Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb
A. Vogel, C. Rodriguez, J.C. Izpisua-Belmonte
Development 1996 122: 1737-1750;
A. Vogel
Gene expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Rodriguez
Gene expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.C. Izpisua-Belmonte
Gene expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Fibroblast Growth Factors (FGFs) are signaling molecules that are important in patterning and growth control during vertebrate limb development. Beads soaked in FGF-1, FGF-2 and FGF-4 are able to induce additional limbs when applied to the flank of young chick embryos (Cohn, M.J., Izpisua-Belmonte, J-C., Abud, H., Heath, J. K., Tickle, C. (1995) Cell 80, 739–746). However, biochemical and expression studies suggest that none of these FGFs is the endogenous signal that initiates limb development. During chick limb development, Fgf-8 transcripts are detected in the intermediate mesoderm and subsequently in the prelimb field ectoderm prior to the formation of the apical ectodermal ridge, structures required for limb initiation and outgrowth, respectively. Later on, Fgf-8 expression is restricted to the ridge cells and expression disappears when the ridge regresses. Application of FGF-8 protein to the flank induces the development of additional limbs. Moreover, we show that FGF-8 can replace the apical ectodermal ridge to maintain Shh expression and outgrowth and patterning of the developing chick limb. Furthermore, continuous and widespread misexpression of FGF-8 causes limb truncations and skeletal alterations with phocomelic or achondroplasia phenotype. Thus, FGF-8 appears to be a key signal involved in initiation, outgrowth and patterning of the developing vertebrate limb.

Reference

    1. Abraham J. A.,
    2. Mergia A.,
    3. Whang J. L.,
    4. Tumolo A.,
    5. Friedman J.,
    6. Hjerrild K. A.,
    7. Gospodarowicz D.,
    8. Fiddes J. C.
    (1986) Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. Science 233, 545–553
    OpenUrlAbstract/FREE Full Text
    1. Amaya E.,
    2. Musci T. J.,
    3. Kirschner M. W.
    (1991) Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell 66, 257–270
    OpenUrlCrossRefPubMedWeb of Science
    1. Bellus G. A.,
    2. Hefferon T. W.,
    3. Ortiz de Luna R. I.,
    4. Hecht J. T.,
    5. Horton W. A.,
    6. Machado M.,
    7. Kaitila I.,
    8. McIntosh I.,
    9. Francomano C. A.
    (1995) Achondroplasia is defined by recurrent G380R mutations of FGFR3. Am. J. Hum. Genet 56, 368–373
    OpenUrlPubMedWeb of Science
    1. Carrington J. L.,
    2. Fallon J. F.
    (1988) Initial limb budding is independent of apical ectodermal ridge activity; evidence from a limbless mutant. Development 104, 361–367
    OpenUrlAbstract/FREE Full Text
    1. Chan D. V.,
    2. Wynshaw-Boris A.,
    3. Leder P.
    (1995) Formin isoforms are differentially expressed in the mouse embryo and are required for normal expression of fgf-4 and shh in the limb bud. Development 121, 3151–3162
    OpenUrlAbstract
    1. Chang D. T.,
    2. Lopez A.,
    3. vonKessler D. P.,
    4. Chiang C.,
    5. Simandl B. K.,
    6. Zhao R.,
    7. Seldin M. F.,
    8. Fallon J. F.,
    9. Beachy P. A.
    (1994) Products genetic linkage and limb patterning activity of a murine hedgehog gene. Development 120, 3339–3353
    OpenUrlAbstract
    1. Charite J.,
    2. de Graaff W.,
    3. Shen S.,
    4. Deschamps J.
    (1994) Ectopic expression of Hox b-8 causes duplication of the ZPA in the forelimb and homeotic transformation of axial structures. Cell 78, 589–601
