frohman M. A.,
    5. Martin G. R.,
    6. Rubenstein J. L. R.
    (1993). Spatially restricted expression of Dlx-1, Dlx-2 (Tes-1), Gbx-2, and Wnt-3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal segmental boundaries. J. Neurosci 13, 3155–3172
    OpenUrlAbstract
    1. Bulfone A.,
    2. Smiga S. M.,
    3. Shimamura K.,
    4. Peterson A.,
    5. Puelles L.,
    6. Rubenstein J. L. R.
    (1995) T-Brain-1: a homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex. Neuron 15, 63–78
    OpenUrlCrossRefPubMedWeb of Science
    1. Chalepakis G.,
    2. Stoykova A.,
    3. Wijnholds J.,
    4. Tremblay P.,
    5. Gruss P.
    (1993) Pax: Gene regulators in the developing nervous sxstem. J. Neurobiol 24, 1367–1384
    OpenUrlCrossRefPubMedWeb of Science
    1. Chisholm A. D.,
    2. Horvitz H. R.
    (1995) Patterning of the Caenorhabditis elegans head region by the Pax-6 family member vab-b. Nature 376, 52–55
    OpenUrl
    1. Coggeshall R. E.
    (1964) A study of diencephalic development of the albino rat. J. comp. Neurol 122, 241–269
    OpenUrlCrossRefPubMedWeb of Science
    1. Dressler G. R.,
    2. Deutsch U.,
    3. Balling R.,
    4. Simon D.,
    5. Guenet J.-L.,
    6. Gruss P.
    (1988) Murine genes with homology to Drosophila segmentation genes. Development 104, 181–186
    OpenUrlAbstract/FREE Full Text
    1. Figdor M. C.,
    2. Stern C. D.
    (1993) Segmental organization of embryonic diencephalon. Nature 363, 630–634
    OpenUrlCrossRefPubMed
    1. Fishell G.,
    2. Manson C. A.,
    3. Hatten M. E.
    (1993) Dispersion of neural progenitors within the germinal zones of the forebrain. Nature 362, 636–638
    OpenUrlCrossRefPubMed
    1. Fujiwara M.,
    2. Uchida T.,
    3. Osumi-Yamashita N.,
    4. Eto K.
    (1994) Uchida rat (rSey): a new mutant rat with craniofacial abnormalities resembling those of the mouse Sey mutant. Differentiation 57, 31–38
    OpenUrlCrossRefPubMedWeb of Science
    1. Glaser T.,
    2. Jepeal L.,
    3. Edwards J. G.,
    4. Young S. R.,
    5. Favor J.,
    6. Maas R. L.
    (1994) PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalamia and central nervous system defects. Nature Genet 7, 463–471
    OpenUrlCrossRefPubMedWeb of Science
    1. Götz M.,
    2. Wizenmann A.,
    3. Reinhard S.,
    4. Lumsden A.,
    5. Price J.
    (1996) Selective adhesion of cells from different telencephalic regions. Neuron 16, 551–564
    OpenUrlCrossRefPubMedWeb of Science
    1. Grindley J. C.,
    2. Davidson D. R.,
    3. Hill R. E.
    (1995) The role of Pax-6 in eye and nasal development. Development 121, 1433–1442
    OpenUrlAbstract
    1. Guillemot F.,
    2. Joyner A. L.
    (1993) Dynamic expression of the murine Achaete-Scute homologue Mash-1 in the developing nervous system. Mech. Dev 42, 171–185
    OpenUrlCrossRefPubMedWeb of Science
    1. Guthrie S.
    (1996) Patterning the hindbrain. Curr. Opin. Neurobiol 6, 41–48
    OpenUrlCrossRefPubMedWeb of Science
    1. Halder G.,
    2. Callaerts P.,
    3. Gehring W. J.
    (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267, 1788–1792
    OpenUrlAbstract/FREE Full Text
    1. Hanson I. M.,
    2. Fletcher J. M.,
    3. Jordan T.,
    4. Brown A.,
    5. Taylor D.,
    6. Adams R. J.,
    7. Punnet H. H.,
    8. van Heyningen V.
