Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Roles of cell-autonomous mechanisms for differential expression of region-specific transcription factors in neuroepithelial cells
Y. Nakagawa, T. Kaneko, T. Ogura, T. Suzuki, M. Torii, K. Kaibuchi, K. Arai, S. Nakamura, M. Nakafuku
Development 1996 122: 2449-2464;
Y. Nakagawa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Kaneko
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Ogura
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Suzuki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Torii
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. Kaibuchi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. Arai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Nakamura
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Nakafuku
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Although a number of genes have been found to have restricted expression domains in the embryonic forebrain and midbrain, it remains largely unknown how the expression of these genes is regulated at the cellular level. In this study, we explored the mechanisms for the differential expression of region-specific transcription factors in neuroepithelial cells by using both primary and immortalized neuroepithelial cells from the rat brain at embryonic day 11.5. We found that differential expression patterns of Pax-3, Pax-5, Pax-6, Dlx-1, Dlx-2, Emx2, Otx1 and Dbx observed in vivo were maintained even when the cells were isolated and cultured in vitro, free from environmental influences. Furthermore, in response to Sonic hedgehog, which is a major inductive signal from the environment for regional specification, neuroepithelial cells that maintain distinct regional identities expressed different sets of ventral-specific genes including Islet-1, Nkx-2.1 and Nkx-2.2. These results suggest that certain cell-autonomous mechanisms play important roles in regulating both environmental signal-dependent and -independent expression of region-specific genes. Thus, we propose that use of the in vitro culture systems we describe in this study facilitates the understanding of regulatory mechanisms of region-specific genes in neuroepithelial cells.

Reference

    1. Arimatsu Y.,
    2. Miyamoto M.,
    3. Nihonmatsu I.,
    4. Hirata K.,
    5. Uratani Y.,
    6. Hatanaka Y.,
    7. Takiguchi-Hayashi K.
    (1992) Early regional specification for a molecular neuronal phenotype in the rat neocortex. Proc. Natl. Acad. Sci. USA 89, 8879–8883
    OpenUrlAbstract/FREE Full Text
    1. Asano M.,
    2. Gruss P.
    (1992) Pax-5 is expressed at the midbrain-hindbrain boundary during mouse development. Mech. Dev 39, 29–39
    OpenUrlCrossRefPubMedWeb of Science
    1. Barbe M. F.,
    2. Levitt P.
    (1991) The early commitment of fetal neurons to the limbic cortex. J. Neurosci 11, 519–533
    OpenUrlAbstract
    1. Barth K. A.,
    2. Wilson S. W.
    (1995). Expression of zebrafish nk2.2 is influenced by sonic hedgehog/vertebrate hedgehog-1 and demarcate a zone of neuronal differentiation in the embryonic forebrain. Development 121, 1755–1768
    OpenUrlAbstract
    1. Basler K.,
    2. Edlund T.,
    3. Jessell T. M.,
    4. Yamada T.
    (1993) Control of cell pattern in the neural tube: regulation of cell differentiation by dorsalin-1, a novel TGFfamily member. Cell 73, 687–702
    OpenUrlCrossRefPubMedWeb of Science
    1. Birgbauer E.,
    2. Fraser S. E.
    (1994) Violation of cell lineage restriction compartments in the chick hindbrain. Development 120, 1347–1356
    OpenUrlAbstract
    1. Boncinelli E.,
    2. Gulisano M.,
    3. Broccoli V.
    (1993) Emx and Otx homeobox genes in the developing mouse brain. J. Neurobiol 24, 1356–1366
    OpenUrlCrossRefPubMedWeb of Science
    1. Boncinelli E.
    (1994) Early CNS development: Distal-less related genes and forebrain development. Curr. Opin. Neurobiol 4, 29–36