    OpenUrlCrossRefPubMedWeb of Science
    1. Cho K. W. Y.,
    2. De Robertis E.
    (1990) Differential activation in Xenopus homeobox genes by mesoderm-inducing growth factors and retinoic acid. Genes Dev 4, 1910–1916
    OpenUrlAbstract/FREE Full Text
    1. Cohn M. J.,
    2. Izpisúa Belmonte J. C.,
    3. Abud H.,
    4. Heath J. K.,
    5. Tickle C.
    (1995) FGF-2 application can induce additional limbud, formation from the flank of chick embryos. Cell 80, 739–746
    OpenUrlCrossRefPubMedWeb of Science
    1. Crossley P. H.,
    2. Martin G. R.
    (1995) The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121, 439–451
    OpenUrlAbstract
    1. Dolle P.,
    2. Dierich A.,
    3. LeMeur M.,
    4. Shimmang T.,
    5. Schuhbaur B.,
    6. Chambon P.,
    7. Duboule D.
    (1993) Disruption of the H oxd- 13 gene induces localized heterochrony leading to mice with neotenic limbs. Cell 75, 431–441
    OpenUrlCrossRefPubMedWeb of Science
    1. Dono R.,
    2. Zeller R.
    (1994) Cell-type-specific nuclear translocation of fibroblast growth factor-2 isoforms during chicken kidney and limb morphogenesis. Dev. Biol 163, 316–330
    OpenUrlCrossRefPubMedWeb of Science
    1. Duboule D.
    (1994) How to make a limb?. Science 266, 575–576
    OpenUrlFREE Full Text
    1. Fallon J.,
    2. Lopez A.,
    3. Ros M.,
    4. Savage M.,
    5. Olwin B.,
    6. Simandl B.
    (1994) FGF-2, Apical ectodermal ridge growth signal for chick limb development. Science 264, 104–107
    OpenUrlAbstract/FREE Full Text
    1. Geduspan J. S.,
    2. Solursh M.
    (1992) A growth promoting influence from the mesonephros during limb outgrowth. Dev. Biol 151, 242–250
    OpenUrlCrossRefPubMed
    1. Globus M.,
    2. Vethamany-Globus S.
    (1976) An in vitro analogue of early chick limb bud outgrowth. Differentiation 6, 91–96
    OpenUrlCrossRefPubMed
    1. Hamburger V.
    (1938) Morphogenetic and axial self-differentiation of transplanted limb primordia of 2-day chick enmbryos. J. Exp. Zool 77, 379–400
    OpenUrlCrossRef
    1. Hamburger V.,
    2. Hamilton H.
    (1951) A series of normal stages in the development of the chick embryo. J. Morph 88, 49–92
    OpenUrlCrossRefPubMedWeb of Science
    1. Heikinheimo M.,
    2. Lawshe A.,
    3. Shackleford G. M.,
    4. Wilson D. B.,
    5. MacArthur C. A.
    (1994) Fgf-8 expression in the post-gastrulation mouse suggests roles in the development of the face, limbs and central nervous system. Mech. Dev 48, 129–138
    OpenUrlCrossRefPubMedWeb of Science
    1. Hughes S.,
    2. Greenhouse J.,
    3. Petropoulos J.,
    4. Sutrave P.
    (1987) Adaptor plasmids simplify the insertion of foreign DNA into helper-independent retroviral vectors. J. Virology 61, 3004–3012
    OpenUrlAbstract/FREE Full Text
    1. Izpisúa Belmonte J. C.,
    2. Brown J. M.,
    3. Duboule D.,
    4. Tickle C.
    (1992) Expression of Hox-4 genes in the chick wing links pattern formation to the epithelial-mesenchymal interactions that mediate growth. EMBO J 11, 1451–1457
    OpenUrlPubMedWeb of Science
    1. Izpisúa Belmonte J. C.,
    2. Tickle C.,
    3. Dolle P.,
    4. Wolpert L.,
    5. Duboule D.
    (1991) Expression of the homeobox Hox-4 genes and the specification of position in chick wing development. Nature 350, 585–589