    (1994) Mutations at the PAX6 locus are found in heterogeneous anterior segment malformations including Peters' anomaly. Nature Genet 6, 168–173
    OpenUrlCrossRefPubMedWeb of Science
    1. Hatini V.,
    2. Tao W.,
    3. Lai E.
    (1994) Expression of winged helix genes BF-1 and BF-2 defines adjacent domains within the developing forebrain and retina. J. Neurobiol 25, 1293–1309
    OpenUrlCrossRefPubMedWeb of Science
    1. Hill R. E.,
    2. Favor J.,
    3. Hogan B. L. M.,
    4. Ton C. C. T.,
    5. Saunders G. F.,
    6. Hanson I. M.,
    7. Prosser J.,
    8. Jordan T.,
    9. Hastie N. D.,
    10. van Heyningen V.
    (1991) Mouse Small eye results from mutations in a paired-like homeobox-containing gene. Nature 354, 522–525
    OpenUrlCrossRefPubMed
    1. Hogan B. L. M.,
    2. Hirst E. M. A.,
    3. Horsburgh G.,
    4. Hetherington C. M.
    (1988) Small eye (Sey): a mouse model for the genetic analysis of cranofacial abnormalities. Development 103, 115–119
    OpenUrlAbstract/FREE Full Text
    1. Hogan B. L. M.,
    2. Horsburgh G.,
    3. Cohen J.,
    4. Hetherington C. M.,
    5. Fisher G.,
    6. Lyon M. F.
    (1986) Small eyes (Sey): a homozygous lethal mutation onchromosome 2 which affects the differentiation of both lens and nasal placodes in the mouse. J. Embryol. Exp. Morph 97, 95–110
    OpenUrlPubMedWeb of Science
    1. Jordan T.,
    2. Hanson I.,
    3. Zaletayev D.,
    4. Hodgson S.,
    5. Prosser J.,
    6. Seawright A.,
    7. Hastie N.,
    8. van Heyningen V.
    (1992) The human PAX6 gene is mutated in two patients with aniridia. Nature Genet 1, 328–332
    OpenUrlCrossRefPubMedWeb of Science
    1. Keyser A.
    (1972) The development of the diencephalon of the chinese hamster. An investigation of the validity of the criteria of subdivision of the brain. Acta Anat 83, 1–178
    OpenUrlPubMed
    1. Krumlauf R.
    (1994) Hox genes in vertebrate development. Cell 78, 191–201
    OpenUrlCrossRefPubMedWeb of Science
    1. Macdonald R.,
    2. Xu Q.,
    3. Barth K. A.,
    4. Mikkola I.,
    5. Holder N.,
    6. Fjose A.,
    7. Krauss S.,
    8. Wilson S. W.
    (1994) Regulatory gene expression boundaries demarcate sites of neuronal differentiation in the embryonic zebrafish forebrain. Neuron 13, 1039–1053
    OpenUrlCrossRefPubMedWeb of Science
    1. Mansouri A.,
    2. Stoykova A.,
    3. Gruss P.
    (1994) Pax genes in development. J. Cell Sci 18, 35–42
    OpenUrl
    1. Marchard R.,
    2. Lajoie L.,
    3. Blanchet C.
    (1986) Histogenesis at the level of the basal forebrain: the entopeduncular nucleus. Neurosci 17, 591–607
    OpenUrlCrossRefPubMedWeb of Science
    1. Mastick G. S.,
    2. Easter S. S. J.
    (1996) Initial organization of neurons and tracts in the embryonic mouse fore-and midbrain. Dev. Biol 173, 79–94
    OpenUrlCrossRefPubMedWeb of Science
    1. Matsunami H.,
    2. Takeichi M.
    (1995) Fetal brain subdivisions defined by R-and E-cadherin expressions: evidence for the role of cadherin activity in region-specific, cell-cell adhesion. Dev. Biol 172, 466–478
    OpenUrlCrossRefPubMedWeb of Science
    1. Matsuo T.,
    2. Osumi-Yamashita N.,
    3. Noji S.,
    4. Ohuchi H.,
    5. Koyama E.,
    6. Myokai F.,
    7. Matsuo N.,
    8. Taniguchi S.,
    9. Doi H.,
    10. Ninomiya Y.,
    11. Fujiwara M.,
    12. Watanabe T.,
    13. Eto K.
    (1993) A mutation in the Pax-6 gene in rat small eye is associated with impaired migration of midbrain crest cells. Nature Genet 3, 299–304