    OpenUrlCrossRefPubMed
    1. Bulfone A.,
    2. Puelles L.,
    3. Porteus M. H.,
    4. Frohman M. A.,
    5. Martin G. R.,
    6. Rubenstein J. L.
    (1993). Spatially restricted expression of Dlx-1, Dlx-2 (Tes-1), Gbx-2, and Wnt-3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal segmental boundaries. J. Neurosci 13, 3155–3172
    OpenUrlAbstract
    1. Bumcrot D. A.,
    2. Takada R.,
    3. McMahon A. P.
    (1995) Proteolytic processing yields two secreted forms of Sonic hedgehog. Mol. Cell. Biol 15, 2294–2303
    OpenUrlAbstract/FREE Full Text
    1. Chomczynski P.,
    2. Sacchi N.
    (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analyt. Biochem 162, 156–159
    OpenUrlCrossRefPubMedWeb of Science
    1. Davis C. A.,
    2. Holmyard D. P.,
    3. Millen K. J.,
    4. Joyner A. L.
    (1991) Examining pattern formation in mouse, chicken and frog embryos with an En -specific antiserum. Development 111, 287–298
    OpenUrlAbstract
    1. Echelard Y.,
    2. Epstein D. J.,
    3. St-Jacques B.,
    4. Shen L.,
    5. Mohler J.,
    6. McMahon J. A.,
    7. McMahon A. P.
    (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75, 1417–1430
    OpenUrlCrossRefPubMedWeb of Science
    1. Edwards M. A.,
    2. Yamamoto M.,
    3. Caviness V., Jr
    (1990) Organization of radial glia and related cells in the developing murine CNS. An analysis based upon a new monoclonal antibody marker. Neuroscience 36, 121–144
    OpenUrlCrossRefPubMedWeb of Science
    1. Eilers M.,
    2. Picard D.,
    3. Yamamoto K. R.,
    4. Bishop J. M.
    (1989) Chimaeras of myc oncoprotein and steroid receptors cause hormone-dependent transformation of cells. Nature 340, 66–68
    OpenUrlCrossRefPubMed
    1. Ekker S. C.,
    2. Ungar A. R.,
    3. Greenstein P.,
    4. von Kessler D. P.,
    5. Porter J. A.,
    6. Moon R. T.,
    7. Beachy P. A.
    (1995) Patterning activities of vertebrate hedgehog proteins in the developing eye and brain. Curr. Biol 5, 944–955
    OpenUrlCrossRefPubMedWeb of Science
    1. Ericson J.,
    2. Muhr J.,
    3. Placzek M.,
    4. Lints T.,
    5. Jessell T. M.,
    6. Edlund T.
    (1995) Sonic hedgehog induces the differentiation of the ventral forebrain neurons: A common signal for ventral patterning within the neural tube. Cell 81, 747–756
    OpenUrlCrossRefPubMedWeb of Science
    1. Ferri R. T.,
    2. Levitt P.
    (1993) Cerebral cortical progenitors are fated to produce region-specific neuronal populations. Cerebr. Cortex 3, 187–198
    OpenUrlAbstract/FREE Full Text
    1. Figdor M. C.,
    2. Stern C. D.
    (1993) Segmental organization of embryonic diencephalon. Nature 363, 630–634
    OpenUrlCrossRefPubMed
    1. Gard A. L.,
    2. Pfeiffer S. E.
    (1990) Two proliferative stages of the oligodendrocyte lineage (A2B5+O4-and O4+GalC-) under different mitogenic control. Neuron 5, 615–625
    OpenUrlCrossRefPubMedWeb of Science
    1. Goulding M. D.,
    2. Chalepakis G.,
    3. Deutsch U.,
    4. Erselius J. R.,
    5. Gruss P.
    (1991) Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO J 10, 1135–1147
    OpenUrlPubMedWeb of Science
    1. Goulding M. D.,
    2. Lumsden A.,
    3. Gruss P.
    (1993) Signals from the notochord and floor plate regulate the region-specific expression of two Pax genes in the developing spinal cord. Development 117, 1001–1016
