Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Late effects of retinoic acid on neural crest and aspects of rhombomere
E. Gale, V. Prince, A. Lumsden, J. Clarke, N. Holder, M. Maden
Development 1996 122: 783-793;
E. Gale
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V. Prince
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Lumsden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Clarke
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N. Holder
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Maden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

We exposed st.10 chicks to retinoic acid (RA), both globally, and locally to individual rhombomeres, to look at its role in specification of various aspects of hindbrain derived morphology. Previous studies have looked at RA exposure at earlier stages, during axial specification. Stage 10 is the time of morphological segmentation of the hindbrain and is just prior to neural crest migration. Rhombomere 4 localised RA injections result in specific alterations of pathways some crest cells that normally migrate to sites of differentiation of neurogenic derivatives. The r4 crest cells that give rise to mesenchymal derivatives are unaffected. In addition, r4 gene expression is also partially altered by RA; within 6 hours of r4 exposure to RA, ectopic expression of Krox-20 is seen in r4 and Hoxb-1 expression is lost while Hoxa-2 expression continues normally. When we examined these RA-treated animals later in development, they showed an anterior displacement of the facial ganglion in addition to a mis-direction of the extensions of its distal axons and a dramatic decrease in the number of contralateral vestibuloacoustic neurons normally seen in r4. Only this r4-specific neuronal type is affected in r4; the motor neuron projections seem normal in experimental animals. The specificity of this result, combined with the loss of Hoxb-1 expression in r4 and the work by Krumlauf and co-workers showing gain of contralateral neurons co-localised with ectopic Hoxb-1 expression, indicates a role for Hoxb-1 and RA in the specification of this cell type in normal development. These results suggest that RA, at st.10, is able to affect some aspects of segment identity while leaving others unchanged.

Reference

    1. Anderson D. J.
    (1989) The neural crest cell lineage problem: Neuropoiesis. Neuron 3, 1–12
    OpenUrlCrossRefPubMedWeb of Science
    1. Baroffio A.,
    2. Dupin E.,
    3. Le Douarin N.
    (1988) Clone-forming ability and differentiation potential of migratory neural crest cells. Proc. Nat. Acad. Sci. USA 85, 5325–5329
    OpenUrlAbstract/FREE Full Text
    1. Burns F. R.,
    2. Von Kannen S.,
    3. Guy L.,
    4. Raper J.,
    5. Kamholz J.,
    6. Chang S.
    (1991) DM-GRASP, a novel immunoglobulin superfamily axonal surface protein that supports neurite extension. Neuron 7, 209–220
    OpenUrlCrossRefPubMedWeb of Science
    1. Bronner-Fraser M.,
    2. Fraser S. B.
    (1988) Cell lineage analysis reveals multipotency of some avian neural crest cells. Nature 335, 161–164
    OpenUrlCrossRefPubMed
    1. Chen Y.,
    2. Huang L.,
    3. Solursh M.
    (1994) A concentration gradient of retinoids in the early Xenopus laevis embryo. Dev. Biol 161, 70–76
    OpenUrlCrossRefPubMedWeb of Science
    1. Chisaka O.,
    2. Musci T. S.,
    3. Capecchi M. R.
    (1992). Developmental defects of the ear, cranial nerves and hindbrain resulting from the disruption of the mouse homeobox gene Hox-1.6. Nature 355, 516–520
    OpenUrlCrossRefPubMed
    1. Conlon R. A.,
    2. Rossant J.
    (1992) Exogenous retinoic acid rapidly induces anterior expression of murine Hox-2 genes in vivo. Development 116, 357–368
    OpenUrlAbstract/FREE Full Text
    1. Couly G.,
    2. Le Douarin N. M.
    (1990) Head morphogenesis in embryonic avian chimeras: evidence for a segmental pattern in the ectoderm corresponding to the neuromeres. Development 108, 543–558