    OpenUrlCrossRefPubMed
    1. Jabs E. W.,
    2. Li X.,
    3. Scott A. F.,
    4. Meyers C.,
    5. Chen W.,
    6. Eccles M.,
    7. Mao G.,
    8. Chamas L. A.,
    9. Jackson C. E.,
    10. Jaye M.
    (1994) Jackson-Weiss and Crouzon syndromes are allelic with mutations in fibroblast growth factor receptor 2. Nature Genetics 8, 275–279
    OpenUrlCrossRefPubMedWeb of Science
    1. Jackson A.,
    2. Friedman S.,
    3. Zhan X.,
    4. Engleka K. A.,
    5. Forough A.,
    6. Maciag T.
    (1992) Heat shock induces the release of fibroblast growth factor 1 from NIH3T3 cells. Proc. Natl. Acad. Sci. USA 89, 10691–10695
    OpenUrlAbstract/FREE Full Text
    1. Johnson D. E.,
    2. Lee P. L.,
    3. Lu J.,
    4. Williams L. T.
    (1990) Diverse forms of a receptor for acidic and basic fibroblast growth factor. Mol. Cell. Biol 10, 4728–4736
    OpenUrlAbstract/FREE Full Text
    1. Koyama E.,
    2. Noji S.,
    3. Nohno T.,
    4. Myokai F.,
    5. Ono K.,
    6. Nishijima K.,
    7. Kuroiwa A.,
    8. Ide H.,
    9. Taniguchi S.,
    10. Saito T.
    (1993) Cooperative activation of HoxD homeobox genes by factors from the polarizing region and the apical ridge in chick limb morphogenesis. Dev. Growth. Diff 35, 189–198
    OpenUrlCrossRef
    1. Lajeunie E.,
    2. Ma H. W.,
    3. Bonaventure J.,
    4. Munnich A.,
    5. Le Merrer M.
    (1995) FGFR-2 mutations in Pfeiffer syndrome. Nature Genet 9, 108–.
    OpenUrlCrossRefPubMedWeb of Science
    1. Laufer E.,
    2. Nelson C. E.,
    3. Johnson R. L.,
    4. Morgan B. A.,
    5. Tabin C.
    (1994) Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79, 993–1003
    OpenUrlCrossRefPubMedWeb of Science
    1. Lopez-Martinez A.,
    2. Chang D. T.,
    3. Chiang C.,
    4. Porter J. A.,
    5. Ros M. A.,
    6. Simandl B. K.,
    7. Beachy P. A.,
    8. Fallon J. F.
    (1995) Limb-patterning activity and restricted posterior localization of the amino-terminal product of Sonic hedgehog cleavage. Current Biology 5, 791–796
    OpenUrlCrossRefPubMed
    1. Mahmood R.,
    2. Bresnick J.,
    3. Hornbruch A.,
    4. Mahony C.,
    5. Morton N.,
    6. Colquhoun K.,
    7. Martin P.,
    8. Lumsden A.,
    9. Dickson C.,
    10. Mason I.
    (1995) A role for FGF-8 in the initiation and maintenance of vertebrate limb bud outgrowth. Curr. Biol 5, 797–806
    OpenUrlCrossRefPubMedWeb of Science
    1. Mansukhani A.,
    2. Moscatelli D.,
    3. Talarico D.,
    4. Levytska V.,
    5. Basilico C.
    (1990) A murine fibroblast growth factor (FGF) receptor expressed in CHO cells is activated by basic FGF and Kaposi FGF. Proc. Natl. Acad. Sci. USA 87, 4378–4382
    OpenUrlAbstract/FREE Full Text
    1. Mills C. L.,
    2. Bellairs R.
    (1989) Mitosis and cell death in the tail of the chick embryo. Anatomy and Embryology 180, 301–308