    OpenUrlAbstract
    1. Gravel M.,
    2. DeAngelis D.,
    3. Braun P. E.
    (1994) Molecular cloning and characterization of rat brain 2,3 -cyclic nucleotide 3-phosphodiesterase isoform 2. J. Neurosci. Res 38, 243–247
    OpenUrlCrossRefPubMedWeb of Science
    1. Guazzi S.,
    2. Price M.,
    3. De Felice M.,
    4. Damante G.,
    5. Mattei M.-G.,
    6. Di Lauro R.
    (1990) Thyroid nuclear factor 1 (TTF1) contains a homeodomain and displays a novel DNA binding specificity. EMBO J 9, 3631–3639
    OpenUrlPubMedWeb of Science
    1. Guthrie S.,
    2. Muchamore I.,
    3. Kuroiwa A.,
    4. Marshall H.,
    5. Krumlauf R.,
    6. Lumsden A.
    (1992). Neuroectodermal autonomy of Hox-2.9 expression revealed by rhombomere transplantation. Nature 356, 157–159
    OpenUrlCrossRefPubMed
    1. Guthrie S.
    (1995) The status of neural segment. Trends Neurosci 18, 74–79
    OpenUrlPubMedWeb of Science
    1. Horton H. L.,
    2. Levitt P.
    (1988) A unique membrane protein is expressed on early developing limbic system axons and cortical targets. J. Neurosci 8, 4653–4661
    OpenUrlAbstract
    1. Hynes M.,
    2. Porter J. A.,
    3. Chiang C.,
    4. Chang D.,
    5. Tessier-Lavigne M.,
    6. Beachy P. A.,
    7. Rosenthal A.
    (1995) Induction of midbrain dopaminergic neurons by Sonic hedgehog. Neuron 15, 35–44
    OpenUrlCrossRefPubMedWeb of Science
    1. Jessell T. M.,
    2. Dodd J.
    (1992) Floor plate-derived signals and the control of neural cell pattern in vertebrates. Harvey Lect 86, 87–128
    1. Johnson R.,
    2. Tabin C.
    (1995) The long and short of hedgehog signaling. Cell 81, 313–316
    OpenUrlCrossRefPubMedWeb of Science
    1. Joyner A. L.,
    2. Martin G. R.
    (1987) En-1 and En-2, two mouse genes with sequence homology to the Drosophila engrailed gene: expression during embryogenesis. Genes Dev 1, 29–38
    OpenUrlAbstract/FREE Full Text
    1. Kindler S.,
    2. Sshwanke B.,
    3. Schulz B.,
    4. Garner C. C.
    (1990) Complete cDNA sequence encoding rat high and low molecular weight MAP2. Nucl. Acids. Res 18, 2822–.
    OpenUrlFREE Full Text
    1. Lendahl U.,
    2. Zimmerman L. B.,
    3. McKay R. D.
    (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60, 585–595
    OpenUrlCrossRefPubMedWeb of Science
    1. LeVine S. M.,
    2. Goldman J. E.
    (1988) Embryonic divergence of oligodendrocyte and astrocyte lineages in developing rat cerebrum. J. Neurosci 8, 3992–4006
    OpenUrlAbstract
    1. Liem K. F.,
    2. Tremml J. G.,
    3. Roelink H.,
    4. Jessell T. M.
    (1995) Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82, 969–979
    OpenUrlCrossRefPubMedWeb of Science
    1. Lewis S. A.,
    2. Balcarek J. M.,
    3. Krek V.,
    4. Shelanski M.,
    5. Cowan N. J.
    (1984) Sequence of a cDNA encoding mouse glial fibrillary acidic protein: structural conservation of intermediate filaments. Proc. Natl. Acad. Sci. USA 81, 2743–2746