    OpenUrlAbstract/FREE Full Text
    1. Couly G. F.,
    2. Coltey P. M.,
    3. Le Douarin N. M.
    (1992) The developmental fate of the cephalic mesoderm in quail-chick chimeras. Development 114, 1–15
    OpenUrlAbstract
    1. Cunningham M. A.,
    2. MacAuley A.,
    3. Mirkes P. E.
    (1994) From gastrulation to neurulation: Transition in retinoic acid sensitivity identifies distinct stages of neural patterning in the rat. Dev. Dynam 200, 227–241
    OpenUrlPubMedWeb of Science
    1. D'Amico-Martel A.,
    2. Noden D. M.
    (1983) Contributions of placodal and neural crest cells to avian cranial peripheral ganglia. Am. J. Anat 166, 445–468
    OpenUrlCrossRefPubMedWeb of Science
    1. Dolle P.,
    2. Lufkin T.,
    3. Krumlauf R.,
    4. Mark M.,
    5. Duboule D.,
    6. Chambon P.
    (1993). Local alterations of Krox-20 and Hox gene expression in the hindbrain suggest lack of rhombomeres 4 and 5 in homozygote null Hoxa-1 (Hox-1.6) mutant embryos. Proc. Nat. Acad. Sci. USA 90, 7666–7670
    OpenUrlAbstract/FREE Full Text
    1. Durston A. J.,
    2. Timmermans J. P. M.,
    3. Hage W. J.,
    4. Hendriks H. F. J.,
    5. de Vries N. J.,
    6. Heideveld M.,
    7. Nieuwkoop P. D.
    (1989) Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340, 140–144
    OpenUrlCrossRefPubMed
    1. Fraser S.,
    2. Keynes R.,
    3. Lumsden A.
    (1990) Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 344, 431–435
    OpenUrlCrossRefPubMed
    1. Fraser S. E.,
    2. Bronner-Fraser M.
    (1991) Migrating neural crest cells in the trunk of the avian embryo are multipotent. Development 112, 913–920
    OpenUrlAbstract
    1. Gendron-Maguire M.,
    2. Mallo M.,
    3. Zhang M.,
    4. Gridley T.
    (1993) Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell 75, 1317–1331
    OpenUrlCrossRefPubMedWeb of Science
    1. Guthrie S.,
    2. Lumsden A.
    (1992) Motor neuron pathfinding following rhombomere reversals in the chick embryo hindbrain. Development 114, 663–673
    OpenUrlAbstract
    1. Heyman I.,
    2. Faissner A.,
    3. Lumsden A.
    (1995) Cellular and molecular specialisation of rhombomere boundaries. Dev. Dynam 204, 301–315
    OpenUrlPubMedWeb of Science
    1. Hill J.,
    2. Clarke J. D. W.,
    3. Vargesson N.,
    4. Jowett T.,
    5. Holder N.
    (1995) Exogenous retinoic acid causes specific alterations in the development of the midbrain and hindbrain of the zebrafish embryo including positional respecification of the Mauthner neuron. Mech. Dev 50, 3–16
    OpenUrlCrossRefPubMedWeb of Science
    1. Hogan B. L.,
    2. Thaller C.,
    3. Eichele G.
    (1992) Evidence that Hensen's node is a site of retinoic acid synthesis. Nature 359, 237–241
    OpenUrlCrossRefPubMed
    1. Holder N.,
    2. Hill J.
    (1991) Retinoic acid modifies development of the midbrain-hindbrain border and affects cranial ganglion formation in zebrafish embryos. Development 113, 1159–1170
    OpenUrlAbstract
    1. Hunt P.,
    2. Wilkinson D.,
    3. Krumlauf R.
    (1991) Patterning the vertebrate head: Murine Hox 2 genes mark distinct subpopulations of premigratory and migrating cranial neural crest. Development 112, 43–50
    OpenUrlAbstract
    1. Kessel M.
    (1993) Reversal of axonal pathways from rhombomere 3 correlates with extra Hox expression domains. Neuron 10, 379–393