    OpenUrlCrossRefPubMedWeb of Science
    1. Nusse R.,
    2. Varmus H. E.
    (1992) Wnt genes. Cell 69, 1073–1087
    OpenUrlCrossRefPubMedWeb of Science
    1. Oliver G.,
    2. Sosa-Pineda B.,
    3. Geisendorf S.,
    4. Spana E. P.,
    5. Doe C. Q.,
    6. Gruss P.
    (1993) Prox 1, a prospero-related homeobox gene expressed during mouse development. Mech. Dev 44, 3–16
    OpenUrlCrossRefPubMedWeb of Science
    1. Porteus M. H.,
    2. Bulfone A.,
    3. Ciaranello R. D.,
    4. Rubenstein J. L.
    (1991) Isolation and characterization of a novel cDNA clone encoding a homeodomain that is developmentally regulated in the ventral forebrain. Neuron 7, 221–229
    OpenUrlCrossRefPubMedWeb of Science
    1. Price M.,
    2. Lazzaro D.,
    3. Pohl T.,
    4. Mattei M.-G.,
    5. Ruther U.,
    6. Olivo J.-C.,
    7. Duboule D.,
    8. Di Lauro R.
    (1992). Regional expression of the homeobox gene Nkx-2.2 in the developing mam malian forebrain. Neuron 8, 241–255
    OpenUrlCrossRefPubMedWeb of Science
    1. Price M.,
    2. Lemaistre M.,
    3. Pischetola M.,
    4. Di Lauro R.,
    5. Duboule D.
    (1991) A mouse gene related to Distal-less shows a restricted expression in the developing forebrain. Nature 351, 748–751
    OpenUrlCrossRefPubMed
    1. Puelles L.
    (1995) A segmental morphological paradigm for understanding vertebrate forebrains. Brain Behav. Evol 46, 319–337
    OpenUrlPubMedWeb of Science
    1. Puelles L.,
    2. Amat J. A.,
    3. Martinez-de-la-Torre M.
    (1987) Segment-related, mosaic neurogenetic pattern in the forebrain and mesencephalon of early chick embryos: I. Topography of AChE-positive neuroblasts up to stage HH18. J. Comp. Neurol 266, 247–268
    OpenUrlCrossRefPubMedWeb of Science
    1. Puelles L.,
    2. Rubenstein J. L. R.
    (1993) Expression patterns of homeobox and other putatitive regulatory genes in the embryonic mouse forebrain suggests a neuromeric organization. Trends Neurosci 16, 472–479
    OpenUrlCrossRefPubMedWeb of Science
    1. Quiring R.,
    2. Walldorf U.,
    3. Kloter U.,
    4. Gehring W. J.
    (1994) Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 265, 785–789
    OpenUrlAbstract/FREE Full Text
    1. Redies C.
    (1995) Cadherin expression in the developing vertebrate CNS: from neuromeres to brain nuclei and neural circuits. Exp. Cell Res 220, 243–256
    OpenUrlCrossRefPubMedWeb of Science
    1. Roberts R. C.
    (1967) Small-eyes, a new dominant mutant in the mouse. Genet. Res 9, 121–122
    OpenUrlWeb of Science
    1. Roelink H.,
    2. Nusse R.
    (1991) Expression of two members of the Wnt family during mouse development-restricted temporal and spatial patterns in the developing neural tube. Genes Dev 5, 381–388
    OpenUrlAbstract/FREE Full Text
    1. Rosenfeld M. G.
    (1991) POU-domain transcription factors: POU-er-full developmental regulators. Genes Dev 5, 897–907
    OpenUrlFREE Full Text
    1. Rubenstein J. L. R.,
    2. Puelles L.
    (1994) Homeobox gene expression during development of the vertebrate brain. Curr. Top. Dev. Biol 29, 1–63
    OpenUrlPubMedWeb of Science
    1. Salinas P. C.,
    2. Nusse R.
    (1992) Regional expression of the Wnt-3 gene in the developing mouse forebrain in relationship to diencephalic neuromeres. Mech. Dev 39, 151–160
    OpenUrlCrossRefPubMedWeb of Science
    1. Schmahl W.,
    2. Knoedlseder M.,
    3. Favor J.,
    4. Davidson D.
    (1993) Defects of neuronal migratzion and the pathogenesis of cortical malformations are associated with small eye (sey) in the mouse, a point mutation at the Pax-6 locus. Acta Neuropathol 86, 126–135
    OpenUrlCrossRefPubMed
    1. Shimamura K.,
    2. Hartigan D. J.,
    3. Martinez S.,
    4. Puelles L.,
    5. Rubenstein J. L. R.
    (1995) Longitudinal organization of the anterior neural plate and neural tube. Development 121, 3923–3933