    OpenUrlAbstract/FREE Full Text
    1. Lu S.,
    2. Bogarad L.,
    3. Murtha M. T.,
    4. Ruddle F. H.
    (1992) Expression pattern of a murine homeobox gene, Dbx, displays extreme spatial restriction in embryonic forebrain and spinal cord. Proc. Natl. Acad. Sci. USA 89, 8053–8057
    OpenUrlAbstract/FREE Full Text
    1. Lumsden A.
    (1990) The cellular basis of segmentation in the developing hindbrain. Trends Neurosci 13, 329–335
    OpenUrlCrossRefPubMedWeb of Science
    1. Lumsden A.,
    2. Clarke J. D. W.,
    3. Keynes R.,
    4. Fraser S.
    (1994) Early phenotypic choices by neuronal precursors, revealed by clonal analysis of the chick embryo hindbrain. Development 120, 1581–1589
    OpenUrlAbstract
    1. Lumsden A.,
    2. Graham A.
    (1995) A forward role for hedgehog. Curr. Biol 5, 1347–1350
    OpenUrlCrossRefPubMedWeb of Science
    1. Macdonald R.,
    2. Xu Q.,
    3. Barth K. A.,
    4. Mikkola I.,
    5. Holder N.,
    6. Fjose A.,
    7. Krauss S.,
    8. Wilson S. W.
    (1994) Regulatory gene expression boundaries demarcate sites of neuronal differentiation in the embryonic zebrafish forebrain. Neuron 13, 1039–1053
    OpenUrlCrossRefPubMedWeb of Science
    1. Martí E.,
    2. Bumcrot D. A.,
    3. Takada R.,
    4. McMahon A. P.
    (1995) Requirement of 19K form of Sonic hedgehog for induction of distinct ventral cell types in CNS explants. Nature 375, 322–325
    OpenUrlCrossRefPubMed
    1. Martinez S.,
    2. Geijo E.,
    3. Sanchez-Vives M. V.,
    4. Puelles L.,
    5. Gallego R.
    (1992) Reduced junctional permeability at interrhombomeric boundaries. Development 116, 1069–1076
    OpenUrlAbstract
    1. Murphy M.,
    2. Drago J.,
    3. Bartlett P. F.
    (1990) Fibroblast growth factor stimulates the proliferation and differentiation of neural precursor cells in vitro. J. Neurosci. Res 25, 463–475
    OpenUrlCrossRefPubMedWeb of Science
    1. Nakafuku M.,
    2. Nakamura S.
    (1995) Establishment and characterization of a multipotent neural stem cell line that can conditionally generate neurons, astrocytes, and oligodendrocytes in vitro. J. Neurosci. Res 41, 153–168
    OpenUrlCrossRefPubMed
    1. Nakamura H.,
    2. Takagi S.,
    3. Tsuji T.,
    4. Matsui K. A.,
    5. Fujisawa H.
    (1988) The prosencephalon has the capacity to differentiate into the optic tectum: analysis by chick-specific monoclonal antibodies in quail-chick-chimeric brains. Dev. Growth Differ 30, 717–725
    OpenUrlCrossRef
    1. Nakamura H.
    (1990) Do CNS anlagen have plasticity in differentiation? Analysis in quail-chick chimera. Brain Res 511, 122–128
    OpenUrlCrossRefPubMed
    1. Nudel U.,
    2. Zakut R.,
    3. Shani M.,
    4. Neuman S.,
    5. Levy Z.,
    6. Yaffe D.
    (1983) The nucleotide sequence of the rat cytoplasmic beta-actin gene. Nucl. Acids Res 11, 1759–1771
    OpenUrlAbstract/FREE Full Text
    1. Ogura T.,
    2. Alvarez I. S.,
    3. Vogel A.,
    4. Rodriguez C.,
    5. Evans R. M.,
    6. Izpisua Belmonte J. C.
    (1996) Evidence that Shh cooperates with a retinoic acid inducible co-factor to establish ZPA-like activity. Development 122, 537–542