    OpenUrlCrossRefPubMedWeb of Science
    1. Kessel M.,
    2. Gruss P.
    (1991) Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 67, 89–104
    OpenUrlCrossRefPubMedWeb of Science
    1. Kolm P. J.,
    2. Sive H. L.
    (1995) Regulation of the Xenopus labial homeodomain genes, HoxA1 and HoxD1: Activation by retinoids and peptide growth factors. Dev. Biol 167, 34–49
    OpenUrlCrossRefPubMedWeb of Science
    1. Krumlauf R.
    (1993) Hox genes and pattern formation in the branchial region of the vertebrate head. Trends Genet 9, 106–112
    OpenUrlCrossRefPubMedWeb of Science
    1. Kuratani S. C.,
    2. Eichele G.
    (1993) Rhombomere transplantation repatterns the segmental organization of cranial nerves and reveals cell-autonomous expression of a homeodomain protein. Development 117, 105–117
    OpenUrlAbstract/FREE Full Text
    1. Landacre F. L.
    (1910) The origin of cranial ganglia in Ameirerus. J. Comp. Neurol 20, 309–411
    OpenUrlCrossRefWeb of Science
    1. Langston A. W.,
    2. Gudas L. J.
    (1992). Identification of a retinoic acidresponsive enhancer 3 of the murine homeobox gene Hox-1.6. Mech. Dev 38, 217–228
    OpenUrlCrossRefPubMedWeb of Science
    1. Le Douarin N. M.,
    2. Dupin E.
    (1992) Cell lineage analysis in neural crest ontogeny. J. Neurobiol 24, 146–161
    1. Le Douarin N. M.,
    2. Fontaine-Perus J.,
    3. Couly G.
    (1986) Cephalic ectodermal placodes and neurogenesis. Trends Neurosci 9, 175–180
    1. Le Douarin N. M.,
    2. Ziller C.,
    3. Couly G.
    (1993) Patterning of neural crest derivatives in the avian embryo: In Vivo and in vitro studies. Dev. Biol 159, 24–49
    OpenUrlCrossRefPubMedWeb of Science
    1. Le Lievre C. S.,
    2. Le Douarin N. M.
    (1975) Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J. Embryol. Exp. Morphol 34, 125–154
    OpenUrlPubMedWeb of Science
    1. Lee Y. M.,
    2. Osumi-Yamashita N.,
    3. Ninomiya Y.,
    4. Moon C. K.,
    5. Eriksson U.,
    6. Eto K.
    (1995) Retinoic acid stage-dependently alters pattern and identity of hindbrain neural crest cells. Development 121, 825–837
    OpenUrlAbstract
    1. Leonard L.,
    2. Horton C.,
    3. Maden M.,
    4. Pizzey J. A.
    (1995) Anteriorization of CRABP-I expression by retinoic acid in the developing mouse central nervous system and it's relationship to teratogenesis. Dev. Biol 168, 514–528
    OpenUrlCrossRefPubMed
    1. Lopez S. L.,
    2. Corrasco A. E.
    (1992) Retinoic acid induces changes in the localization of homeobox protiens in the antero-posterior axis of Xenopus laevis embryos. Mech. Dev 36, 153–164
    OpenUrlCrossRefPubMed
    1. Lufkin T.,
    2. Dierich A.,
    3. LeMeur M.,
    4. Mark M.,
    5. Chambon P.
    (1991). Disruption of the Hox-1.6 homeobox gene results in defects in the region corresponding to its rostral domain of expression. Cell 66, 1105–1119
    OpenUrlCrossRefPubMedWeb of Science
    1. Lumsden A.,
    2. Keynes R.
    (1989) Segmental patterns of neuronal development in the chick hindbrain. Nature 337, 424–428
    OpenUrlCrossRefPubMed
    1. Lumsden A.,
    2. Sprawson N.,
    3. Graham A.
    (1991) Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo. Development 113, 1281–1291
    OpenUrlAbstract
    1. Maden M.,
    2. Holder N.
    (1992) Retinoic acid and development of the central nervous system. BioEssays 14, 431–438