    OpenUrlAbstract
    1. Simeone A.,
    2. Acampora D.,
    3. Gulisano M.,
    4. Stornaiuolo A.,
    5. Boncinelli E.
    (1992) Nested expression domains of four homeobox genes in developing rostral brain. Nature 358, 687–690
    OpenUrlCrossRefPubMed
    1. Simeone A.,
    2. Acampora D.,
    3. Mallamaci A.,
    4. Stornaiuolo A.,
    5. D'Apice M. R.,
    6. Nigro V.,
    7. Boncinelli E.
    (1993) A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J 12, 2735–2747
    OpenUrlPubMedWeb of Science
    1. Simeone A.,
    2. Gulisano M.,
    3. Acampora D.,
    4. Stornaiuolo A.,
    5. Rambaldi M.,
    6. Boncinelli E.
    (1992) Two vertebrate homeobox genes related to the Drosophila empty spiracles gene are expressed in the embryonic cerebral cortex. EMBO J 11, 2541–2550
    OpenUrlPubMedWeb of Science
    1. Stoykova A.,
    2. Gruss P.
    (1994) Roles of Pax -genes in developing and adult brain as suggested by expression patterns. J. Neurosci 14, 1395–1412
    OpenUrlAbstract
    1. Timsit S.,
    2. Martinez S.,
    3. Allinquant B.,
    4. Peyron F.,
    5. Puelles L.,
    6. Zalc B.
    (1995) Oligodendrocytes originate in a restricted zone of the embryonic ventral neural tube defined by DM-20 mRNA expression. J. Neurosci 15, 1012–1024
    OpenUrlAbstract
    1. Tole S.,
    2. Patterson P. H.
    (1995) Regionalization of the developing forebrain—a comparison of FORSE-1, Dlx-2, and BF-1. J. Neurosci 15, 970–980
    OpenUrlAbstract
    1. Ton C. C. T.,
    2. Hirvonen H.,
    3. Miwa H.,
    4. Weil M. M.,
    5. Monaghan P.,
    6. Jordan T.,
    7. van Heyningen V.,
    8. Hastie N. D.,
    9. Meijers-Heijboer H.,
    10. Drechsler M.,
    11. Royer-Pokora B.,
    12. Collins F.,
    13. Swaroop A.,
    14. Strong L. C.,
    15. Saunders G. F.
    (1991) Positional cloning of a paired box-and homeobox-containing gene from the Aniridia region. Cell 67, 1059–1074
    OpenUrlCrossRefPubMedWeb of Science
    1. Wallin J.,
    2. Mizutani Y.,
    3. Imai K.,
    4. Miyashita N.,
    5. Moriwaki K.,
    6. Taniguchi M.,
    7. Koseki H.,
    8. Balling R.
    (1993) A new Pax gene, Pax-9, maps to mouse chromosome 12. Mammal. Genome 4, 354–358
    OpenUrlCrossRefPubMedWeb of Science
    1. Walther C.,
    2. Gruss P.
    (1991) Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113, 1435–1449
    OpenUrlAbstract
    1. Walther C.,
    2. Guenet J.-L.,
    3. Simon D.,
    4. Deutsch U.,
    5. Jostes B.,
    6. Goulding M.,
    7. Plachov D.,
    8. Balling R.,
    9. Gruss P.
    (1991) Pax: a murine multigene family of paired box containing genes. Genomics 11, 424–434
    OpenUrlPubMedWeb of Science
    1. Wilson S. W.,
    2. Ross L. S.,
    3. Parrett T.,
    4. Easter S. S. J.
    (1990) The development of a simple scaffold of axon tracts in the brain of the embryonic zebrafish, Brachydanio rerio. Development 108, 121–145
    OpenUrlAbstract
    1. Zhang Y.,
    2. Emmons S. W.
    (1995) Specification of sense organ identity by a Caenorhabditis elegansPax-6 homologue. Nature 376, 55–59
    OpenUrl
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Forebrain patterning defects in Small eye mutant mice
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Forebrain patterning defects in Small eye mutant mice
A. Stoykova, R. Fritsch, C. Walther, P. Gruss
Development 1996 122: 3453-3465;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Forebrain patterning defects in Small eye mutant mice
A. Stoykova, R. Fritsch, C. Walther, P. Gruss
Development 1996 122: 3453-3465;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • A BAC transgenic analysis of the Mrf4/Myf5 locus reveals interdigitated elements that control activation and maintenance of gene expression during muscle development
  • Visualization and functional characterization of the developing murine cardiac conduction system
  • Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992