    OpenUrlAbstract
    1. Price M.,
    2. Lazzaro D.,
    3. Pohl T.,
    4. Mattei M. G.,
    5. Ruther U.,
    6. Olivo J. C.,
    7. Duboule D.,
    8. Di Lauro R.
    (1992). Regional expression of the homeobox gene Nkx-2.2 in the developing mammalian forebrain. Neuron 8, 241–255
    OpenUrlCrossRefPubMedWeb of Science
    1. Price M.
    (1993) Members of the Dlx-and Nkx2-gene families are regionally expressed in the developing forebrain. J. Neurobiol 24, 1385–1399
    OpenUrlCrossRefPubMedWeb of Science
    1. Puelles L.,
    2. Amat J. A.,
    3. Martinez-de-la-Torre M.
    (1987) Segment-related, mosaic neurogenetic pattern in the forebrain and mesencephalon of early chick embryos: I. Topography of AChE-positive neuroblasts up to stage HH18. J. Comp. Neurol 266, 247–268
    OpenUrlCrossRefPubMedWeb of Science
    1. Puelles L.,
    2. Rubenstein J. L.
    (1993) Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. Trends Neurosci 16, 472–479
    OpenUrlCrossRefPubMedWeb of Science
    1. Robel L.,
    2. Ding M.,
    3. James A. J.,
    4. Lin X.,
    5. Simeone A.,
    6. Leckman J. F.,
    7. Vaccarino F. M.
    (1995) Fibroblast growth factor 2 increases Otx2 expression in precursor cells from mammalian telencephalon. J. Neurosci 15, 7879–7891
    OpenUrlAbstract
    1. Roelink H.,
    2. Augsburger A.,
    3. Heemskerk J.,
    4. Korzh V.,
    5. Norlin S.,
    6. Ruiz i Altaba A.,
    7. Tanabe Y.,
    8. Placzek M.,
    9. Edlund T.,
    10. Jessell T. M.,
    11. Dodd J.
    (1994) Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 76, 716–775
    OpenUrl
    1. Roelink H.,
    2. Porter J. A.,
    3. Chiang C.,
    4. Tanabe Y.,
    5. Chang D. T.,
    6. Beachy P. A.,
    7. Jessell T. M.
    (1995) Floor plate and motor neuron induction bydifferent concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell 81, 445–455
    OpenUrlCrossRefPubMedWeb of Science
    1. Rubenstein J. L.,
    2. Martinez S.,
    3. Shimamura K.,
    4. Puelles L.
    (1994) The embryonic vertebrate forebrain: the prosomeric model. Science 266, 578–580
    OpenUrlFREE Full Text
    1. Ruiz i Altaba A.
    (1994) Pattern formation in the vertebrate neural plate. Trends Neurosci 17, 233–243
    OpenUrlCrossRefPubMedWeb of Science
    1. Salinas P. C.,
    2. Nusse R.
    (1992) Regional expression of the Wnt-3 gene in the developing mouse forebrain in relationship to diencephalic neuromeres. Mech. Dev 39, 151–160
    OpenUrlCrossRefPubMedWeb of Science
    1. Scherer S. S.,
    2. Braun P. E.,
    3. Grinspan J.,
    4. Collarini E.,
    5. Wang D. Y.,
    6. Kamholz J.
    (1994) Differential regulation of the 2,3 -cyclic nucleotide 3-phosphodiesterase gene during oligodendrocyte development. Neuron 12, 1363–1375
    OpenUrlCrossRefPubMedWeb of Science
    1. Schneeberger C.,
    2. Speiser P.,
    3. Kury F.,
    4. Zeillinger R.
    (1995) Quantitative detection of reverse transcriptase-PCR products by means of a novel and sensitive DNA stain. PCR Methods Appl 4, 234–238