    OpenUrlCrossRefPubMed
    1. Mima T.,
    2. Ohuchi H.,
    3. Noji S.,
    4. Mikawa T.
    (1995) FGF can induce outgrowth of somatic mesoderm both inside and outside of limb-forming regions. Dev. Biol 167, 617–20
    OpenUrlCrossRefPubMed
    1. Miyamoto M.,
    2. Naruo K. I.,
    3. Sero C.,
    4. Matsumoto S.,
    5. Kondo T.,
    6. Kurokawa T.
    (1993) Molecular cloning of a novel cytokine cDNA encoding the ninth member of the fibroblast growth factor family, which has a unique secretion property. Mol. Cell. Biol 13, 4251–4259
    OpenUrlAbstract/FREE Full Text
    1. Morgan B. A.,
    2. Izpisúa-Belmonte J.-C.,
    3. Duboule D.,
    4. Tabin C. J.
    (1992) Targeted misexpression of Hox-4. 6 in the avian limb bud causes apparent homeotic transformations. Nature 358, 236–239
    OpenUrlCrossRefPubMed
    1. Niswander L.,
    2. Martin G. R.
    (1992) FGF-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development 114, 755–768
    OpenUrlAbstract
    1. Niswander L.,
    2. Martin G. R.
    (1993) FGF-4 and BMP-2 have opposite effects on limb outgrowth. Nature 361, 68–76
    OpenUrlCrossRefPubMed
    1. Niswander L.,
    2. Jeffery S.,
    3. Martin G.,
    4. Tickle C.
    (1994) Signaling in vertebrate limb development: a positive feedback loop between sonic hedgehog and FGF 4. Nature 371, 609–612
    OpenUrlCrossRefPubMed
    1. Niswander L.,
    2. Tickle C.,
    3. Vogel A.,
    4. Martin G.
    (1994) Function of FGF-4 in limb development. Mol. Reprod. Dev 39, 83–89
    OpenUrlCrossRefPubMed
    1. Niswander L.,
    2. Tickle C.,
    3. Vogel A.,
    4. Booth I.,
    5. Martin G. R.
    (1993) FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell 75, 579–587
    OpenUrlCrossRefPubMedWeb of Science
    1. Ohuchi H.,
    2. Nakagawa T.,
    3. Yamaguchi M.,
    4. Ohata T.,
    5. Yoshioka H.,
    6. Kuwana T.,
    7. Mima T.,
    8. Miwaka T.,
    9. Nohno T.,
    10. Noji S.
    (1995) An additional limb can be induced from the flank of the chick embryo by FGF4. Biochem. and Biophys. Res. Comm 209, 809–816
    OpenUrlCrossRefPubMedWeb of Science
    1. Ohuchi H.,
    2. Yoshioka H.,
    3. Tanaka A.,
    4. Kawakami Y.,
    5. Nohno T.,
    6. Noji S.
    (1994) Involvement of androgen-induced growth factor (FGF-8) gene in mouse embryogenesis and morphogenesis. Biochem. Biophys. Res. Commun 204, 882–888
    OpenUrlCrossRefPubMedWeb of Science
    1. Orr-Urtreger A.,
    2. Bedford M. T.,
    3. Burakova T.,
    4. Arman E.,
    5. Zimmer Y.,
    6. Yayon A.,
    7. Givol D.,
    8. Lonai P.
    (1993) Developmental localization ofthe splicing alternatives of fibroblast growth factor receptor-2 (FGFR-2). Dev Biol 158, 475–486
    OpenUrlCrossRefPubMedWeb of Science
    1. Orr-Urtreger A.,
    2. Givol D.,
    3. Yayon A.,
    4. Yarden Y.,
    5. Lonai P.
    (1991) Developmental expression of two murine fibroblast growth factor receptors, flg and bek. Development 113, 1419–1434
    OpenUrlAbstract
    1. Peters K. G.,
    2. Werner S.,
    3. Chen G.,
    4. Williams L. T.
    (1992) Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Development 114, 233–243