    OpenUrlCrossRefPubMedWeb of Science
    1. Marshall H.,
    2. Nonchev S.,
    3. Sham M. H.,
    4. Muchamore I.,
    5. Lumsden A.,
    6. Krumlauf R.
    (1992) Retinoic acid alters hindbrain Hox code and induces transformation of rhombomeres 2/3 into 4/5 identity. Nature 360, 737–741
    OpenUrlCrossRefPubMed
    1. Marshall H.,
    2. Studer M.,
    3. Popperl H.,
    4. Aparicio S.,
    5. Kuroiwa A.,
    6. Brenner S.,
    7. Krumlauf R.
    (1994) A conserved retinoic acid response element required for the early expression of the homeobox gene Hoxb-1. Nature 370, 567–571
    OpenUrlCrossRefPubMed
    1. Morriss G.
    (1972) Morphogenesis of the malformations induced in rat embryos by maternal hypervitaminosis A. J. Anat 113, 241–250
    OpenUrlPubMedWeb of Science
    1. Morriss-Kay G.
    (1992) Retinoic acid and craniofacial development: Molecules and morphogenesis. BioEssays 15, 9–15
    OpenUrl
    1. Morriss-Kay G. M.,
    2. Murphy P.,
    3. Hill R. E.,
    4. Davidson D. R.
    (1991). Effects of retinoic acid excess on expression of Hox-2.9 and Krox20 and on morphological segmentation in the hindbrain of mouse embryos. EMBO J 10, 2985–2995
    OpenUrlPubMedWeb of Science
    1. Murphy P.,
    2. Hill R. E.
    (1991). Expression of the mouse labial-like homeobox-containing genes, Hox 2.9 and Hox 1.6, during segmentation of the hindbrain. Development 111, 61–74
    OpenUrlAbstract
    1. Noden D. M.
    (1983) The role of the neural crest in patterning of avian cranial skeletal, connective and muscle tissue. Dev. Biol 96, 144–165
    OpenUrlCrossRefPubMedWeb of Science
    1. Noden D. M.
    (1992) Spatial integration among cells forming the cranial peripheral nervous system. Journal of Neurobiology 24, 248–261
    1. Papalopulu N.,
    2. Clarke J. D. W.,
    3. Bradley L.,
    4. Wilkinson D.,
    5. Krumlauf R.,
    6. Holder N.
    (1991) Retinoic acid causes abnormal development and segmental patterning of the anterior hindbrain in Xenopus embryos. Development 113, 1145–1158
    OpenUrlAbstract
    1. Prince V.,
    2. Lumsden A.
    (1994) Hoxa-2 expression in normal and transposed rhombomeres: independent regulation in the neural tube and neural crest. Development 120, 911–923
    OpenUrlAbstract
    1. Riable D. W.,
    2. Eisen J. S.
    (1994) Restriction of Neural crest cell fate in the trunk of the embryonic zebrafish. Development 120, 495–503
    OpenUrlAbstract
    1. Schilling T. F.,
    2. Kimmel C. B.
    (1994) Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish. Development 120, 483–494
    OpenUrlAbstract
    1. Schneider-Maunoury S.,
    2. Topilko P.,
    3. Seitanidou T.,
    4. Levi G.,
    5. Cohen-Tannoudji M.,
    6. Pournin S.,
    7. Babinet C.,
    8. Charnay P.
    (1993) Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell 75, 1199–1214
    OpenUrlCrossRefPubMedWeb of Science
    1. Simon H.,
    2. Hornbruch A.,
    3. Lumsden A.
    (1995) Independent assignment of antero-posterior and dorso-ventral positional values in the developing chick hindbrain. Curr. Biol 5, 205–214
    OpenUrlCrossRefPubMedWeb of Science
    1. Simon H.,
    2. Lumsden A.
    (1993) Rhombomere-specific origin of the contralateral vestibulo-acoustic efferent neurons and their migration across the embryonic midline. Neuron 11, 209–220
    OpenUrlCrossRefPubMedWeb of Science
    1. Sive H.,
    2. Draper B.,
    3. Harland R.,
    4. Weintraub H.
    (1990) Identification of a retinoic acid-sensative period during primary axis formation in Xenopus laevis. Genes Dev 4, 932–942