    OpenUrlCrossRefPubMedWeb of Science
    1. Shimamura K.,
    2. Hartigan D. J.,
    3. Martinez S.,
    4. Puelles L.,
    5. Rubenstein J. L. R.
    (1995) Longitudinal organization of the anterior neural plate and neural tube. Development 121, 3923–3933
    OpenUrlAbstract
    1. Simeone A.,
    2. Acampora D.,
    3. Gulisano M.,
    4. Stornaiuodo A.,
    5. Boncinelli E.
    (1992) Nestedexpression domains of four homeobox genes in developing rostral brain. Nature 358, 687–690
    OpenUrlCrossRefPubMed
    1. Simeone A.,
    2. Gulisano M.,
    3. Acampora D.,
    4. Stornaiuodo A.,
    5. Rambaldi M.,
    6. Boncinelli E.
    (1992) Two vertebrate homeobox genes related to the Drosophila empty spiracles gene are expressed in the embryonic cerebral cortex. EMBO J 11, 2541–2550
    OpenUrlPubMedWeb of Science
    1. Simon H.,
    2. Hornbruch A.,
    3. Lumsden A.
    (1995) Independent assignment of anterior-posterior and dorso-ventral positional values in the developing chick hindbrain. Curr. Biol 5, 205–214
    OpenUrlCrossRefPubMedWeb of Science
    1. Stoykova A.,
    2. Gruss P.
    (1994) Roles of Pax genes in developing and adult brain as suggested by expression patterns. J. Neurosci 14, 1395–1412
    OpenUrlAbstract
    1. Stuart E. T.,
    2. Kioussi C.,
    3. Gruss P.
    (1993) Mammalian Pax genes. Annu. Rev. Genet 27, 219–236
    OpenUrl
    1. Vicario-Abejon C.,
    2. Cunningham M. G.,
    3. McKay R. D. G.
    (1995) Cerebellar precursors transplanted to the neonatal dentate gyrus express features characteristic of hippocampal neurons. J. Neurosci 15, 6351–6363
    OpenUrlAbstract/FREE Full Text
    1. Walther C.,
    2. Gruss P.
    (1991) Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113, 1435–1449
    OpenUrlAbstract
    1. Wilkinson D. G.,
    2. Bhatt S.,
    3. Cook M.,
    4. Boncinelli E.,
    5. Krumlauf R.
    (1989) Segmental expression of Hox-2 homeobox-containing genes in the developing mouse hindbrain. Nature 341, 405–409
    OpenUrlCrossRefPubMed
    1. Wilkinson D. G.,
    2. Bhatt S.,
    3. Chavrier P.,
    4. Bravo R.,
    5. Charnay P.
    (1989) Segment-specific expression of a zinc-finger gene in the developing nervous system of the mouse. Nature 337, 461–464
    OpenUrlCrossRefPubMed
    1. Williams R. W.,
    2. Goldowitz D.
    (1992) Lineage versus environment in embryonic retina: a revisionist perspective. Trends Neurosci 15, 368–373
    OpenUrlCrossRefPubMedWeb of Science
    1. Wilson S. W.,
    2. Placzek M.,
    3. Furley A. J.
    (1993) Border disputes: do boundaries play a role in growth-cone guidance?. Trends Neurosci 16, 316–323
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Roles of cell-autonomous mechanisms for differential expression of region-specific transcription factors in neuroepithelial cells
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Roles of cell-autonomous mechanisms for differential expression of region-specific transcription factors in neuroepithelial cells
Y. Nakagawa, T. Kaneko, T. Ogura, T. Suzuki, M. Torii, K. Kaibuchi, K. Arai, S. Nakamura, M. Nakafuku
Development 1996 122: 2449-2464;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Roles of cell-autonomous mechanisms for differential expression of region-specific transcription factors in neuroepithelial cells
Y. Nakagawa, T. Kaneko, T. Ogura, T. Suzuki, M. Torii, K. Kaibuchi, K. Arai, S. Nakamura, M. Nakafuku
Development 1996 122: 2449-2464;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • A BAC transgenic analysis of the Mrf4/Myf5 locus reveals interdigitated elements that control activation and maintenance of gene expression during muscle development
  • Visualization and functional characterization of the developing murine cardiac conduction system
  • Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992