    OpenUrlAbstract
    1. Peters K.,
    2. Ornitz D.,
    3. Werner S.,
    4. Williams L.
    (1993) Unique expression pattern of the FGF-receptor 3 gene during mouse organogenesis. Dev. Biol 155, 423–430
    OpenUrlCrossRefPubMedWeb of Science
    1. Reardon W.,
    2. Winter R. M.,
    3. Rutland P.,
    4. Pulleyn L. J.,
    5. Jones B. M.,
    6. Malcom S.
    (1994) Mutations in the fibroblast growth factor receptor 2 cause Crouzon syndrome. Nature Genet 8, 98–103
    OpenUrlCrossRefPubMedWeb of Science
    1. Reiter R. S.,
    2. Solursh M.
    (1982) Mitogenic property of the apical ectodermal ridge. Dev. Biol 93, 28–35
    OpenUrlCrossRefPubMed
    1. Riddle R. D.,
    2. Ensini M.,
    3. Nelson C.,
    4. Tsuchida T.,
    5. Jessel T. M.,
    6. Tabin C.
    (1995) Induction of the LIM homeobox gene Lmx1 by WNT7a establishes dorsoventral pattern in the vertebrate limb. Cell 83, 631–640
    OpenUrlCrossRefPubMedWeb of Science
    1. Riddle R. D.,
    2. Johnson R. L.,
    3. Laufer E.,
    4. Tabin C.
    (1993) Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401–1416
    OpenUrlCrossRefPubMedWeb of Science
    1. Riley B. B.,
    2. Savage M. P.,
    3. Simandl B. K.,
    4. Olwin B. B.,
    5. Fallon J. F.
    (1993) Retroviral expression of FGF-2 (bFGF) affects patterning in the chick limb bud. Development 118, 95–104
    OpenUrlAbstract
    1. Rousseau F.,
    2. Bonaventure J.,
    3. Legeal-Mallet L.,
    4. Pelet A.,
    5. Rozet J.-M.,
    6. Maroteaux P.,
    7. Le Merrer M.,
    8. Munnich A.
    (1994) Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 371, 252–254
    OpenUrlCrossRefPubMedWeb of Science
    1. Rubin L.,
    2. Saunders J. W. J.
    (1972) Ectodermal-mesodermal interactions in the growth of limb buds in the chick embryo: constancy and temporal limits of the ectodermal induction. Dev. Biol 28, 94–112
    OpenUrlCrossRefPubMedWeb of Science
    1. Ruiz i Altaba A.,
    2. Melton D. A.
    (1989) Interaction between growth factors and homeobox genes in the establishment of anterior-posterior polarity in frog embryos. Nature 341, 33–38
    OpenUrlCrossRefPubMedWeb of Science
    1. Rutland P.,
    2. Pulleyn L. J.,
    3. Reardon W.,
    4. Baraisler M.,
    5. Hayward R.,
    6. Jones B.,
    7. Malcom S.,
    8. Winter R. M.,
    9. Oldridge M.,
    10. Slaney S. F.
    (1995) : Identical mutations in the FGFR-2 gene cause both Pfeiffer and Crouzon syndrome phenotypes. Nature Genet 9, 173–176
    OpenUrlCrossRefPubMedWeb of Science
    1. Saunders J. W. Jr.
    (1948) The proximo-distal sequence of the origin of the parts of the chick wing and the role of the ectoderm. J. Exp. Zool 108, 363–404
    OpenUrlCrossRefPubMedWeb of Science
    1. Saunders J. W. Jr.
    (1972) Developmental control of three-dimensional polarity in the avian limb. Ann. NY Acad. Sci 193, 29–42
    OpenUrlCrossRefPubMed
    1. Saunders J. W. Jr..,
    2. Reuss C.
    (1974) Inductive and axial properties of prospective wing-bud mesoderm in the chick embryo. Dev. Biol 38, 41–50
    OpenUrlCrossRefPubMed
    1. Savage M. P.,
    2. Hart C. E.,
    3. Riley B. B.,
    4. Sasse J.,
    5. Olwin B. B.,
    6. Fallon J. F.
    (1993) Distribution of FGF-2 suggests it has a role in chick limb bud growth. Dev. Dyn 198, 159–170