    OpenUrlAbstract/FREE Full Text
    1. Studer M.,
    2. Popperl H.,
    3. Marshall H.,
    4. Kuroiwa A.,
    5. Krumlauf R.
    (1994) Role of a conserved retinoic acid response element in rhombomere restriction of Hoxb-1. Science 265, 1728–1732
    OpenUrlAbstract/FREE Full Text
    1. Sundin O. H.,
    2. Busse H. G.,
    3. Rogers L. J.,
    4. Gudas L. J.,
    5. Eichele G.
    (1990). Region specific expression in early chick and mouse embryos of Ghox-lab and Hox 1.6, vertebrate homeobox domain containing genes related to Drosophila labial. Development 108, 47–58
    OpenUrlAbstract
    1. Swiatek P. J.,
    2. Gridley T.
    (1993) Perinatal lethality and defects in hindbrain development in mice homozygous for a targeted mutation of the zinc finger gene Krox-20. Genes Dev 7, 2071–2084
    OpenUrlAbstract/FREE Full Text
    1. Thorogood P.,
    2. Smith L.,
    3. Nicol A.,
    4. McGinty R.,
    5. Garrod D.
    (1982) Effects of vitamin A on the behaviour of migratory neural crest cells in vitro. J. Cell Sci 57, 331–350
    OpenUrlAbstract/FREE Full Text
    1. Tucker G. C.,
    2. Aoyama H.,
    3. Lipinski M.,
    4. Tursz T.,
    5. Thiery J. P.
    (1984) Identical reactivity of monoclonal antibodies HNK-1 and NC-1: conservation in vertebrates on cells derived from the neural primordium and on some leukocytes. Cell Differ 14, 223–230
    OpenUrlCrossRefPubMedWeb of Science
    1. Webster W. S.,
    2. Johnston M. C.,
    3. Lammer E. J.,
    4. Sulik K. K.
    (1986) Isoretinoin Embryopathy and the Cranial Neural Crest: An In Vivo and In Vitro Study. J. Craniofacial Genet. Dev. Biol 6, 211–222
    OpenUrlPubMedWeb of Science
    1. Wilkinson D.,
    2. Bhatt S.,
    3. Chavrier P.,
    4. Bravo R.,
    5. Charney P.
    (1989) Segment-specific expression of a zinc finger gene in the developing nervous system of the mouse. Nature 337, 461–464
    OpenUrlCrossRefPubMed
    1. Wilkinson D. G.
    (1993) Molecular mechanisms of segmental patterning in the vertebrate hindbrain and neural crest. BioEssays 15, 499–505
    OpenUrlCrossRefPubMedWeb of Science
    1. Wilkinson D. G.,
    2. Bhatt S.,
    3. Cook M.,
    4. Boncinelli E.,
    5. Krumlauf R.
    (1989) Segmental expression of Hox-2 homeobox-containing genes in the developing mouse hindbrain. Nature 341, 405–409
    OpenUrlCrossRefPubMed
    1. Wood H.,
    2. Pall G.,
    3. Morriss-Kay G.
    (1994) Exposure to retinoic acid before or after onset of somitogenesis reveals separate effects on rhombomeric segmentation and 3HoxB gene expression. Development 120, 2279–2285
    OpenUrlAbstract
    1. Zhang M.,
    2. Kim H.-J.,
    3. Marshall H.,
    4. Gendron-Maguire M.,
    5. Lucas D. A.,
    6. Baron A.,
    7. Gudas L. J.,
    8. Gridley T.,
    9. Krumlauf R.,
    10. Grippo J.
    (1994) Ectopic Hoxa-1 induces rhombomere transformation in mouse hindbrain. Development 120, 2431–2442
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Late effects of retinoic acid on neural crest and aspects of rhombomere
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Late effects of retinoic acid on neural crest and aspects of rhombomere
E. Gale, V. Prince, A. Lumsden, J. Clarke, N. Holder, M. Maden
Development 1996 122: 783-793;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Late effects of retinoic acid on neural crest and aspects of rhombomere
E. Gale, V. Prince, A. Lumsden, J. Clarke, N. Holder, M. Maden
Development 1996 122: 783-793;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992