    OpenUrlCrossRefPubMedWeb of Science
    1. Searls R. L.,
    2. Janners M. Y.
    (1971) The initiation of limb bud outgrowth in the embryonic chick. Dev. Biol 24, 198–213
    OpenUrlCrossRefPubMedWeb of Science
    1. Searls R. L.,
    2. Zwilling E.
    (1964) Regeneration of the apical ectodermal ridge of the chick limb bud. Dev. Biol 9, 35–55
    OpenUrl
    1. Selleck M. A. J.,
    2. Stern C. D.
    (1992) Commitment of mesoderm cells in Hensen's node of the chick embryo to notochord and somite. Development 114, 403–415
    OpenUrlAbstract
    1. Shiang R.,
    2. Thompson L. M.,
    3. Zhu Y.-Z.,
    4. Church D. M.,
    5. Fielder T. J.,
    6. Bocian M.,
    7. Winokur S. T.,
    8. Wasmuth J. J.
    (1994) Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78, 335–342
    OpenUrlCrossRefPubMedWeb of Science
    1. Slack J. M. W.
    (1995) Growth factor lends a hand. Nature 374, 217–218
    OpenUrlCrossRefPubMed
    1. Markowitz M.
    1. Smith D. W.,
    2. Jones K. L.
    (1982) Recognizable patterns of human malformation: Genetic embryologic and clinical aspects. (ed. Markowitz M.) Series Title Major Problems In Clinical Pediatrics.
    1. Stephens T. D.,
    2. Spall R.,
    3. Baker W. C.,
    4. Hiatt S. R.,
    5. Pugmire D. E.,
    6. Shaker M. R.,
    7. Willis H. J.,
    8. Winger K. P.
    (1991). Axial and paraxial influences on limb morphogenesis. J. Morphol 208, 367–379
    OpenUrlCrossRefPubMed
    1. Stoilov I.,
    2. Kilpatrick M. W.,
    3. Tsipouras P.
    (1995) A common FGFR3 gene mutation is present in achondroplasia but not in hypochondroplasia. Am. J. Med. Genetics 55, 127–133
    OpenUrlPubMedWeb of Science
    1. Summerbell D.
    (1974) A quantitative analysis of the effect of excision of the AER from the chick limb bud. J. Embryol. Exp. Morph 32, 651–660
    OpenUrlCrossRefPubMedWeb of Science
    1. Superti-Furga A.,
    2. Eich G.,
    3. Bucher H. U.,
    4. Wisser J.,
    5. Giedon A.,
    6. Gitzelmann R.,
    7. Steinmann B.
    (1995) A glycine 375-to-cysteine substitution in the transmembrane domain of the fibroblast growth factor receptor-3 in a newborn with achondroplasia. Eur J. Pediatr 154, 215–219
    OpenUrlCrossRefPubMedWeb of Science
    1. Suzuki H. R.,
    2. Sakamoto H.,
    3. Yoshida T.,
    4. Sugimura T.,
    5. Terada M.,
    6. Solursh M.
    (1992) Localization of Hst1 transcripts to the apical ectodermal ridge in the mouse embryo. Dev. Biol 150, 219–222
    OpenUrlCrossRefPubMedWeb of Science
    1. Tabin C.
    (1995) The initiation of the limb bud: Growth factors, Hox genes, and retinoids. Cell 80, 671–674
    OpenUrlAbstract/FREE Full Text
    1. Tanaka A.,
    2. Miyamoto K.,
    3. Minamino N.,
    4. Takeda M.,
    5. Sato B.,
    6. Matsuo H.,
    7. Matsumoto K.
    (1992) Cloning and characterization of an androgen-induced growth factor essential for the andorgen-dependent growth of mouse mammary carcinoma cells. Proc. Natl. Acad. Sci. USA 89, 8928–8923
    OpenUrlCrossRefPubMedWeb of Science
    1. Tavormina P. L.,
    2. Shiang R.,
    3. Thompson L. M.,
    4. Zhu Y. Z.,
    5. Wilkin D. J.,
    6. Lachman R. S.,
    7. Wilcox W. R.,
    8. Rimoin D. L.,
    9. Cohn D. H.,
    10. Wasmuth J. J.
    (1995) Thanatohoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nature Genet 9, 231–328
    OpenUrlCrossRefWeb of Science
    1. Tickle C.,
    2. Eichele G.
    (1994) Vertebrate limb development. Ann. Rev. Cell Biol 10, 121–52
    OpenUrlAbstract
    1. Vogel A.,
    2. Tickle C.
    (1993) FGF-4 maintains polarizing activity of posterior limb bud cells in vivo and in vitro. Development 119, 199–206
    OpenUrlCrossRefPubMed
    1. Vogel A.,
    2. Roberts-Clarke D.,
    3. Niswander L.
    (1995) Effect of FGF on gene expression in chick limb bud cells in vivo and in vitro. Dev. Biol 171, 507–520
    OpenUrlCrossRefPubMedWeb of Science
    1. Vogel A.,
    2. Rodriguez C.,
    3. Warnken W.,
    4. Izpisua-Belmonte J. C.
    (1995) Chick Lmx-1 specifies dorsal cells fate during vertebrate limb development. Nature 378, 716–720
    OpenUrlAbstract/FREE Full Text
    1. Werner S.,
    2. Duan D.-s. R.,
    3. De Vries C.,
    4. Peters K. P.,
    5. Johnson D.,
    6. Williams L. T.
    (1992) Differential splicing in the extracellular region of fibroblast growth factor receptor 1 generates receptor variants with different ligand-binding specificities. Mol. Cell. Biol 12, 82–88
    OpenUrlCrossRefPubMedWeb of Science
    1. Wilkie A. O. M.,
    2. Morriss-Kay G. M.,
    3. Jones E. Y.,
    4. Heath J. K.
    (1995) Functions of fibroblast growth factors and their receptors. Current Biology 5, 500–507
    OpenUrlCrossRefPubMedWeb of Science
    1. Wilkie A. O. M.,
    2. Slaney S. F.,
    3. Oldridge M.,
    4. Poole M. D.,
    5. Ashworth G. J.,
    6. Hockley A. D.,
    7. Hayward R. D.,
    8. David D. J.,
    9. Pulleyn L.,
    10. Rutland P.
    (1995) Apert syndrome results from localized mutations of FGFR-2 and is allelic to Crouzon syndrome. Nature Genet 9, 165–172
    OpenUrlCrossRefPubMedWeb of Science
    1. Yang Y.,
    2. Niswander L.
    (1995) Interaction between the signaling molecule WNT7a and SHH during vertebrate limb development: dorsal signals regulated anteroposterior patterning. Cell 80, 939–47
    OpenUrl
    1. Zwilling E.
    (1961) Limb morphogenesis. Adv. Morph 1, 301–330
    OpenUrl
    1. Zwilling E.
    (1972) Limb morphogenesis. Dev. Biol. 28, 12–17
    OpenUrlPubMed
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb
A. Vogel, C. Rodriguez, J.C. Izpisua-Belmonte
Development 1996 122: 1737-1750;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb
A. Vogel, C. Rodriguez, J.C. Izpisua-Belmonte
Development 1996 122: 1737-1750;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Groucho augments the repression of multiple Even skipped target genes in establishing parasegment boundaries
  • Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes
  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

A new society for regenerative biologists

Kenneth Poss and Elly Tanaka announce the launch of the International Society for Regenerative Biology (ISRB), which will promote research and education in the field of regenerative biology.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


An interview with Cagney Coomer

Over a virtual chat, we spoke to Cagney Coomer about her experiences in the lab, the classroom and the community centre, and why she thinks outreach and role models are vital to science.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Here, Michèle Romanos talks about her new preprint, which mixes experimentation in quail embryos and computational modelling to understand how heterogeneity in a tissue influences cell rate.

Save your spot at our next session:

10 March
Time: 9:00 (GMT)
Chaired by: Thomas Lecuit

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992